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Abstract: Euler diagrams have numerous application areas, with a large variety of
languages based on them. In relation to software engineering, such areas encompass
modelling and specification including from a formal perspective. In all of these ap-
plication areas, it is desirable to provide tools to layout Euler diagrams, ideally in a
nice way. Various notions of ‘niceness’ can be correlated with certain properties that
an Euler diagram may or may not possess. Indeed, the relevant layout algorithms
developed to date produce Euler diagrams that have certain sets of properties, some-
times called well-formedness conditions. However, there is not a commonly agreed
definition of an Euler diagram and the properties imposed on them are rarely stated
precisely. In this paper, we provide a very general definition of an Euler diagram,
which can be constrained in varying ways in order to match the variety of defi-
nitions that exist in the literature. Indeed, the constraints imposed correspond to
properties that the diagrams may possess. A contribution of this paper is to provide
formal definitions of these properties and we discuss when these properties may be
desirable. Our definition of an Euler diagram and the formalization of these prop-
erties provides a general language for the Euler diagram community to utilize. A
consequence of using a common language will be better integration of, and more
accessible, research results.

Keywords: Information visualization, software specification, Venn diagrams

1 Introduction

In software engineering, a large variety of diagrammatic languages are used to model and reason
about software. Of these languages, many are based on closed curves including some compo-
nents of the Unified Modeling Language (UML) such as class diagrams and state charts [DC05].
Indeed, for the formal specification of software, Kent introduced constraint diagrams [Ken97]
which are based on the well-known Euler diagram language. Constraint diagrams can express
system invariants and operation pre-conditions and post-conditions. An example can be seen in
figure 1 which shows an invariant on a video rental system, expressing that titles are partitioned
into two disjoint subsets. The asterisks are universal quantifiers and the arrows, together with
their sources and targets, make statements about properties of binary relations. In this particular
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Properties of Euler Diagrams

example the arrows are both labelled NC, for ‘number of copies’. The diagram thus asserts that
all elements in the set ExColl (ex-collection) have no associated copies; all other titles are ‘in-
collection’ and are associated with some number of copies distinct from zero. The four closed
curves in this diagram constitute and Euler diagram.
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Figure 1: A constraint diagram.

Constraint diagrams fulfil a similar role to that of the Object Constraint Language, the only
non-visual part of the UML; see [HS05, KC99] for examples of software modelling using con-
straint diagrams. A well studied fragment of the constraint diagram language, called spider
diagrams [HST05], which are also based on Euler diagrams has been used in a variety of ap-
plication areas; see, for example, [Cla05] where they are used in a safety critical environment.
The relationship between spider diagrams, regular languages and finite state machines has also
been investigated [DS07]. Euler based diagrams have numerous other application areas; for
example [DES03, HES+05, KMGB05, Lov02, SA05, TVV05].

Thus, there are a whole range of languages based on closed curves that find applications in,
or related to, software engineering. A collection of closed curves can be viewed as an Euler
diagram but there are a host of differing views of what constitutes such a diagram which will be
discussed later in the paper. In all of the application areas mentioned above, the automatic layout
of diagrams has the potential to be important and in some cases could be considered essential.
For example, when using constraint diagrams to specify operations it might be necessary to prove
that the postcondition of one operation implies the precondition of another. In such situations
the reasoning may be automated; see [SMF+07]. To display the results of that reasoning to the
software engineer, the automatic generation of the diagrams in the proof is needed.

Titles

InColl

ExColl

Titles

InColl

ExColl

Titles

InColl

ExColl

Figure 2: Three Euler diagrams.

Euler diagrams are used to make statements about sets. For example, given the sets Titles =
{x,y,z}, InColl = {x,y} and ExColl = {z}, we can draw any one of the Euler diagrams in figure 2
to represent this situation where the label Titles represents the set Titles and so forth. In general,
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the ideal is that an Euler diagram can be found that represents the given collection of sets and
has nice visual qualities, allowing the diagram to be interpreted by the user with ease; in figure 2,
the lefthand diagram would probably be considered to be the nicest of the three because one can
easily differentiate the curves. To this end, most of the generation algorithms developed to date
draw Euler diagrams that have certain properties, sometimes called well-formedness conditions.
In general, the generation problem is to find an Euler diagram that possess some given properties
and represents some specified collection of sets. So, the generation problem can be broken down
into a collection of subproblems, one for each set of properties.

Various methods for generating Euler diagrams have been developed, each concentrating on
a particular class of Euler diagrams; see, for example [CR05b, CR03, FH02, KMGB05, VV04].
Ideally, such generation algorithms will produce diagrams with desirable properties in an effi-
cient way. The generation algorithms developed so far produce Euler diagrams that have certain
sets of properties. However, within the generation community, there is not a commonly agreed
definition of an Euler diagram and the properties imposed on them are rarely stated precisely.
Such precision is vital if we are to fully explore how to generate Euler diagrams effectively and
to answer various related questions such as whether an Euler diagram exists that represents a
certain statement and possesses certain properties. In section 2, we provide a general definition
of an Euler diagram and formalize various concepts which are necessary for the remainder of the
paper. Section 3 provides a formalization of a variety of properties that have been imposed on
Euler diagrams, either in existing layout work or in related application areas. Finally, section 4
concludes and discusses implications for layout that imposing these properties brings.

2 Euler Diagram Syntax

There are various definitions of Euler diagrams, most of which start with a set of closed curves
and proceed to state that these curves have certain properties. For example, in [FH02] an Euler
diagram is a finite set of simple, labelled, closed curves, no pair of which have the same label
or meet tangentially, and no point in R2 is in the image of more than two curves (that is, there
are no triple points). By contrast, [VV04] allows curves to have the same label. Exceptions to
the curved based definitions include that in [LP97], where an Euler diagram is viewed as a set
of connected regions in the plane. In this section, we give a very generic definition of an Euler
diagram and build up the necessary language required to formulate certain properties that Euler
diagrams may possess. To begin, we recollect the definition of a closed curve.

Definition 1 A curve is a continuous function defined on an interval [x,y]⊂R. Let c be a curve
with domain [x,y]. If c(x) = c(y) then c is closed [Bla83].

From this point, we assume that all curves are closed, have domain [0,1] and have codomain
R2 unless stated otherwise. We further assume that all curves c : [x,y] → R2 can be defined by
c(t) = ( f (t),g(t)) where f and g are continuous; this allows us to utilize various topological
concepts necessary for the formalization of the properties Euler diagrams may possess. In an
Euler diagram, all curves have a label; we assume that their labels are drawn from a fixed set L .

Definition 2 An Euler diagram, d, is a pair, (Curve, l) where
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Properties of Euler Diagrams

1. Curve is a finite collection of closed curves each with codomain R2,

2. l : Curve →L is a function that returns the label of each curve.

In our figures, we sometimes draw a rectangle around Euler diagrams to delineate them; such
rectangles are not formally part of the diagram. Given an Euler diagram, we need to be able
to identify the interior of the curves, since these diagrams make statements about set inclusion
and disjointness by representing these relations in an isomorphic way; for example, to express
InColl is a subset of Titles, a curve labelled InColl is placed interior to a curve labelled Titles;
see figure 2. Given a curve that does not self-intersect, one can easily identify the interior: by the
Jordan Curve Theorem, such a curve splits R2 into two pieces, the bounded piece which forms the
interior and the infinite face which is exterior. However, the case for non-simple closed curves is
not so obvious; see [FS06] for a discussion on this issue. In the case of any simple closed curve,
c, we observe that any point, p ∈ R2, is inside c whenever c ‘winds’ exactly once around that
point. For example, in figure 3, the leftmost curve is simple and the point p lies in its interior;
here, c(0) denotes where we ‘start drawing the curve’ and the arrows indicate how we traverse
the curve. For all three curves, the point p is interior and the curve winds around p exactly once;
the shaded regions represent the interiors of the curves. In the middle and righthand curves, the
point q is in the exterior; the middle curve does not wind around q at all whereas the righthand
(non-simple) curve winds exactly twice around q. We use this insight to formally define the
interior (and exterior) of general closed curves.

Titles

c(0)
p

Titles

c(0)

p Titles

c(0)

p

q q

Figure 3: Identifying the interior: winding numbers.

Definition 3 Let c be a closed curve and let p be a point in R2− im(c). The point p is interior
to c if the winding number of c with respect to p, denoted wind(c, p) is odd, with the set of all
such points denoted int(c). All points in R2 that are not interior to c are exterior to c, with the
set of all such points denoted ext(c).

For any simple closed curve the winding number around any point in the bounded face is
one, thus the definition of interior just given agrees with the intuitive notion interior in such
cases. Given an Euler diagram, there may be more than one curve with a given label, such as
d1 in figure 4. In [VV04], an Euler diagram is permitted to have curves with common labels,
augmented with a + or a −. The diagram d2 in figure 4 shows such a diagram. There are two
curves labelled Titles of which one is ‘positive’, labelled Titles+, and the other is ‘negative’,
labelled Titles−. The area inside the curve labelled Titles− represents the set InColl−Titles.
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In [VV04], any curve, c1, with the same label as another curve, c2, is only placed inside c2 as

Titles

Titles

InColl

d1

Titles +

Titles –

InColl +

d2

Figure 4: Diagrams with common labels.

a result of their generation algorithm if c2 is augmented with a plus and c1 is augmented with
minus. As a consequence, the augmentation is redundant because the placement of the curves
implicitly provides the sign; the diagram d1 in figure 4 can be considered as having the same
meaning d2.

In [Joh05], an Euler diagram may also contain two curves with the same label. In general,
curves with the same label are referring to the same set. Just as with closed curves, we need to
be able to identify the interior and exterior of curves with the same label. For example, d1 in
figure 4 contains two labels: Titles, which labels two curves, and InColl. The ‘interior’ of Titles
is the set of points interior to the curve labelled Titles which contains the other two curves but
not those points interior to the other curve labelled Titles. This notion is consistent with our
definition of interior for curves, using winding numbers.

Definition 4 Let (Curve, l) be an Euler diagram and let Cur(L) be the set of all curves in d
with the label L. A point p is interior to Cur(L) if the sum of the winding numbers of the curves
in Cur(L) with respect to p is odd; more formally, the sum ∑

c∈Cur(L)
wind(c, p) is odd. The set

of interior points is denoted int(Cur(L)). All points in R2 which are not interior to Cur(L) are
exterior to Cur(L), the set of which is denoted ext(Cur(L)).

For any singleton set of curves of the form Cur(L), we immediately see that the points interior
to Cur(L) are the same as those interior to the single curve which Cur(L) contains. A set of
curves Cur(L) represents a set and the spatial arrangement of the curves in a diagram provides
information about the relationship between those sets. Thus it is useful to identify how the sets
of curves of the form Cur(L) partition the plane into pieces.

Definition 5 Let d = (Curve, l) be an Euler diagram and let Cur ⊆ {Cur(L) : L ∈ im(l)}. If the
set

z =
⋂

Cur(L′)∈Cur

int(Cur(L′))∩
⋂

Cur(L′)∈{Cur(L′):L∈im(l)}−Cur

ext(Cur(L′))

is non-empty then z is a zone of d, with the set of such zones denoted Z(d).

In figure 4, d1 contains four zones (the four components of R2 minus the images of the curves).
The zones are essentially given rise to by the labels used in the diagram: each subset of the label
set gives rise to a set of the form Cur as above.
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3 Formalizing Properties

Typically, generation techniques for Euler diagrams aim to produce a layout that possess certain
properties deemed desirable, possibly related to the understandability of the resulting diagram
or appropriate for the application area. For example, a diagram with a certain property may
be more understandable than one without that property. For each of the properties below, we
provide examples to motivate their usefulness and discuss where they have been used in the
related literature.

3.1 Simplicity Property

Many definitions of Euler (based) diagrams stipulate that the curves must be simple [BR98,
CR05b, CR03, Ham95, HST05, SA04, VV04] but others do not [BH96, CC04, DC05, SK00,
Shi94, SA05]. Indeed, the layout work in [CR05b, FH02, VV04] assumes that all curves are
simple. To recall, a simple curve is one that does not self-intersect. In figure 5, there are two
diagrams with the same meaning and the lefthand side one contains a non-simple curve, labelled
Vinnie Jones.

Guy Richie
UK Gangster

Movies

Vinnie

Jones

A diagram with a non simple curve.

Guy Richie
UK Gangster

Movies

Vinnie

Jones

A diagram with a duplicated curve label.

Vinnie

Jones

Figure 5: Simplicity of curves.

Definition 6 A curve c is simple if for all x,y ∈ [0,1], c(x) = c(y) implies x = y or |x− y|= 1.

Definition 7 An Euler diagram, d, possesses the simplicity property if and only if all of the
curves in d are simple.

Euler diagrams that possess the simplicity property are highly desirable due to the potential
difficulty users may meet when interpreting diagrams whose curves are not simple.

3.2 Unique Labelling Property

The definitions of an Euler diagram given in [BH96, BR98, CC04, CR05b, CR03, DC05, Ham95,
HST05, SK00, SA05, SA04] allow labels to occur at most once in any Euler diagram. Thus, the
unique labelling property is one that is commonly imposed on Euler diagrams. An example can
be seen in figure 5, where the lefthand diagram only uses labels once whereas the righthand
diagram uses Vinny Jones twice.
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Definition 8 An Euler diagram, (Curve, l), possesses the unique labelling property if the
function l is injective.

3.3 Connected Zones Property

The lefthand diagram in figure 6 contains a zone (that inside both Employees and Members)
which consists of two parts. Such a zone is said to be disconnected. Frequently, zones are
required to form connected components of R2, as in [FH02, VV04, CR05b]. It can be hard to
interpret Euler diagrams with disconnected zones under some circumstances, for example when
items are placed in zones. Such a collection of items might be split up in two or more minimal
regions, thus not allowing an immediate interpretation about the number or distribution of items.

Employees
Members

Mail Subs

A diagram with a disconnected zone.

Employees
Members

Mail

Subs

A diagram with a 3-point (triple point).

Figure 6: Disconnected zones and multiple points.

Definition 9 Let d = (Curve, l) be an Euler diagram. A non-empty set of points, m, in R2 is a
minimal region of d provided m is a connected component of R2−

⋃
c∈Curve

im(c) with the set of

such minimal regions denoted M(d).

Definition 10 An Euler diagram, d, possesses the connected zones property if all of the zones
of d are also minimal regions of d, that is Z(d) = M(d).

3.4 Zone Area Property

It is often desirable to visualize some value associated with the zones such as the cardinalities of
the sets they represent. This motivates the need for generating area proportional Euler diagrams,
which are characterized by using a weight function to measure zone area. Thus we introduce
a zone area property that Euler diagrams may possess. To satisfy this property, the zones in
an Euler diagram must have the area specified by a weight function. As an example, figure 7
shows an area proportional diagram providing information about the number of films in different
categories. The weight function does not assign an area to the zone which is not inside any
curves. In figure 7 the zone sizes are proportional to the weights within them.

Definition 11 Let d be an Euler diagram and

w : Z(d)−{
⋂

Cur(L′)∈{(Cur(L)):L∈im(l)}
ext(Cur(L′))}→ R+
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Thrillers

Comedies

Romances

45

15

94

32

28

35

Figure 7: An area proportional diagram.

be a function. The diagram d possesses the w-zone area property if and only if all of the zones,
z in the domain of w have area w(z).

There are obvious variations of this property; for example, when drawing bounding rectangles
around Euler diagrams, rather than embedding them in the whole of R2, one can stipulate the
area of all of the zones.

The work on laying out area proportional Euler diagrams typically produces diagrams that
have connected zones [CR03, CR05b, KMGB05]. Furthermore, some approaches to layout at-
tempt to find area proportional diagrams with unique labelling and the property that each curve
is a circle [CR05a, KMGB05]. Exact area proportional layouts under these conditions is not
always possible. The desirability of utilizing circles and getting an approximate result has also
led to the notion of relative size, so that more diagrams can be drawn where the size of one zone
is specified to be bigger than another [CR05a].

3.5 Connected Diagram Property

A diagram is said to be connected if the (images of) the curves form a connected set, such as that
in figure 7. Any collection of sets can be represented by a connected diagram: intuitively, any dis-
connected diagram can be made connected by creating brushing points (defined later); [Cho07]
uses this result in the generation process. For example, figure 8 shows a disconnected diagram
(left) which is ‘made connected’ by moving the curve labelled Games upwards, shown in the
middle diagram. All of the diagrams in this figure contain concurrent curves, but they have been
slightly pulled apart for visual clarity.

Definition 12 An Euler diagram, d = (C, l), possesses the connected diagram property if⋃
c∈C

im(c) is connected.

Given a collection of sets, if we wish to find a diagram representing that collection but do not
wish it to possess the connected diagram property then we can embed the disconnected parts sep-
arately; it is possible to identify disconnected (atomic) parts from the set information [FHT04].
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Films

DVDs Tapes

Games

A disconnected diagram.

Films

DVDs Tapes

Games

A diagram with two curves brushing.

Films

DVDs Tapes

Games

A diagram with partial concurrency.

Figure 8: Three diagrams with concurrent curves.

3.6 Multiple Point Properties

Given an Euler diagram that possesses the simplicity property, a point p in R2 is called an n-
point if the number of curves that pass through p is exactly n. In the non-simple case, curves
can pass through a point more than once and in such cases the number of times each curve
passes through p contributes to the value of n. For example, the righthand diagram in figure 6
contains a 3-point, also called a triple point. With non-simple curves, a triple point can be formed
from a single curve. A diagram in which all points are at most 2-points can make a diagram
easier to understand, but reduces the number of diagrams that can be drawn without introducing
other undesirable properties, such as concurrency and non-simple curves. The layout method
in [FH02] draws diagrams that have a most 2-points.

Definition 13 Let d = (Curve, l) be an Euler diagram and let p be a point in R2. We say that p
is an n-point in d if ∑

c∈Curve

∣∣{x ∈ [0,1) : c(x) = p}
∣∣ = n.

Definition 14 An Euler diagram, d = (Curve, l), possesses the n-point property provided each
point in R2 is at most an n-point in d.

3.7 Curve Crossing Property

In an Euler diagram, d, two curves in d may cross at a point p. Furthermore, the two curves might
intersect at p but not cross, in which case they brush at p. It may well be the case that two curves
brush and cross at a point. For example, all intersection points of the curves in the diagram in
figure 7 are crossing points whereas the middle diagram in figure 8 contains a brushing point,
where Games and Films intersect. It is possible for a point to be both a crossing and a brushing
point. We now proceed with a series of definitions that allow us to identify whether two curves
cross at a point and whether they brush at a point. Some generation algorithms produce diagrams
that only permit curves to intersect only at crossing point that are not brushing points [FH02].

As an example, the curves in the lefthand diagram in figure 9, cross at the point p. To identify
this formally, we can consider a disc neighbourhood N(p) around p see that it contains four
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regions, one for each of the four combinations of being ‘inside’ or ‘outside’ c1 and c2. However,
had c1, say, been non-simple it need not have had an interior. Thus, we cannot use the notion of
interior to define a crossing point. Given c1, N(p) is cut into two pieces and we can arbitrarily
assign positive and negative to each of these two pieces respectively. The curves in the middle
diagram brush at p. Here, the positive and negative regions do not correspond to each of the four
combinations of being positive or negative to the two curves.

c1 c2

A diagram with a crossing point.

Pos(c1)

Pos(c2)

Neg(c1)

Pos(c2)

Neg(c1)

Neg(c2)

Pos(c1)

Neg(c2)

N(p)

p

c1 c2

A diagram with a brushing point.

Neg(c1)

Neg(c2)

Neg(c1)

Pos(c2)

Neg(c1)

Neg(c2)

Pos(c1)

Neg(c2)

N(p)

p

A
B

A diagram with brushing and

crossing concurrency.

C

Figure 9: Crossing and brushing curves.

Definition 15 Let c : [x,y] → R2, where the notation [x,y] denotes any closed interval of R2.
Let p be a point in im(c) and let N(p) be a disc neighbourhood of p. If N(p)− im(c) consists of
exactly two connected components then N(p) is called a splitting neighbourhood of p for c.

Definition 16 Let c1 : [x,y]→R2 and c2 : [a,b]→R2 be two curves such that there is a unique
point p in im(c1)∩ im(c2). If there exists a disc neighbourhood N(p) such that

1. N(p) is a splitting neighbourhood of p for c1; arbitrarily call one of the two connected
components Pos(c1) and the other Neg(c1),

2. N(p) is a splitting neighbourhood of p for c2; arbitrarily call one of the two connected
components Pos(c2) and the other Neg(c2),

3. N(p) contains a point in Pos(c1)∩Pos(c2),

4. N(p) contains a point in Pos(c1)∩Neg(c2),

5. N(p) contains a point in Neg(c1)∩Pos(c2) and

6. N(p) contains a point in Neg(c1)∩Neg(c2)

then c1 and c2 are said to cross at p. Otherwise c1 and c2 brush at p.
Let c1 : [0,1] → R2 and c2 : [0,1] → R2 be two closed curves such that there is a point p in

im(c1)∩ im(c2). If there exist closed intervals I1, I2 ⊆ [0,1] such that

1. im(c1|I1)∩ im(c2|I2) contains exactly p,

2. the curves c1| and c2| cross at p
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then c1 and c2 cross at p. If there exists I1, I2 ⊆ [0,1] such that

1. im(c1|I1)∩ im(c2|I2) contains exactly p,

2. the curves c1| and c2| brush at p

then c1 and c2 brush at p.

Definition 17 An Euler diagram, d, possesses the crossing property if and only if whenever
two curves, C1 and C2, in d intersect they cross but do not brush.

The concepts of crossing and brushing can be generalized to curve segments as well as being
defined for points; see the discrete property below.

3.8 Discrete Property

The embedding methods of [VV04, CR05b] sometimes produce diagrams with concurrent line
segments. If concurrency is permitted, along with either non-simple curves or multiple curves
with the same label, then any collection of sets can be represented by an Euler diagram. More-
over, many collections of sets can only be represented by Euler diagrams with concurrent line
segments when certain properties are imposed. However, concurrent line segments can make
it difficult to interpret a diagram; the generation algorithm in [FH02] only produces diagrams
without concurrency; thus the curves in these diagrams intersect only at a discrete set of points.

Definition 18 A set of points, X ⊆ R2, is discrete if for every point x ∈ X there exists ε > 0
such that

{p ∈ R2 : d(p,x)≤ ε}∩X = {x}

where d(p,x) is the standard Euclidean distance between p and x.

Definition 19 An Euler diagram, d = (Curve, l), possesses the discrete property if all pairs of
curves in Curve do not run concurrently:

{x ∈ R2 : ∃a,b ∈ [0,1]a 6= b∧ c1(a) = c2(b) = x}

is a discrete set of points.

So, any diagram that possesses the discrete property does not have concurrent curves. With
non-simple curves, self concurrency is possible, so that the curve is concurrent with itself.

There are a number of variations of concurrency. Its possible to have ‘crossing’ or ‘brush-
ing’ concurrency depending on whether the curves cross at the start and end of the concurrency
segment. For example, the righthand diagram in figure 9 A and B brush concurrently (where
the concurrent line segments have been drawn slightly pulled apart for clarity) and A crosses C
concurrently, as does B.

An important variation is the distinction between ‘full’ concurrency and ‘partial’ concurrency.
Full concurrency can be seen in figure 8, with the curves labelled DVDs and Films have full
concurreny, as do Tapes and Films whereas the curves labelled Games and Films have partial
concurrency.
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For full concurrency the line segments of the two curves, c1 and c2, separate at a point which
is a crossing point or a brushing point for some pair of curves or a point where another curve
separates from a concurrent line segment; any other concurrency is partial. It is thought that
partial concurrency can always be removed from a diagram.

3.9 Curve Shape Properties

Curves may have the property of having a particular geometric shape, such as circle, oval, trian-
gle, square or being n-gons; the work in [CR05a, KMGB05] generates Euler diagrams consisting
only of circles and that in [CFW05] is concerned with k-gons with a particular focus on triangles.
A weaker constraint may be to require that all curves are the same shape, even if it is not regular.
Further, a curve may be smooth, in the sense that its function is differentiable. Sometimes there
is a requirement that all curves are convex, so concave curves are not permitted, see, for exam-
ple, [LP97]. In practice, most implemented diagram visualization methods restrict the shape of
the curves to some extent, due to the restrictions on line visualization in software environments;
for example, [CR05a, FH02, VV04] generates diagrams whose curves are polygons.

Definition 20 An Euler diagram, d = (Curve, l), possesses the smooth property if all of the
curves in Curve are smooth.

A curve, c, is convex if it is simple and its interior is convex; that is, for each pair of points in
the interior of c there is a straight line between those points that lies in the interior of c.

Definition 21 An Euler diagram, d = (Curve, l), possesses the convex property if all of the
curves in Curve are convex.

Definition 22 Let S be a set of shapes. An Euler diagram, d = (Curve, l), possesses the S-
shapes property if all of the curves in Curve are one of the shapes in S.

4 Conclusion

In this paper, we have provided a very general definition of an Euler diagram and provided a
formalization of many properties that such diagrams are frequently required to possess. This
definition and formalization provides a common language for the Euler diagram community
to utilize. A consequence of using this common language will be more accessible and better
integrated research results. Given the wide variety of languages based on closed curves that are
utilized in software engineering, the framework described here has the potential to bring many
important benefits.

There is a range of further properties that Euler diagrams may possess that can also be consid-
ered desirable which we have not formalized in this paper. However, they are not so commonly
considered by Euler diagram users. A monotonic diagram is one which always allows zones
to be resized or collapsed and still maintain simple curves. It is a property of diagrams formed
from the [CR05b] embedding process, which produces an area proportional diagram from a Venn
diagram construction. We do not include it amongst the main properties, as the definition of a
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monotonic diagram relies on the notion of the dual of the Euler diagram, rather than the direct
definition of a diagram. It is also possible to add zones to diagrams in order to ensure a dia-
gram has certain properties. Here, the added zones might be shaded, as with the original work
of Venn [Ven80] and the embedding process of [KMGB05] which does not guarantee that the
initially specified zones are present. In this case a desirable property of a diagram might be that it
has the smallest number of extra zones so as to possess certain other properties. One area of study
in the Venn community is the notion of drawing a diagram in a symmetric manner. Although
certain collections of sets can be represented by symmetric Euler diagrams, in the general case
symmetry is not possible. It is also unclear how much an aid to user interpretation of a diagram
is helped by symmetry. The context in which an Euler diagram is to be used is likely to influence
those properties deemed desirable.

The generation work to date produces diagrams that have specified selections of properties
we have formalized. Many difficult open problems remain to be solved. Given a collection of
sets, it is unknown which properties can be possessed by Euler diagrams which represent those
collections. For instance, classifying exactly which collections of sets can be represented by
diagrams which possess the simplicity and unique labelling properties remains unanswered. We
might also choose which properties a generated Euler diagram has, given a collection of sets that
we wish to visualize. An algorithm that incorporates such user choice where possible has not yet
been developed. Some collections of sets can be represented by an Euler diagram that possess
exactly one of the discrete property and the 2-point property; under such circumstances these
two properties are exchangeable. Further study into which properties can be exchanged needs to
be performed.
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[TVV05] J. Thiévre, M. Viaud, A. Verroust-Blondet. Using Euler Diagrams in Traditional
Library Environments. Euler Diagrams 2004 Elsevier, ENTCS vol 134, pages 189–
202, 2005.

[Ven80] J. Venn. On the diagrammatic and mechanical representation of propositions and
reasonings, Phil.Mag, 1880.

[VV04] A. Verroust, M.-L. Viaud. Ensuring the Drawability of Euler Diagrams for up to
Eight Sets. Proceedings of 3rd International Conference on the Theory and Appli-
cation of Diagrams Springer, pages 128–141, 2004.

15 / 15 Volume 7 (2007)


	Introduction
	Euler Diagram Syntax
	Formalizing Properties
	Simplicity Property
	Unique Labelling Property
	Connected Zones Property
	Zone Area Property
	Connected Diagram Property
	Multiple Point Properties
	Curve Crossing Property
	Discrete Property
	Curve Shape Properties

	Conclusion

