Computer Science at Kent

Algorithmic Debugging with Cyclic Traces
of Lazy Functional Programs

Yong Luo and Olaf Chitil

Technical Report No. 9 - 07
August 2007

Copyright (©) 2007 University of Kent
Published by the Computing Laboratory,
University of Kent, Canterbury, Kent, CT2 7NF, UK

Algorithmic Debugging with Cyclic Traces of
Lazy Functional Programs

Yong Luo and Olaf Chitil

Computing Laboratory, University of Kent

Abstract We have proved the correctness of algorithmic debugging for
functional programs if the traces are acyclic [3]. For cyclic traces, how-
ever, does algorithmic debugging still work? There does not exist a com-
mon understanding of how to debug cyclic traces in functional program-
ming communities for a long time. In this paper we give two small ex-
amples to demonstrate that it is extremely difficult to find a generic
algorithmic debugging scheme for cyclic traces. We conjecture that it is
impossible to have a generic scheme for cyclic traces because the exam-
ples are very small and the choices of reasonable debugging trees are very
limited. We also present acyclic traces in which constants are shared un-
less shared constants result in a cycle. The normal algorithmic debugging
scheme works fine for acyclic traces and the proof is very similar to our
previous paper [3].

1 Introduction

Tracing for functional programs based on graph rewriting is a process that
records information about computations. The trace can be viewed in various
ways. The most common need for tracing is debugging. Traditional debugging
techniques are not well suited for declarative programming languages such as
Haskell, because it is difficult to understand how programs execute (or their
procedural meaning). In fact, functional programmers want to ignore low-level
operational details, in particular the evaluation order, but take advantage of
properties such as explicit data flow and absence of side effects. Algorithmic
debugging (also called declarative debugging) has been developed for logic and
functional programming languages [8,6,7].

In this paper a trace is an augmented redex trail (ART) which is a compact
but detailed representation of computations; it directly relates each redex with its
reduct. The ART does not overwrite a redex with its reduct, but adds the reduct
into the graph. The existing graph will never be modified. A detailed example
can be found in our previous paper [2]. The ART has no information about the
order of computation because this information is irrelevant. We formulate and
prove properties without reference to any computation strategy. This observation
agrees with our idea that functional programmers abstract from time.

Algorithmic debugging can be thought of as searching an debugging tree for
a fault in a program. One need to answer several questions according to the

intended semantics in algorithmic debugging scheme [4]. An evaluation depen-
dency tree (EDT) is for algorithmic debugging. If the evaluation of a node in
an EDT is not intended then the node is erroneous. All the branches of a node
are the children of the node. If a node in an EDT is erroneous but has no erro-
neous children, then this node is called a faulty node. The evaluated function at
a faulty node should be a faulty in a program. For example, the double negation
function is mistakingly defined as

doubleneg x = id (not x)

(the right-hand side should be not (not x)). The ART and EDT for a starting
term main = doubleneg (not True) are in Figure 1 and 2.

29N

doubleneg

Figure 1. The ART for the Introduction Section

where the dashed lines represent one-step computations.

no
faulty node
not True = False yes I doubleneg False = True I no

not False = True| yoq yes

Figure 2. The EDT for the Introduction Section

We have formally presented the ART and EDT and proved important prop-
erties, in particular, the correctness of algorithmic debugging [3]. The ART is
acyclic. It has sharing (i.e. the arguments of a function can be shared) but con-
stants are not shared.

2 Problem

If we want to share constants there may be cycles in an ART. Sharing constants
itself does not make much trouble for algorithmic debugging if there is no cycle
in the ART. However, when there are cycles in the ART algorithmic debugging
becomes extremely difficult.

First counter example

The following program has one mistake, i.e. the definition of a is faulty.

main :: Int
main = h a

h :: (Int, Int) -> Int
h(x, y) =x+y

a :: (Int, Int)
f (ga)l -- should be: a = f (g a) 2

[V
1]

f :: Int -> Int -> (Int, Int)
1= (x, 3)
2 = (x, 5)

Hh Hh
I

g :: (Int, Int) -> Int
g (x, y) = snd a + 4

The intended semantics:
a=f (ga) 2=(9, 5)
g (x, y) =snda+4=9
main = h a = 14
The cyclic ART for the first counter example is in Figure 3. One simple choice
of EDT is in Figure 4.

Now, there is a problem. We know that the definition of a is faulty, but from
the EDT in Figure 4 the faulty definition is the function g.

CEETR

/ \faulty node

[743=10 | [tan=3] [oz3=7 |
yes yes no

| 3+4=7 | [sd(z.9=3 |
yes yes

Figure 4. An EDT for the first counter example

Second counter example

The intention of the following program is to demonstrate a black-hole problem,
but it has one mistake, i.e. the definition of h is not strict enough.

-- should be: h C = C??
--where C, C’ and C’’ are constructors.

The cyclic ART and one simple EDT for the second counter example are in
Figure 5 and 6.

Figure 5. The cyclic ART for the second counter example

man=C" | no

/

fC=C|yes a=C no
gC’ =d hC=C"
yes yes

Figure 6. An EDT for the second counter example

The answers to the equations are the following.

main = C’ No, should not have any result at all

fC=0C Yes
a=C No, should not have any result at all
g C”=C Yes

h C=C" Yes, intended semantics.

There is also a problem here. We know that the definition of h is faulty, but
from the EDT in Figure 6 the faulty definition is the function a.

These two examples are very small, and the choices of reasonable debugging
trees are very limited. We cannot think of any workable and generic debug-
ging trees for these two examples. So we conjecture that there is not a generic
algorithmic debugging scheme for cyclic traces.

3 A proposed solution

Since cycles are killers, an immediate solution is that we only generate acyclic
ARTs. On the other hand we want constants to be shared. So we share constants
as long as there is no cycle in the ART. We use indirections pointing to shared
constants. Indirections help us to have a easier naming scheme to decide com-
putation dependencies, i.e. the parent nodes and their children. The confluence
property still hold in the sense that different evaluation orders do not yield dif-
ferent ARTs. We give one more example in the paper. The formal details and
proofs can be established as those in our previous paper [3]| because the essence
is the same, i.e. ARTs are acyclic. We omit the formal presentation here.

Example 3 The program is the following.

main = f a a b

f (Cx) (C(Cy))z-=C¢C

a=>b

b=Ca

--where C and C’ are constructors.

The acyclic ART and EDT for Example 3 are in Figure 7 and 8.

).
T @

o C'S@d > D
&

Figure 7. The acyclic ART for Example 3

The constants a and b in the example are shared but not always shared.
If sharing a constant results in a cycle then we will start a new node for the
constant. Otherwise it will be shared.

Note that the question “b = C (C a)” that comes from the same node in the
ART (see Figure 7) is one of the children of “main = C”’ and the child of “a =
C (C a)” (see Figure 8). So, one question that comes from the same place could
appear more than once in an EDT because of constant sharing. In general, such
repeated questions in an EDT cannot be removed, otherwise we may end up
locating a wrong faulty node. But repeated questions only need to be answered
once in practice. We can also use a graph to represent the EDT (see Figure 9).

main=C

fccacecacea=c | [a=cca | [b=ceal
[b=cca| | a=ca |
| a=ca | [b=ca |
b=Ca

Figure 8. The EDT for Example 3

f(CCa(C(Ca(C(Ca=C ‘ a=C(Ca

b=C(Ca)

=Ca

Figure 9. A graph representation of the EDT for Example 3

Now, we give acyclic ARTs and new EDTs for the two counter examples
(see Figure 10 - 14). The acyclic ARTs are not as efficient as the cyclic ones
because there are more computation in the acyclic ARTs. But the new EDTs
derived from the acyclic ARTs can correctly locate the faulty definitions in lazy
functional programs.

Figure 10. The acyclic ART for the first counter example

e Jro

h(7,3)=10 yes a=(7,3) no
faulty node
[7+#3=10 | [f@=3] [gw@ad®=7]no a=(ga 3
yes yes faulty node e
[3+4=7 | d@a3=3] [a-@a3 | [f@ad1=0a3 |
yes yes no yes

f(ga)1=(ga3) |yes

Figure 11. New EDT for the first counter example

If we replace the unevaluated parts by s, the questions may become clearer.

yes

faulty node
[7+#3=10 | [f@=3] [g(3=7 |no a=(,3
yes yes no
faulty node
| 3+4=7 | ka(3=3 | [a=C3 | [1=C3y |
yes yes no yes

1m0y yes

Figure 12. New EDT for the first counter example

Figure 13. The acyclic ART for the second counter example

man=C" | no

/

fC=C|yes a=C no
gC’ =d h_=C”
yes no

Figure 14. New EDT for the second counter example

Related Work

In some systems such as Freja and Hat, cycles are treated as black boxes. Every
cycle (or black box) may have several function definitions. The debuggers can

10

tell whether there is a bug inside a black box, but cannot tell which function in
that box is faulty.

In Nilsson’s thesis [5], he demonstrated how to debug cyclic Freja programs.
However, the current debugging tool cannot correctly debug the counter ex-
amples in this paper. We had extensive discussion about the issue. I was told
that Freja could locate the bug if the mutually recursive functions were locally
defined. But I have not fully understood this claim.

The idea of redex trail is developed and the computation builds its own
trial as reduction proceeds [9]. The trace in Hat is recorded in a file rather
than in memory [10]. Hat integrates several viewing methods such as Functional
Observations, Reduction Trails and Algorithmic debugging.

Naish presents a very abstract and general scheme for algorithmic debug-
ging [4]. The scheme represents a computation as a tree and relies on a way
of determining the correctness of a subcomputation represented by a subtree.
In Nilsson’s thesis [5], a basis for algorithmic debugging of lazy functional pro-
grams is developed in the form of EDT which hides operational details. The
EDT is constructed efficiently in the context of implementation based on graph
reduction. Caballero et al formalise both the declarative and the operational
semantics of programs in a simple language which combines the expressiveness
of pure Prolog and a significant subset of Haskell, and provide firm theoretical
foundations for the algorithmic debugging of wrong answers in lazy functional
logic programming [1]. However, the starting point of the approach is an oper-
ational semantics (i.e. a goal solving calculus) that is high-level and far from
a real efficient implementation. For example, there is no sharing of replicated
terms. In contrast we use the ART as base, which is a model of trace used in
the Hat system. Important properties of the ART have also been proved [2].

References

1. Rafael Caballero, Francisco J. Lopez-Fraguas, and Mario Rodriguez-Artalejo. The-
oretical foundations for the declarative debugging of lazy functional logic programs.
In Herbert Kuchen and Kazunori Ueda, editors, Functional and Logic Program-
ming, 5th International Symposium, FLOPS 2001, Tokyo, Japan, March 7-9, 2001,
Proceedings, LNCS 2024, pages 170-184. Springer, 2001.

2. O. Chitil and Y. Luo. Towards a theory of tracing for functional programs based
on graph rewriting. In Proceedings of the third international workshop on Term
Graph Rewriting, Termgraph, volume 7, 2006.

3. Y. Luo and O. Chitil. Proving the correctness of algorithmic debugging for func-
tional programs. In Proceedings of the seventh symposium on Trends in Functional
Programming, TFP, 2006.

4. Lee Naish. A declarative debugging scheme. Journal of Functional and Logic
Programming, 1997(3), 1997.

5. Henrik Nilsson. A declarative approach to debugging for lazy functional languages.
Licentiate Thesis No. 450, Department of Computer and Information Science,
Link6ping University, S-581 83, Link6ping, Sweden, September 1994.

6. Henrik Nilsson. Declarative Debugging for Lazy Functional Languages. PhD thesis,
Link6ping, Sweden, May 1998.

11

7.

10.

B. Pope and Lee Naish. Practical aspects of declarative debugging in Haskell-
98. In Fifth ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming, pages 230-240, 2003.

E. Y. Shapiro. Algorithmic Program Debugging. MIT Press, 1983.

Jan Sparud and Colin Runciman. Tracing lazy functional computations using redex
trails. In H. Glaser, P. Hartel, and H. Kuchen, editors, Proc. 9th Intl. Symposium
on Programming Languages, Implementations, Logics and Programs (PLILP’97),
pages 291-308. Springer LNCS Vol. 1292, September 1997.

Malcolm Wallace, Olaf Chitil, Thorsten Brehm, and Colin Runciman. Multiple-
view tracing for Haskell: a new Hat. In Preliminary Proceedings of the 2001 ACM
SIGPLAN Haskell Workshop, UU-CS-2001-23. Universiteit Utrecht, 2001. Final
proceedings to appear in ENTCS 59(2).

12

