
Monadic, Prompt Lazy Assertions in Haskell⋆

Olaf Chitil1 and Frank Huch2

1 University of Kent, UK
2 University of Kiel, Germany

Abstract. Assertions test expected properties of run-time values with-
out disrupting the normal computation of a program. We present a li-
brary for enriching Haskell programs with assertions. Expected proper-
ties can be specified in a parser-combinator like language. The assertions
are lazy: they do not force evaluation but only examine what is evaluated
by the program. They are also prompt: assertion failure is reported as
early as possible. The implementation is based on lazy observations and
continuation-based coroutines.

1 Introduction

Assertions are parts of a program that, instead of contributing to the functional-
ity of the program, express properties of run-time values the programmer expects
to hold. It has long been recognised that augmenting programs with assertions
improves software quality. An assertion both documents an expected property
(e.g. a pre-condition, a post-condition, an invariant) and tests this property at
run-time. For example, an assertion may express that the argument of a square
root function has to be positive or zero and likewise the result is positive or zero.
Assertions can be an attractive alternative to unit tests. Assertions simplify the
task of locating the cause of a program fault: in a computation faulty values
may be propagated for a long time until they cause an observable error, but
assertions can detect such faulty values much earlier.

We can easily define a combinator for attaching assertions to expressions:

assert :: Bool -> a -> a

assert b x = if b then x else error "Assertion failed."

The assertion is an identity function when the expected property holds, but raises
an exception otherwise3. Then, assertions can be defined as normal Haskell func-
tions to express expected properties, for example

ordered :: Ord a => [a] -> Bool

ordered [] = True

ordered [_] = True

ordered (x:y:ys) = x<y && ordered (y:ys)

⋆ This work has been partially supported by the German Research Council (DFG)
under grant Ha 2457/5-2 and by the United Kingdom under EPSRC grant
EP/C516605/1.

3 The Glasgow Haskell Compiler provides a variant that produces a more informative
error message that includes the source location of the failed assert call.

and use them to assert for example a pre-condition:

checkedInsert :: Ord a => a -> [a] -> [a]

checkedInsert x xs = assert (ordered xs) (insert x xs)

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]

insert x (y:ys) = if x < y then x:y:ys else y : insert x ys

In many applications such assertions work fine

> checkedInsert 4 [1,3,2,5]

Assertion failed.

but sometimes they do not, as the following non-terminating expression shows:

> take 4 (checkedInsert 4 [1,2..])

In our example the function ordered, which expresses our expected property,
is fully strict and thus forces evaluation of the whole infinite list. Programming
with assertions as above results in strict programs and thus a loss of the ex-
pressive power of laziness, for example, the use of infinite data structures and
cyclic definitions. As long as an assertion does not fail, a program augmented
with assertions should have exactly the same input/output behaviour as the one
without assertions. Hence assertions for a lazy language should be lazy, that is, a
property should only be checked for the part of a data structure that is evaluated
during the computation anyway.

Our example above also demonstrates that using Boolean functions for spec-
ifying properties is rather limiting in expressiveness. We want to say that any
list containing two neighbouring elements in the wrong order should raise an
assertion failure, also when most of the rest of the list has not been evaluated.
However, ordered only decides on totally evaluated finite lists. We present a
parser-combinator like monadic language for expressive lazy assertions. Parser
combinators are a well-known tool for describing a set of token sequences. Simi-
larly our assertion combinators describe a set of possibly partial expected values.

Whenever a part of a value is evaluated that violates an asserted property,
the assertion immediately fails. We say our assertions are prompt. Promptness
ensures that the reported unexpected value is as unevaluated as possible and thus
smaller to read. Furthermore, a program fault usually violates many assertions,
but promptness ensures that the assertion that is closest to the fault with respect
to data flow is reported. In summary, our assertions have the following properties:

– Lazy: They do not modify the lazy behaviour of a program.

– Prompt: The violation of an assertion is reported as early as possible, before
a faulty value is used by the surrounding computation.

– Expressive: Complex properties can be expressed using full Haskell.

– Portable: Assertions are implemented as a library and do not need any com-
piler or run-time modifications; the only extension to Haskell 98 used for the
implementation are unsafePerformIO and IORefs.

2 Using the Assertion Monad

Expected properties are specified in an assertion monad Try a that combines pat-
tern matching and non-deterministic computations. The combinators are used
very similarly to standard monadic parser combinators [8].

Here is a specification of the ordered property from the Introduction:

ordered :: Ord a => Lazy [a] -> Try ()

ordered xs = pNil xs

||| (do (_,ys) <- pCons xs; pNil ys)

||| (do (x,ys) <- pCons xs; (y,_) <- pCons ys;

((do rx <- pVal x; ry <- pVal y; guard (rx < ry))

&&& ordered ys))

The tested argument is wrapped within a new type constructor Lazy and the re-
sult type has to be Try (). Together these two types enable prompt and lazy eval-
uation of assertions. To specify the three different cases for lists of length zero,
one, and longer lists, the assertion monad Try a provides the non-deterministic
choice operator (|||) :: Try a -> Try a -> Try a. For a fair evaluation, that
is, there is no fixed order in which the different cases are evaluated. Similarly,
we provide a fair, parallel4 conjunction operator (&&&) :: Try () -> Try () ->

Try (), which here allows independent testing at every position within the list.

For pattern matching we provide the following pattern combinators within
the assertion monad:

pNil :: Lazy [a] -> Try ()

pCons :: Lazy [a] -> Try (Lazy a,Lazy [a])

pVal :: Lazy a -> Try a

For each data constructor we provide a pattern combinator that matches only the
constructor and that yields the sub-structure as a tuple within the Try monad.
For example, for the empty list it returns the empty tuple and for (:) it returns
a pair consisting of the element and the remaining list. The combinator pVal

matches every value and directly corresponds to a variable in a Haskell pattern.
Finally, the function guard is the standard Haskell function that integrates a
Boolean test into a MonadPlus.

To attach an assertion to an expression we provide the function assert ::

String -> (Lazy a -> Try ()) -> a -> a. The first parameter is a label naming
the assertion. When an assertion fails, the computation aborts with an appro-
priate message that includes the assertion’s label. As further parameters assert
takes the property and the value on which it behaves as a partial identity.

For expected values an assertion is an identity function. For partial values
that are smaller than expected values (in the standard ordering where unevalu-
ated/undefined is less than any value) the assertion cannot be decided and hence
it is also the identity function. For any unexpected value the assertion raises an
exception.

4 That is, it has no fixed sequential evaluation order for the two arguments.

To prevent an assertion from evaluating too much, the property has to be de-
fined as a predicate on the tested data structure. The implementation of assert
uses a class Observe to ensure that only the context in which the application of
assert appears determines how far the tested data structure is evaluated and
only that part is passed to the predicate.

insertWithPre :: (Ord a,Observe a) => a -> [a] -> [a]

insertWithPre x xs = insert x (assert "insert input ordered" ordered xs)

The assertion is evaluated in a prompt, lazy manner, as the following call shows:

> take 4 (insertWithPre 4 ([3,4] ++ [1,2..]))

[3,4,

Assertion (insert input ordered) failed: 3 :4:1: _

Beside reporting the failed assertion, we also present the wrong value to the user
and highlight those parts that contribute to the failure. Here these are, beside
the unordered values, all (:) constructors above the unordered values, because
the assertion would not have failed if any of them was [].

Similar to this precondition, we can add a postcondition specifying that the
result of insert is ordered. However, this is not exactly what one would like to
specify as a property of insert. In case insert is called with an unordered list,
this fault should not be blamed on insert, but on the function applying insert

to an unordered list. A better specification for insert is: if the argument list is
ordered, then the result is ordered as well. In contrast to the first assertion, this
property is defined for a function. It specifies properties for an argument and
the result. Functional assertions can be expressed by means of function funn 5

for functions of arity n:

insertChecked :: (Ord a, Observe a) => a -> [a] -> [a]

insertChecked = assert "insert preserves ordered property"

(fun2 (\ _ ys zs -> ordered ys ==> ordered zs))

insert

To express the dependence between the two ordered properties, we can use an im-
plication (simply defined as x ==> y = notAssert x ||| y). Executing insertChecked

yields the following behaviour:

> insertChecked 3 [5,3,4]

[5,3,3,4]

> insertChecked 3 [2,3,4]

[2,3,

Assertion (insert preserves ordered property) failed:

3 -> (2:3:4:[] -> 2 :3:3: 4:_)

In the second case highlighting shows that for the ordered input list [2,3,4] the
duplicate occurrence of 3 in the result list does not meet the specification. To
correct the program, we could omit duplicated elements.

5 fun2 :: (Lazy a -> Lazy b -> Lazy c -> Try ()) -> Lazy (a -> b -> c) ->

Try ()

3 The Idea of Respecting Laziness

This section outlines how the types Try a and Lazy a enable Haskell computa-
tions to respect how far arguments are evaluated. We introduce the data type

data EvalTree = Eval [EvalTree] | Uneval

An EvalTree represents how far a corresponding data structure is evaluated. It
has the same tree structure as the data structure itself except that parts may be
cut off by the constructor Uneval; that is, if the data structure contains an n-ary
evaluated constructor, then the corresponding EvalTree contains an Eval node
with n EvalTrees in the argument list. For instance, the evaluation of list [1,2,3]
in the call of [1,2,3]!!1 is represented by the EvalTree: Eval [Uneval,Eval [Eval

[],Uneval]]. In later sections we will refine the definition of EvalTree further.
Now we can introduce the type synonym

type Lazy a = (EvalTree,a)

in which values are paired with their corresponding evaluation information. Be-
cause in Haskell pattern matching works from left to right, some of our later
definitions are simplified by having the evaluation information as first compo-
nent of the pair. The Lazy a type enables us to define an assertion that respects
the evaluation state of the tested value, for example a function checkOrdered

that checks whether a given list is ordered with respect to its evaluated parts:

checkOrdered :: Lazy [Int] -> Maybe Bool

checkOrdered (Eval [], []) = Just True

checkOrdered (Eval [_,Eval []], [_]) = Just True

checkOrdered (Eval [eX,eYXs@(Eval [eY,eXs])], (x:yxs@(y:xs))) =

leq (eX,x) (eY,y) &|& checkOrdered (eYXs,yxs)

checkOrdered _ = Nothing

leq :: Lazy Int -> Lazy Int -> Maybe Bool

leq (Eval [],x) (Eval [],y) = Just (x <= y)

leq _ _ = Nothing

(&|&) :: Maybe Bool -> Maybe Bool -> Maybe Bool

(Just True) &|& (Just True) = Just True

(Just False) &|& _ = Just False

_ &|& (Just False) = Just False

_ &|& _ = Nothing

The result type of checkOrdered reflects that besides being ordered or not, there
is a third alternative (Nothing), namely that at this stage of evaluation it is not
possible to decide whether the list is ordered or not. For comparing two elements
of the list we use a variation of (<=) that also respects the EvalTree. Finally, the
results of each comparison of two elements are combined by a modified version of
(&&). Besides using the extended type Maybe Bool this function also implements
a parallel version of (&&) by means of its third rule. Independent of the other
argument, (&|&) propagates an argument Just False as a result.

How can this approach be generalised to arbitrary computations on lazy
values? Although, assertions have to return Boolean values as result, subcom-
putations may return other result types. Here we can also use the Maybe a type
to express that we either obtain a result of type a or have a suspension.

4 Non-Determinism

Looking ahead, we do want to restart suspensions when more parts of a tested
data structure have been evaluated. Hence we need to keep track of all separate
suspensions and cannot simply conflate several into one (Nothing &|& Nothing =

Nothing). The solution is to use a list of Maybe values as result for computations
on lazy values. Each individual result may not be computable because of insuf-
ficient evaluation.

newtype Try a = Try [Maybe a]

failT = Try []

suspT = Try [Nothing]

The type constructor Try forms a monad, namely the standard combination of
the non-determinism list monad and the Maybe monad, in which functions are
applied to all list elements.

instance Monad Try where

(Try as) >>= f = Try $ concatMap (applyRes (fromTry . f)) as

where fromTry (Try x) = x

applyRes :: (a -> [Maybe b]) -> Maybe a -> [Maybe b]

applyRes f (Just x) = f x

applyRes f Nothing = [Nothing]

return x = Try [Just x]

For non-deterministic branching we define a parallel disjunction operator, which
collects all possible results6:

(|||) :: Try a -> Try a -> Try a

(Try xs) ||| (Try ys) = Try (xs++ys)

Within the Try monad we can now define pattern combinators for matching lazy
values. For example:

pCons :: Lazy [a] -> Try (Lazy a,Lazy [a])

pCons (Eval [eX,eY],(x:xs)) = return ((eX,x),(eY,xs))

pCons (Eval _,_) = failT

pCons (Uneval,_) = suspT

pNil :: Lazy [a] -> Try ()

pNil (Eval _,v) = if null v then return () else failT

pNil (Uneval,_) = suspT

6 In fact, Try can also be made an instance of MonadPlus with mplus = (|||) and
mzero = failT.

These pattern combinators respect the evaluation of a given argument. If the ar-
gument is not evaluated at all, then the result is a suspension. If the constructor
is evaluated and it is the wrong constructor, then matching fails. Finally, if
the constructor matches, then we succeed and return the sub-terms together
with their evaluation information. Similarly we define a pattern combinator that
strictly matches any value.

pVal :: Lazy a -> Try a

pVal (et,v) = condEval et (return v)

condEval :: EvalTree -> a -> a

condEval (Eval ets) tv = foldr condEval tv ets

condEval Uneval _ = suspT

The combinator pVal is mostly used for flat data types such as Int or Char.
Next we define the parallel (&&) function within our framework. We start

with a more general function, which applies arbitrary result functions to Try

results:

(***) :: Try (a -> b) -> Try a -> Try b

(***) (Try fs) (Try xs) = Try [res | fRes <- fs, xRes <- xs,

let res = do f <- fRes

x <- xRes

return (f x)]

type Assert = Try ()

(&&&) :: Assert -> Assert -> Assert

t1 &&& t2 = (return (\x1 x2 -> ()) *** t1) *** t2

Whereas our old (&|&) on type Maybe Bool could produce only one of three
values, the new (&&&) may produce a value representing many successful and
suspended computations.

Now it is possible to define the ordered assertion from Section 2. For a com-
plete implementation it remains to show how the EvalTree can successively be
constructed during the computation.

5 Generating EvalTrees

To generate evaluation information for data structures we use the idea of ob-

servations, first introduced by Hood [6]. All values for which an assertion is
specified are observed. An observation constructs a corresponding EvalTree rep-
resenting how far the data structure has been evaluated. The key idea is that
the context of a computation demands head normal forms (hnf). Whenever such
an hnf is computed we extend its EvalTree by means of a side effect. This means
an Uneval leaf is replaced by Eval [Uneval,...,Uneval] where the number of
Unevals within the list is equal to the arity of the constructor of the hnf.

Because we construct and use EvalTrees in program parts that are not linked
by data-flow and for efficiency reasons, we use mutable references (IORefs) in our

new EvalTree representation:

data EvalTree = EvalR [EvalTreeRef] | UnevalR

type EvalTreeRef = IORef EvalTree

With this representation it is not necessary to descend into the whole data struc-
ture, when extending it in a leaf position. Instead, we can directly update the
leaf.

Observable data types are represented by the following class:

class Observe a where

obs :: a -> EvalTreeRef -> a

We demonstrate how an instance of this class can be defined by means of the
list data type:

instance Observe a => Observe [a] where

obs (x:xs) r = unsafePerformIO $ do [aRef,bRef] <- mkEvalTreeCons r 2

return (obs x aRef : obs xs bRef)

obs [] r = unsafePerformIO $ do mkEvalTreeCons r 0

return []

Whenever the context demands the evaluation of an observed value, the corre-
sponding node in the EvalTree is extended by means of the function

mkEvalTreeCons :: EvalTreeRef -> Int -> IO [EvalTreeRef]

mkEvalTreeCons r n = do refs <- sequence (replicate n emptyUnevalRef)

writeIORef r (EvalR refs)

return refs

emptyUnevalRef :: IO EvalTreeRef

emptyUnevalRef = newIORef UnevalR

Furthermore, observers are added to the (not yet evaluated) arguments of the
resulting constructor. These observers extend on demand the IORefs returned by
mkEvalTree (aRef and bRef), which are also added to the new EvalR node within
the EvalTree. The initial observer can be added with the function

observe :: Observe a => a -> IO (EvalTreeRef,a)

observe x = do r <- emptyUnevalRef

return (r,obs x r)

This function is called whenever an assertion is added to a data structure, as
discussed in the next section.

On top of these functions, it is possible to define a late (in contrast to prompt)
implementation of our lazy assertions. Such an implementation stores all asser-
tions of the program within a global state. At the end of the execution, all checks
within this state are executed. Failed assertions are reported to the user.

6 Promptness

So far, our assertions meet two major goals. They respect the laziness of the
program and they provide non-determinism by means of the operators (|||),

(***), and (&&&). However, we still want our assertions to be prompt for the
following reasons:

– Currently substantial memory is consumed, because the assertions them-
selves and the underlying data structures have to be kept until the final
check can be performed. The more assertions are added the more memory is
needed, although some data structure is fully evaluated or the assertion can
be decided already by the evaluated part. When checking assertions directly
at run-time large parts of the memory would become garbage and could be
reused.

– Evaluating assertions at the end of the computation means the assertion is
checked on maximally evaluated data structures. If a failed assertion would
be reported earlier, then smaller data structures would be presented to the
user. It will often be easier to understand why an assertion was violated.

– It will often be the case that in the end not only one assertion fails. There
may be many consecutive faults. But how can a user know which was the ini-
tial fault to detect the bug in the program? The order in which the assertions
are printed at the end of the execution does not reflect how different asser-
tions depend on each other. Having prompt assertions, the computation can
directly stop after reporting the first violated assertion. Consecutive faults
are not reported anymore.

– In non-terminating systems such as most reactive applications (e.g. a web-
server or a web-browser) it is inconvenient to stop the application just for
checking assertions. Users want them to be checked in parallel in the back-
ground, without effecting the run-time behavior of the program.

The implementation shall suspend checks on unevaluated parts of data structures
and directly awake them when these parts are evaluated to hnf.

6.1 Preparing the EvalTrees

For checking an assertion many checks have to be executed concurrently on
different parts of the tested data structure. Many of these checks will have to
suspend, because specific parts of the data structure are not yet evaluated. We
store each suspended check in the Uneval leaf associated with the part of the
data structure that it is suspended on, so that the checks can be executed when
that data part is demanded. Several checks may be associated with the same
part and hence many suspended checks may have to be stored in one Uneval

leaf. A check does not return any value (it may just raise an exception), but it
reads IORefs to read the growing EvalTree and hence it is of type IO (). Checks
may be added to an Uneval leaf at different times. We simply compose all checks
for one Uneval leaf sequentially as an IO action stored within an IORef. Arbitrary
sequential composition works, because we assume that all checks terminate.

We redefine the EvalTree with a reference containing an IO action:

data EvalTree = Eval [EvalTreeRef] | Uneval (IORef (IO ()))

type EvalTreeRef = IORef EvalTree

For the construction of the new EvalTree only two modifications have to be made:

mkEvalTreeCons :: EvalTreeRef -> Int -> IO [EvalTreeRef]

mkEvalTreeCons r n = do refs <- sequence (replicate n emptyUnevalRef)

Uneval aRef <- readIORef r

action <- readIORef aRef

writeIORef r (Eval refs)

action

return refs

emptyUnevalRef :: IO EvalTreeRef

emptyUnevalRef = do aRef <- newIORef (return ())

newIORef (Uneval aRef)

The function mkEvalTreeCons is called whenever an observed expression is evalu-
ated to hnf. Then we read the suspended assertion checks (action) and execute
them before we return the list of new sub-references. The emptyUnevalRef con-
tains an IORef with no action, since there is no lazy computation to be performed
for that sub-value yet.

6.2 Coroutines

In our outline in Section 3 we defined the data type Try as a list of Maybe val-
ues. However, for implementing promptness we have to compute the assertion
checks step by step whenever the EvalTree is extended. Hence non-determinism
or coroutines through continuation passing style is a more appropriate means
of implementation. We have a success continuation and a fail continuation, just
like continuation-based parser combinators [9]. The success continuation must
take a fail continuation as argument to support non-determinism. We already
established that checks are of type IO ().

type FailCont = IO ()

type SuccCont a = FailCont -> a -> IO ()

newtype Try a = Try (SuccCont a -> FailCont -> IO ())

If there exists an alternative for a failed assertion, for example by non-deterministic
branching in (|||), then the SuccCont can discard the current FailCont.

Now we are ready to define the Monad instance for the new type Try:

instance Monad Try where

(Try asIO) >>= f =

Try (\sc fc -> asIO (\sfc x -> fromTry (f x) sc sfc) fc)

return x = Try (\sc fc -> sc fc x)

fromTry :: Try a -> SuccCont a -> FailCont -> IO ()

fromTry (Try x) = x

failT :: Try a

failT = Try (\sc fc -> fc)

Similar to constructing success continuations by means of return, it is handy to
have a function failT for constructing fail continuations.

To see how this lazy Try monad works, we first redefine the list patterns:

pNil :: Lazy [a] -> Try ()

pNil (Eval _ _,[]) = return ()

pNil (Eval _ _,(_:_)) = failT

pNil rx@(Uneval ref,v) = Try (suspTIO ref (pNil rx))

If the data structure is already evaluated, then we either succeed or fail. If the
data structure is not yet evaluated, we add a suspended computation to the
corresponding IORef within the EvalTree. The action to be performed when the
constructor is evaluated to hnf is the same matching again (pNil rx). In the
definition of suspTIO the action within the IORef is extended accordingly:

suspTIO :: IORef (IO ()) -> Try a -> SuccCont a -> FailCont -> IO ()

suspTIO ref try c fc = do io <- readIORef ref

writeIORef ref (io >> (fromTry try) c fc)

Similarly we can define the pattern combinator pCons:

pCons :: Lazy [a] -> Try (Lazy a,Lazy [a])

pCons (Eval _ [eX,eY],(x:y)) = return ((eX,x),(eY,y))

pCons (Eval _ _,[]) = failT

pCons rx@(Uneval ref,v) = Try (suspTIO ref (pCons rx))

Next we define the operator (|||) which allows a parallel, independent execution
of two Try computations:

(|||) :: Try a -> Try a -> Try a

(Try x) ||| (Try y) = Try (\c fc -> do

ref <- newIORef True

x c (orIORef ref fc) >> y c (orIORef ref fc))

orIORef :: IORef Bool -> FailCont -> IO ()

orIORef ref fc = do v <- readIORef ref

if v then (writeIORef ref False)

else fc

Both computations have to be performed in parallel because they may com-
pute different results of type a. The whole computation only fails if both sub-
computations fail. For this purpose we create a synchronisation IORef which
is set to False by the first failing alternative. If the other alternative fails too
this alternative continues with the fail continuation fc. The fail continuation is
passed to both alternatives, but only the second failing alternative (with respect
to time, not order in the code!) executes this continuation.

We define the parallel conjunction (&&&) again in terms of the more general
operator (***):

(***) :: Try (a -> b) -> Try a -> Try b

(***) (Try f) (Try x) = Try $ \sc fc -> do

fRef <- newIORef []

xRef <- newIORef []

ref <- newIORef True

f (\ffc f’ -> do updateIORef ((ffc,f’):) fRef

xs <- readIORef xRef

mapM_ (\(xfc,x) -> sc (ffc >> xfc) (f’ x)) xs)

(andIORef ref fc)

x (\xfc x’ -> do updateIORef ((xfc,x’):) xRef

fs <- readIORef fRef

mapM_ (\(ffc,f) -> sc (ffc >> xfc) (f x’)) fs)

(andIORef ref fc)

(&&&) :: Assert -> Assert -> Assert

t1 &&& t2 = (return (\x1 x2 -> ()) *** t1) *** t2

andIORef :: IORef Bool -> IO () -> IO ()

andIORef ref fc = do v <- readIORef ref

if v then writeIORef ref False >> fc

else return ()

The computation of both arguments of (***) may introduce non-determinism,
that is, multiple values. Whenever a new value is produced within the success
continuation we extend the corresponding list in fRef and xRef. Besides the dif-
ferent values, this list also contains the corresponding fail continuations within a
pair. Furthermore, we directly apply a new function to every already computed
argument in the success continuation of f, as well as every stored function to a
new argument in the success continuation of x. Thus every function is applied
to every argument exactly once.

If any computation fails, we update the Boolean value in ref to False and
directly continue with the fail continuation. Then, if the other coroutine fails
as well, the IORef already contains False and it stops immediately. Like for the
disjunction operator, the fail continuation is executed at most by one coroutine.

Finally we need the definition of assert:

assert :: Observe a => String -> (Lazy a -> Assert) -> a -> a

assert label p x = unsafePerformIO (do

(eT,x’) <- observe x

let Try check = p (eT,x)

check (const (putStrLn ("Assertion succeeded: "++label)))

(fail ("Assertion failed: "++label))

return x’)

After installing an observer for x, we directly start the coroutine check for the
asserted property p. Usually this coroutine directly suspends itself. Its SuccCont

ignores its current FailCont and simply prints that the assertion succeeded. The
FailCont aborts the whole computation reporting the failed assertion. We have
to pass x, not the observer-wrapped variant x’, to the property p, because a
partial value of x’ is only available after all necessary assertion checks have been

performed on it. As shown in Section 2, the real implementation reports a fail-
ure with a highlighted presentation of the wrong value, which we will discuss
in the next section. Furthermore, success messages are written to a file to avoid
conflicts with the program output.

To provide a comfortable library, we provide some further functions on as-
sertions, like negation, implication, and assertion variations of standard Haskell
function such as elem and any.

7 Failure Highlighting

As presented in Section 2, the data structure violating an assertion is also pre-
sented to the user. All parts responsible for the failure are marked such that
the problematic sub-structures can easily be detected. This section gives a brief
overview of how this highlighting is realised in our implementation.

So far the EvalTree does not contain any information about the names of
the constructors inside the data structure. Hence it is not possible to print data
structures at all. Therefore we add a String parameter to the constructor Eval

that can easily be set in obs. Knowing all constructor names of the observed
data structure, it is straightforward to generate a string representation of the
data structure containing underscores for unevaluated parts.

For syntax highlighting we have to collect some more information while check-
ing assertions. We identify every node in the EvalTree with a position Pos:

data EvalTree = Eval Pos String [EvalTreeRef] | Uneval (IORef (IO ()))

While checking an assertion, we can then collect sets of positions (PosSet), rep-
resenting the nodes visited during the check. We extend the success and the fail
continuations with a set of positions as additional parameter:

type SuccCont a = PosSet -> FailCont -> a -> IO ()

type FailCont = PosSet -> IO ()

When a check splits into (parallel, independent) sub-checks, both checks generate
their own sets of positions which are later combined according to the branching
operator. For (|||) both sub-checks have to fail and, hence, the sets of positions
are joined. For (***) (e.g. (&&&)) only the set of positions of the failing sub-check
has to be considered.

In our implementation Pos and PosSet are defined as abstract data types with
functions for set manipulation. Internally, a Pos is implemented as a list of Ints
where the Ints successively express which branch in the EvalTree is chosen. The
set of positions is implemented as a Trie [10] over lists of Ints.

Although the Trie of positions has the same structure as the EvalTree, it
is not possible to directly integrate the position information into the EvalTree.
Many assertions are checked in parallel and for each of these parallel checks
different positions have to be considered. Parts of these assertions may have
succeeded and their position sets should be discarded since this part of the data
structure was not responsible for the failure.

8 Assertions for Functions

One of the most important features of our library is the ability to assert prop-
erties of functions. This allows programmers to express pre- and postconditions
as well as invariants of functions. It is possible to express arbitrary relations
between arguments and results.

The basic idea of the implementation is to represent a function as its graph, as
far as it is used/constructed during the program execution. At each application
of the function the graph is extended with a new pair of lazily constructed values.
Functional assertions usually contain checks applied to function arguments or
results which have to be checked by the mechanism described so far.

In the data type EvalTree we add a representation for functions

data EvalTree = ... | Fun Pos EvalTreeRef EvalTreeRef () () EvalTreeRef

where the first two EvalTreeRefs represent the argument and result value of the
(curried) function and the last EvalTreeRef represents the next application of
the function. The two arguments of type () are used to store the concrete ar-
gument and result value (of arbitrary type) by means of a type-cast7 inside the
monomorphic data structure EvalTree. An instance of the class Observe is defined
to construct and extend EvalTrees for functions.

In the Try monad we give access to the graph of an observed function through
a function which converts the observed function into a lazily constructed (infi-
nite) list of argument-result pairs:

pFun :: Lazy (a -> b) -> Try (Lazy [(a,b)])

Assertions defined on this lazily constructed list are stepwise evaluated whenever
the list is extended by a new function application. Functional assertions have to
hold for each application. We apply them to all list elements by means of the
assertion variant of the Haskell function all.

This conversion through a lazily constructed list is hidden in functions for a
convenient construction of functional assertions of arbitrary arity:

fun1 :: (Lazy a -> Lazy b -> Assert) -> Lazy (a -> b) -> Assert

fun2 :: (Lazy a -> Lazy b -> Lazy c -> Assert) -> Lazy (a -> b -> c)

-> Assert

...

An example for a functional assertion is presented in Section 2.

9 Related Work

The first systematic approach to adding assertions to a functional language tar-
gets the strict language Scheme [5]. It provides convenient constructs for express-
ing properties of functions, including higher-order functions, and augmenting

7 A function coerce :: a -> b can be defined using the Haskell 98 extension IORefs
in combination with unsafePerformIO.

function definitions with assertions. Laziness is irrelevant and promptness triv-
ial for strict functional languages. Instead a major concern of this work is which
program part to blame when an assertion fails. The approach to blaming can-
not directly be transferred to a lazy language, because there the run-time stack
does not reflect the call structure. Instead a cooperation with the Haskell tracer
Hat [11] may provide a solution in the future. The Scheme approach has been
transferred to Haskell [7], but without taking its lazy semantics into account.

The first paper on lazy assertions for the lazy language Haskell [2] uses normal
functions with Boolean result for expressing properties and hence the assertions
are not prompt. The paper gives several examples of where the lack of prompt-
ness renders the assertions useless. Furthermore, expressibility of properties of
functions is limited and the implementation requires concurrency language ex-
tensions as provided only by GHC.

In the first paper on lazy and prompt assertions for Haskell [1] properties
are expressed in a pattern logic. The logic provides quantifiers and context pat-
terns that allow referring to substructures of the tested value. However, most
Haskell users find this logic hard to understand and many simple properties,
such as that two lists have the same lengths, require complex descriptions. The
implementation of the pattern logic is only sketched.

QuickCheck is a library for testing Haskell functions with random data [3].
Normal Boolean functions express expected properties, for example

prop :: Int -> [Int] -> Property

prop x xs = ordered xs ==> ordered (insert x xs)

where ordered :: [Int] -> Bool states that the function insert preserves order.
Normal Boolean functions can be used, because only total, finite data structures
are tested. An extension for (finite) partial values [4] has fundamental limits
whereas our assertions fully support laziness. It can be very hard to generate
random test data, for example input strings for a parser that are likely to be
parseable. QuickCheck can only test top-level functions whereas an assertion
can be attached to any local definition or subexpression. So testing with random
data and testing with real data as our assertions do are two different methods
which complement each other.

10 Conclusions

We have presented a new approach to augmenting lazy functional programs
such as Haskell with assertions. The implementation is based on a technically
interesting combination of continuation-based non-determinism, explicit schedul-
ing of concurrent processes and HOOD-like observation of values. However, it
is a portable library that requires only two common extensions of Haskell 98,
unsafePerformIO and IORefs, which are supported by all Haskell compilers.
The assertions are lazy and prompt. Most importantly, the combinator language
for expressing asserted properties is easy to use, because it is similar to familiar
parser combinator libraries. It combines pattern matching and non-deterministic

computations. Furthermore, it is very expressive, allowing the formulation of
any imaginable computable property. Assertions for functional values are easy
to write and syntax highlighting simplifies the identification of parts of a value
that are relevant for a failure.

The library does not prevent the user from writing assertions that change
the program semantics by causing non-termination or raising an exception; after
all, an asserted property may evaluate any Haskell expression, including undef

or error. However, the library enables the user to formulate complex properties
for partial and infinite values.

In the future we intend to investigate a theoretical formalisation of our as-
sertions and to import ideas from strict assertions for Haskell [7].

References

1. Olaf Chitil and Frank Huch. A pattern logic for prompt lazy assertions in Haskell.
In Andrew Butterfield Zoltan Horvath, editor, Implementation and Application of

Functional Languages: 18th International Workshop, IFL 2006, volume 4449 of
LNCS. Springer, 2007.

2. Olaf Chitil, Dan McNeill, and Colin Runciman. Lazy assertions. In Phil Trinder,
Greg Michaelson, and Ricardo Pena, editors, Implementation of Functional Lan-

guages: 15th International Workshop, IFL 2003, LNCS 3145, pages 1–19. Springer,
November 2004.

3. K. Claessen and R. J. M. Hughes. QuickCheck: a lightweight tool for random
testing of Haskell programs. In Proc. 5th Intl. ACM Conference on Functional

Programming, pages 268–279. ACM Press, 2000.
4. Nils Anders Danielsson and Patrik Jansson. Chasing bottoms, a case study in

program verification in the presence of partial and infinite values. In Dexter Kozen,
editor, Proceedings of the 7th International Conference on Mathematics of Program

Construction, MPC 2004, LNCS 3125, pages 85–109. Springer-Verlag, July 2004.
5. Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order functions.

In ICFP ’02: Proceedings of the seventh ACM SIGPLAN international conference

on Functional programming, pages 48–59. ACM Press, 2002.
6. A. Gill. Debugging Haskell by observing intermediate datastructures. Electronic

Notes in Theoretical Computer Science, 41(1), 2001. (Proc. 2000 ACM SIGPLAN
Haskell Workshop).

7. Ralf Hinze, Johan Jeuring, and Andres Löh. Typed contracts for functional pro-
gramming. In Proceedings of the 8th International Symposium on Functional and

Logic Programming, FLOPS 2006, LNCS 3945, pages 208–225, 2006.
8. Graham Hutton and Erik Meijer. Monadic parsing in Haskell. J. Funct. Program.,

8(4):437–444, 1998.
9. Chris Okasaki. Functional pearl: Even higher-order functions for parsing or Why

would anyone ever want to use a sixth-order function? Journal of Functional

Programming, 8(2):195–199, 1998.
10. Chris Okasaki. Purely Functional Data Structures. Cambridge University Press,

Cambridge, UK, 1998.
11. M. Wallace, O. Chitil, T. Brehm, and C. Runciman. Multiple-view tracing for

Haskell: a new Hat. In ACM Workshop on Haskell, 2001.

