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ABSTRACT
We propose a technique for the autonomous detection of
the faulty sensors of a sensor array that are aberrant rel-
ative to the rest. Our approach is based on probabilisti-
cally modeling the distribution of the differences between
the sensor measurements as a mixture of gaussians and then
classifying further instances of the sensor differences using
a naive bayes classifier. We demonstrate the applicability of
this technique to the diagnosis of the sensors/photosites of a
CCD array, using sensor array data comprising of randomly
selected images. Our technique performs well for different
combinations of parameter settings at the detection of the
faulty photosites of a CCD array.

1 Introduction
We propose a computational technique for autonomously
detecting the faulty or aberrant sensors of a sensor array
consisting of a number of homogeneous sensors, each of
which measures the same physical quantity of interest. Our
data-driven technique can autonomously identify a wide range
of faulty sensors, as shown later, without the need for any
defect model or apriori knowledge of the nature of the sen-
sor faults. In order to do so, from the sensor data, we first
compute pairwise differences between the measurements of
every sensor and all the others - for n sensors there will be
n×(n−1) difference estimates. We probabilistically model
the distribution of all such pairwise difference estimates as a
gaussian mixture model (GMM) where every component of
the GMM represents a cluster or grouping of the difference
estimates; the choice of a GMM is motivated by the fact that
a mixture model based formalism provides a natural frame-
work for dealing with uncertain estimates [1]. We then clas-
sify further instances of the pairwise difference estimates
using a naive bayes classifier and the MAP (maximum a
posteriori) decision rule; finally, we aggregate the classifi-
cations of all the pairwise difference estimates of a sensor
to determine whether or not the sensor is faulty. Since, the
primary objective of our work is to accurately detect faulty
sensors, our methodology is based on the integration of two
well understood techniques as in [2]: the semi-parametric

mixture model based clustering and subsequent application
of the naive bayes classifier, and the MAP decision rule - we
have not reinvented the wheel. However, our use of the pair-
wise difference estimates instead of the raw sensor measure-
ments - a transformation that evinces more information on
the sensors’ behaviour as compared to raw measurements,
is a novel application. We explain this methodology in de-
tail in Section 2. To demonstrate its applicability, we ap-
ply our technique to the detection of the faulty photosites
of the CCD array of a monochrome digital camera - the
CCD serves as a model of a sensor array, and in this pa-
per we use the terms photosite and sensor interchangeably.
We show that the technique yields good results at the detec-
tion of the the faulty sensors of the CCD array, in Section 3.
Previously, the use of PCA to identify bad photosites from
image data was undertaken by Alonso et al. [3]; their ap-
proach only worked with uniform images. Chapman et al.
proposed a simple bayesian algorithm for the online identi-
fication of faults in their APS image sensor arrays, to which
they applied different defect models [4]. The fundamental
difference between their work and ours is that they used an
apriori defect model rather than discovering faulty photo-
sites autonomously from data, as we do. Their technique
was susceptible to detection errors when there were clusters
of faulty photosites. Koushanfar et al. proposed a mecha-
nism for the online fault detection of sensor measurements
using a model based cross-validation technique [5]; such
techniques are computationally quite prohibitive for larger
numbers of sensors than the ones we consider. Unlike some
of the previous approaches, we do not make any assump-
tions of the nature of the noise sources afflicting the sensors
or any use labeled training data; the results of our univariate
analysis technique are easy to visualize and tangible.

2 The proposed methodology

2.1 Modelling the difference estimates

A single pairwise difference estimate between two sensors
measuring the same same physical quantity highlights the
similarity or in contrary, the dissimilarity between the mea-



surements of the sensors. A pairwise difference estimate
between two sensors that are ‘healthy’ or functioning nor-
mally, will be lower than one between a faulty sensor and a
healthy one. Computing pairwise difference estimates may
be particularly useful when the number of sensors in an
array may not be very large as it increases the number of
points for density estimation, as opposed to using individ-
ual sensor measurements. Consider a group of n sensors,
measuring the same physical quantity of interest (eg. light,
temperature etc.) - If every sensor makes p such measure-
ments corresponding to the measurements at p distinct time
instants, we can form an × p matrix M . Every 1 × p row
in M , Ma (where a = 1 . . . n), will then represent a vector
of p measurements of a single sensor. For every row vector
Ma, we then compute the difference between Ma and all
other Mbs (where b = 1 . . . n and a 6= b). The ∆ estimates
between the two vectors are computed as follows.

∆ab =
p∑

k=1

|Mak −Mbk| (1)

These ∆s are the difference estimates between two sen-
sors computed from p different measurements, and indicate
how close or far apart the measurements of the two sen-
sors are. The distribution of all such pairwise difference
estimates will have natural groupings or clusters since they
have been computed from sensor measurements that are in-
herently noisy. Consequently, clusters of such estimates
will not be well-defined or have distinct boundaries and we
can probabilistically model the distribution of the ∆s as a
GMM, with the number of mixture components C fixed as
GMM’s are well-suited to modeling arbitrary multi-modal
densities. The GMM formulation is

∑C
k=1 πkPk(∆ab|θk),

where πk is the weighting factor of the kth component(πk ≥
0 and

∑C
k=1 πk = 1) and θk represents the parameter vec-

tor. Pk(∆ab|θk) for our purpose is the equation of a univari-
ate gaussian as in Eq 2.

Pk(∆ab|θk) =
1

σk

√
2π

e−(∆ab−µk)2/2σ2
k (2)

Every gaussian component of the mixture represents a
partition or cluster in the distribution of the difference esti-
mates and every difference estimate has a finite probability
of belonging to every gaussian component. We use the stan-
dard EM algorithm with K-means initialization for estimat-
ing the GMM. The input to the EM algorithm is a shuffled
form of the vector of the difference estimates ∆s, in which
the inherent ordering of the pairwise difference estimates is
not preserved; this avoids any positional bias when comput-
ing pairwise difference estimates.

2.2 Classification of the difference estimates

From the sensor measurements, we construct sensor data
sets S1 . . . SN where each set Si is composed of n × (n −
1) pairwise difference estimates computed from p indepen-
dent measurements according to Eq 1. Since estimating the

Table 1. Table showing the posterior probabilities and clas-
sification of sensor pair difference estimates

Sensor a Sensor b P (C1|δab, θx) P (C2|δab, θx) P (C3|δab, θx) classify(δab)
1 2 0.1 0.7 0.2 2
1 3 0.15 0.8 0.05 2

GMM’s parameters using EM is computationally expensive,
we use only one of the sets from all the constructed sets
for estimating the GMM - we classify further instances of
difference estimates computed from the remaining N − 1
sets into the components of the GMM using a naive bayes
classifier. For the naive bayes classification, let ∆i

ab be a
difference estimate computed between two sensors a and b,
according Eq 1, for the set Si; every ∆i

ab is estimated for
each of the N − 1 data sets. Given the estimated GMM,
every ∆i

ab is independent of all the other ∆j
abs where j =

1, . . . , N − 1, j 6= i. For the N − 1 sets, we get a vector δab

= (∆1
ab, . . . ∆

N−1
ab ). Subsequently, applying the naive bayes

classification rule to the vector δab yields the corresponding
class posterior probabilities shown in Eq 3.

P (Ck|δab, θk) = P (θk)
N−1∏

i

Pk(∆i
ab|θk) (3)

Each Pk(∆i
ab|θk) is estimated according to Eq 2. The

above process is repeated for all the sensor pairs a = (1 . . . n)
and b = (1 . . . n), (a 6= b) in all the image sets N − 1,
thereby, producing the corresponding n× (n− 1) ∆i

abs for
each data set Si, the δabs and the corresponding posterior
probabilities. Table 1 is an excerpt from the table of the pos-
terior class probabilities computed in the case where there
are three classes C1, C2 and C3. Each row of the table con-
tains the posterior probabilities of the difference estimates
between two sensors in the three classes computed from the
sensor data sets S1 to SN−1 according to Eq 3. The last col-
umn of Table 1 is the final decision as to which of the three
classes or categories the difference estimates between a sen-
sor pair belongs to, shown as Eq 4, which is an application
of the MAP decision rule that minimizes the probability of
error or error rate under zero-one loss [6].

classify(δab) = argmax
k

P (Ck|δab, θk) (4)

2.3 Sensor categorization

The posterior probability values of Eq 3 indicate how close
or far apart the measurements of two sensors are. We amass
the (n−1) final classifications of all the difference estimates
(each of them computed according to Eq 4) of a sensor to-
gether. We then assign a sensor to the class Ck that is the
most frequently occurring class amongst the (n− 1) classi-
fications of a single sensor’s (n−1) difference estimates, as
per Eq 5.

maxClass(Sensora) = maxOccurencek(classify(δab))
where b = 1,. . . , n, b 6= a (5)



A faulty sensor will always be assigned to the class Ck

or the component of the GMM that has the smallest weight-
ing factor - such a component is the therefore a representa-
tive of the ‘outlier’ component of the GMM.

3 Experiments with a CCD array
3.1 Experimental setup

The CCD array of a monochrome USB digital camera serves
as our sensor array; we took several images of different ran-
dom scenes in a number of indoor rooms with the camera.
In every image, the measured value obtained for a single
photosite after digitization, is as an 8-bit integer, resulting in
256 possible different shades of grey ranging from black to
white, which can be represented as a number in the [0-255]
interval; the measurement of an individual photosite of the
CCD in a single image therefore represents one sensor mea-
surement. Bad sensors corresponding to the faulty photo-
sites of a CCD array can be of several different types: Stuck
photosite (a photosite that always reads high or maximum
(typically 255) on all exposures), Hot photosite (a photo-
site that reads unusually high values at longer exposures),
Dead photosite (a photosite that reads zero (black) at all ex-
posures) and photosites that may be hypo or hyper sensitive
and are particularly hard to detect. We applied our technique
to the detection of different faulty photosites. Although the
CCD has a resolution of 720×480 photosites, we restricted
our analysis of the sensors of the CCD array to windows of
x X y sensors (e.g. it might be a 10×20 window correspond-
ing to 200 sensors) of the array. We took a number of dif-
ferent images under exposures of 1/25, 1/250 and 1/500,
constituting multiple image-banks of 60 to 140 images. Ev-
ery image-bank was comprised of images taken under a par-
ticular exposure setting and every image in an image-bank
represented a snapshot in time. We also formed a separate
‘combined’ image-bank consisting of images taken under
all the three exposures. Following our methodology as de-
scribed in Sec 2.2, for each image-bank, we formed N sep-
arate sets of images, each set comprising of the same num-
ber p of randomly selected images each, from which we
compute the difference estimates. One of these sets was
used for the GMM parameter estimation using EM and the
remaining ones for the naive bayes classification (For e.g.
Out of 60 randomly selected images, we might use p = 12
for GMM estimation and from the remaining images 48 im-
ages, we form 4 sets of p = 12 images each for naive bayes
classification). We also found that the camera’s CCD did
not have any dead or stuck photosites. Hence, for these two
cases, we artificially introduced dead and stuck photosites
in the images.

3.2 Model estimation and classification

Each of the n photosites has a measurement in a single im-
age forming a n×1 vector for an image, that is then normal-

ized to zero mean and unit variance. As our technique relies
on p measurements for every photosite, we take p images
I1, . . . , Ip and the measurements of all the n photosites for
p images form a n × p matrix M - there are N such ma-
trices for the N image data sets Si, . . . , SN as described in
Sec 2.2. For a single row of the matrix Mi corresponding
to p measurements of photosite i (where i = 1, . . . n), we
computed the difference estimates between every Mi and
Mj (j = 1 . . . n, i 6= j). Using one of the N sets, we
modelled the distribution of the difference estimates as a
GMM, where we fixed the number of components or clus-
ters C to be 3. The choice of the number of components was
dictated by the need to arrive at a compromise between ro-
bustly detecting faulty photosites and estimating the number
of components accurately (we applied BIC for this purpose
as in [1]); we found that a choice of 3 components helped
achieve this tradeoff. We discovered that the components
of the gaussian mixture labelled as ‘low’ and ‘medium’ en-
compassed a large proportion of the difference estimates.
These two components correspond to differences between
the photosites’ measurements that are relatively low and the
photosites that are responsible for these two categories of
difference estimates have close associations with the other
photosites (they are quite similar). However, the third gaus-
sian component, labelled as ‘high’, corresponds to the com-
ponent of the gaussian mixture that is the representative of
the high difference estimates, that lie at the tails of the den-
sity - it accounts for a very small proportion of the total dif-
ference estimates and has a high variance - it serves as the
‘outlier’ component. Larger differences in measurements
are produced by dissimilar photosites and consequently, we
can say that such difference measurements are generated by
photosites that are aberrant relative to the rest. We then
applied the classification (Sec 2.2) and categorization (Sec
2.3) steps to additional sets of p images to identify the faulty
photosites amongst the n photosites. We consider a photo-
site to be aberrant if majority of its difference estimates are
classified in the ‘high’ category according to Eq 5.

4 Experimental Results and Discussion
4.1 Hot, dead and stuck photosites cases

In the images taken under long exposure (exposure greater
than 1/50), the hot photosites were prominent and appeared
much brighter than the other photosites and the dead and
stuck pixels were artificially introduced at certain location
of the CCD. Since, the faulty photosites were either visible
(hot) or known (dead and stuck), we evaluated the perfor-
mance of our analysis on two metrics: the false positive er-
ror rate (FPR) and the false negative error rate (FNR). FPR
was obtained by dividing the number of normal photosites
wrongly classified in the ‘high’ category (false positives) as
per Eq 5, by the total number of classifications of all the
photosites. FNR was obtained by dividing the number of



Table 2. Performance at identification of hot photosites
amongst 121 photosites for different numbers of images

Total No. im-
ages

p FPP FNP

8 4 0.0 0.0
10 5 0.0 0.0
12 6 0.0 0.0
24 8 0.0 0.0
48 12 0.0 0.0
60 12 0.0 0.0

Table 3. Performance for different exposure settings and
different numbers of sensors

Hot Dead Stuck
Exposures FPR FNR DD FPR FNR DD FPR FNR DD
1 By 25 0.0 0.0 1.19 0.0 0.0 1.19 0.0 0.0 1.19
1 By 500 NA NA NA 0.0 0.0 1.19 0.0 0.0 1.19
Random 0.0 0.0 1.19 0.0 0.0 1.19 0.0 0.0 0.0

No. Sensors
273 0.0 0.0 0.73 0.0 0.0 1.1 0.0 0.0 1.1
75 0.0 0.0 2.67 0.0 0.0 2.67 0.0 0.0 2.67
12 0.0 2.0 16.7 2.0 12.0 16.7 0.0 0.0 16.7

faulty photosites not correctly classified in the ‘high’ cat-
egory (false negatives) as per Eq 5, by the total number of
classifications of all the photosites; the total number of clas-
sifications being the number of trials or runs times the num-
ber of photosites that are classified per run. At first, we as-
sessed the performance of our technique at detecting the hot
photosites in a set of total 60 images taken under 1/25 expo-
sure for different numbers of images and different values of
p. Table 2 shows this result of 20 runs of our technique ap-
plied to a window containing 121 photosites (the total clas-
sifications in this case is equal to 20 × 121 = 2420), that
included the known hot photosites. We then evaluated our
analysis for the detection of hot, dead and stuck photosites
for images taken under different exposures and for differ-
ent number of photosites - Table 3 shows the performance
of our technique. As the hot photosites were not evident or
conspicuous in the images taken under 1/500 exposure, we
did not try to detect hot photosites in the 1/500 exposure
image-bank. In Table 3, DD stands for the defect density:
the fraction of faulty photosites in the total number of pho-
tosites and NA indicates ‘not applicable’. Our technique
performed well under most conditions. For small numbers
of photosites, the technique was prone to false negatives and
for the cases when the faulty photosites were wrongly diag-
nosed to have a majority of their difference estimates in the
‘high’ category, we found that the majority of their differ-
ence estimates were in the ‘medium’ category. What this
indicates is that, for smaller number of photosites, possibly,
a choice of 2 mixture components might be a better one as
the number of difference estimates are not high enough for
the density to be approximated by 3 gaussian components.

4.2 Hyper/Hypo sensitive photosite case

We also tried to determine if the analysis can detect photo-
sites that are slightly faulty or ‘suspect’; they may be more
or less sensitive than the rest, but, are not visibly faulty.
Since, they cannot be seen upon visual inspection, it is im-

Table 4. Performance at identification of ‘suspect’ photosite
amongst 230 photosites

FPR FNR DD
0.0123 0.0023 0.0043

perative to discover the ‘suspect’ photosites on the CCD. We
tried to determine these ‘suspect’ photosites from the im-
ages using a test for outlier based on the normal distribution
of the photosite values from an unbiased random averaged
image, having very little image formation. We created such
an averaged random by accruing a large number of images
of plain surfaces (such as a wall), and averaging all these
frames to get a single frame. From this frame, we selected
n photosites, such that n was quite large (> 10, 000), nor-
malized the photosite values (subtracting the mean of n and
dividing by the standard deviation of n) and then plotted
the distribution of these photosites. We applied the Jarque-
Bera normality test at a 1 percent significance level to ensure
that the distribution of the photosites was a standard nor-
mal. We tried to look for photosites whose measurements
were greater than 3σ from the mean in multiple such aver-
aged frames and found that photosite at location X : 393,
Y : 291 on the CCD was greater than the 3σ in three such
averaged frames; we deemed it to be ‘suspect’. We then
tried to determine if our integrated technique could detect
this ‘suspect’ photosite and evaluated its performance at do-
ing so. From 25 runs of applying our technique to a window
of 230 photosites containing the above ‘suspect’ photosite,
in 96 randomly selected images from the ‘combined’ image-
bank, we found that out of the 25 runs, 7 runs failed to iden-
tify the ‘suspect’ photosite as being aberrant (having ma-
jority of its difference estimates in the ‘high’ category) and
18 runs correctly did so, although the overall results were
quite good as shown in Table 4. Unlike the test based on
normal distribution, that is run on plain images, the image
information in a set of randomly selected images does affect
the diagnosis of the ‘suspect’ photosite. However, the for-
mer needed the measurements of 11, 000 photosites to have
a normal distribution before the ‘suspect’ photosites can be
detected at the 3σ level, whereas our analysis could detect
one such ‘suspect’ photosite amongst 230 other photosites.
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