
Computer S
ien
e at Kent

Algorithmi
 Debugging with Cy
li
 Tra
esof Lazy Fun
tional Programs

Yong Luo and Olaf Chitil
Te
hni
al Report No. 9 - 07August 2007
Copyright
© 2007 University of KentPublished by the Computing Laboratory,University of Kent, Canterbury, Kent, CT2 7NF, UK

Algorithmi
 Debugging with Cy
li
 Tra
es ofLazy Fun
tional Programs
Yong Luo and Olaf ChitilComputing Laboratory, University of Kent

Abstra
t We have proved the
orre
tness of algorithmi
 debugging forfun
tional programs if the tra
es are a
y
li
 [3℄. For
y
li
 tra
es, how-ever, does algorithmi
 debugging still work? There does not exist a
om-mon understanding of how to debug
y
li
 tra
es in fun
tional program-ming
ommunities for a long time. In this paper we give two small ex-amples to demonstrate that it is extremely di�
ult to �nd a generi
algorithmi
 debugging s
heme for
y
li
 tra
es. We
onje
ture that it isimpossible to have a generi
 s
heme for
y
li
 tra
es be
ause the exam-ples are very small and the
hoi
es of reasonable debugging trees are verylimited. We also present a
y
li
 tra
es in whi
h
onstants are shared un-less shared
onstants result in a
y
le. The normal algorithmi
 debuggings
heme works �ne for a
y
li
 tra
es and the proof is very similar to ourprevious paper [3℄.
1 Introdu
tionTra
ing for fun
tional programs based on graph rewriting is a pro
ess thatre
ords information about
omputations. The tra
e
an be viewed in variousways. The most
ommon need for tra
ing is debugging. Traditional debuggingte
hniques are not well suited for de
larative programming languages su
h asHaskell, be
ause it is di�
ult to understand how programs exe
ute (or theirpro
edural meaning). In fa
t, fun
tional programmers want to ignore low-leveloperational details, in parti
ular the evaluation order, but take advantage ofproperties su
h as expli
it data �ow and absen
e of side e�e
ts. Algorithmi
debugging (also
alled de
larative debugging) has been developed for logi
 andfun
tional programming languages [8,6,7℄.In this paper a tra
e is an augmented redex trail (ART) whi
h is a
ompa
tbut detailed representation of
omputations; it dire
tly relates ea
h redex with itsredu
t. The ART does not overwrite a redex with its redu
t, but adds the redu
tinto the graph. The existing graph will never be modi�ed. A detailed example
an be found in our previous paper [2℄. The ART has no information about theorder of
omputation be
ause this information is irrelevant. We formulate andprove properties without referen
e to any
omputation strategy. This observationagrees with our idea that fun
tional programmers abstra
t from time.Algorithmi
 debugging
an be thought of as sear
hing an debugging tree fora fault in a program. One need to answer several questions a

ording to the

intended semanti
s in algorithmi
 debugging s
heme [4℄. An evaluation depen-den
y tree (EDT) is for algorithmi
 debugging. If the evaluation of a node inan EDT is not intended then the node is erroneous. All the bran
hes of a nodeare the
hildren of the node. If a node in an EDT is erroneous but has no erro-neous
hildren, then this node is
alled a faulty node. The evaluated fun
tion ata faulty node should be a faulty in a program. For example, the double negationfun
tion is mistakingly de�ned as
doubleneg x = id (not x)(the right-hand side should be not (not x)). The ART and EDT for a startingterm main = doubleneg (not True) are in Figure 1 and 2.

doubleneg

Truenot

False
id

not

True

main

Figure 1. The ART for the Introdu
tion Se
tion
where the dashed lines represent one-step
omputations.

doubleneg False = True

main = True

not True = False

yes

no

no

yes

yes

faulty node

id True = Truenot False = True

Figure 2. The EDT for the Introdu
tion Se
tion

3

We have formally presented the ART and EDT and proved important prop-erties, in parti
ular, the
orre
tness of algorithmi
 debugging [3℄. The ART isa
y
li
. It has sharing (i.e. the arguments of a fun
tion
an be shared) but
on-stants are not shared.
2 ProblemIf we want to share
onstants there may be
y
les in an ART. Sharing
onstantsitself does not make mu
h trouble for algorithmi
 debugging if there is no
y
lein the ART. However, when there are
y
les in the ART algorithmi
 debuggingbe
omes extremely di�
ult.
First
ounter exampleThe following program has one mistake, i.e. the de�nition of a is faulty.main :: Intmain = h ah :: (Int, Int) -> Inth (x, y) = x + ya :: (Int, Int)a = f (g a) 1 -- should be: a = f (g a) 2f :: Int -> Int -> (Int, Int)f x 1 = (x, 3)f x 2 = (x, 5)g :: (Int, Int) -> Intg (x, y) = snd a + 4The intended semanti
s:a = f (g a) 2 = (9, 5)g (x, y) = snd a + 4 = 9main = h a = 14The
y
li
 ART for the �rst
ounter example is in Figure 3. One simple
hoi
eof EDT is in Figure 4.Now, there is a problem. We know that the de�nition of a is faulty, but fromthe EDT in Figure 4 the faulty de�nition is the fun
tion g.4

main

h

a

+

10

f

g 4

3
1

(,)

+

snd

7

Figure 3. The
y
li
 ART for the �rst
ounter example

g (7, 3) = 7

a = (7, 3)h (7, 3) = 10

main = 10 no

yes

yes
faulty node

yes
7 + 3 = 10 f (7, 1) = (7, 3)

snd (7, 3) = 33 + 4 = 7

no

yesyes

no

Figure 4. An EDT for the �rst
ounter example
Se
ond
ounter exampleThe intention of the following program is to demonstrate a bla
k-hole problem,but it has one mistake, i.e. the de�nition of h is not stri
t enough.main = f af C = C'a = g (h a)g C'' = Ch x = C'' -- should be: h C = C''--where C, C' and C'' are
onstru
tors.The
y
li
 ART and one simple EDT for the se
ond
ounter example are inFigure 5 and 6. 5

C’

f

a

g

C

C’’

h

main

Figure 5. The
y
li
 ART for the se
ond
ounter example
f C = C’ a = C

g C’’ = C h C = C’’

no

yes no

yesyes

main = C’

Figure 6. An EDT for the se
ond
ounter example
The answers to the equations are the following.main = C' No, should not have any result at allf C = C' Yesa=C No, should not have any result at allg C� = C Yesh C = C� Yes, intended semanti
s.
There is also a problem here. We know that the de�nition of h is faulty, butfrom the EDT in Figure 6 the faulty de�nition is the fun
tion a.These two examples are very small, and the
hoi
es of reasonable debuggingtrees are very limited. We
annot think of any workable and generi
 debug-ging trees for these two examples. So we
onje
ture that there is not a generi
algorithmi
 debugging s
heme for
y
li
 tra
es.6

3 A proposed solutionSin
e
y
les are killers, an immediate solution is that we only generate a
y
li
ARTs. On the other hand we want
onstants to be shared. So we share
onstantsas long as there is no
y
le in the ART. We use indire
tions pointing to shared
onstants. Indire
tions help us to have a easier naming s
heme to de
ide
om-putation dependen
ies, i.e. the parent nodes and their
hildren. The
on�uen
eproperty still hold in the sense that di�erent evaluation orders do not yield dif-ferent ARTs. We give one more example in the paper. The formal details andproofs
an be established as those in our previous paper [3℄ be
ause the essen
eis the same, i.e. ARTs are a
y
li
. We omit the formal presentation here.Example 3 The program is the following.main = f a a bf (C x) (C (C y)) z = C'a = bb = C a--where C and C' are
onstru
tors.The a
y
li
 ART and EDT for Example 3 are in Figure 7 and 8.
main

f
a

b

C a

C’

C

b

a

Figure 7. The a
y
li
 ART for Example 3
The
onstants a and b in the example are shared but not always shared.If sharing a
onstant results in a
y
le then we will start a new node for the
onstant. Otherwise it will be shared.Note that the question �b = C (C a)� that
omes from the same node in theART (see Figure 7) is one of the
hildren of �main = C�' and the
hild of �a =C (C a)� (see Figure 8). So, one question that
omes from the same pla
e
ouldappear more than on
e in an EDT be
ause of
onstant sharing. In general, su
hrepeated questions in an EDT
annot be removed, otherwise we may end uplo
ating a wrong faulty node. But repeated questions only need to be answeredon
e in pra
ti
e. We
an also use a graph to represent the EDT (see Figure 9).7

f (C (C a)) (C (C a)) (C (C a)) = C’ b = C (C a)a = C (C a)

b = C (C a)

main = C’

b = C a

a = C a

a = C a b = C a

Figure 8. The EDT for Example 3
f (C (C a)) (C (C a)) (C (C a)) = C’ a = C (C a)

b = C (C a)

main = C’

b = C a

a = C a

Figure 9. A graph representation of the EDT for Example 3
Now, we give a
y
li
 ARTs and new EDTs for the two
ounter examples(see Figure 10 - 14). The a
y
li
 ARTs are not as e�
ient as the
y
li
 onesbe
ause there are more
omputation in the a
y
li
 ARTs. But the new EDTsderived from the a
y
li
 ARTs
an
orre
tly lo
ate the faulty de�nitions in lazyfun
tional programs.

8

main

h

a

+

10

f

g 4

3
1

(,)

+

snd

a

a

f

g g

f

a a

331 1

(,)(,)

7

Figure 10. The a
y
li
 ART for the �rst
ounter example
h (7, 3) = 10

main = 10 no

yes

yes

yes
7 + 3 = 10 f (7, 1) = (7, 3)

3 + 4 = 7

nog (g a, 3) = 7 a = (g a, 3)

snd (g a, 3) = 3 a = (g a, 3) f (g a) 1 = (g a, 3)

f (g a) 1 = (g a, 3)

a = (7, 3)

yes yes

yes

yes

faulty node

faulty node

no

no

no

Figure 11. New EDT for the �rst
ounter example
If we repla
e the unevaluated parts by _s, the questions may be
ome
learer.

9

h (7, 3) = 10

main = 10 no

yes

yes

yes
7 + 3 = 10 f (7, 1) = (7, 3)

3 + 4 = 7

nog (_, 3) = 7 a = (_, 3)

snd (_, 3) = 3 a = (_, 3) f _ 1 = (_, 3)

f _ 1 = (_, 3)

a = (7, 3)

yes yes

yes

yes

faulty node

faulty node

no

no

no

Figure 12. New EDT for the �rst
ounter example
C’

f

a

g

C

C’’

h

main

a

Figure 13. The a
y
li
 ART for the se
ond
ounter example
f C = C’ a = C

g C’’ = C h _ = C’’

no

yes no

yes

main = C’

no

Figure 14. New EDT for the se
ond
ounter example
Related WorkIn some systems su
h as Freja and Hat,
y
les are treated as bla
k boxes. Every
y
le (or bla
k box) may have several fun
tion de�nitions. The debuggers
an10

tell whether there is a bug inside a bla
k box, but
annot tell whi
h fun
tion inthat box is faulty.In Nilsson's thesis [5℄, he demonstrated how to debug
y
li
 Freja programs.However, the
urrent debugging tool
annot
orre
tly debug the
ounter ex-amples in this paper. We had extensive dis
ussion about the issue. I was toldthat Freja
ould lo
ate the bug if the mutually re
ursive fun
tions were lo
allyde�ned. But I have not fully understood this
laim.The idea of redex trail is developed and the
omputation builds its owntrial as redu
tion pro
eeds [9℄. The tra
e in Hat is re
orded in a �le ratherthan in memory [10℄. Hat integrates several viewing methods su
h as Fun
tionalObservations, Redu
tion Trails and Algorithmi
 debugging.Naish presents a very abstra
t and general s
heme for algorithmi
 debug-ging [4℄. The s
heme represents a
omputation as a tree and relies on a wayof determining the
orre
tness of a sub
omputation represented by a subtree.In Nilsson's thesis [5℄, a basis for algorithmi
 debugging of lazy fun
tional pro-grams is developed in the form of EDT whi
h hides operational details. TheEDT is
onstru
ted e�
iently in the
ontext of implementation based on graphredu
tion. Caballero et al formalise both the de
larative and the operationalsemanti
s of programs in a simple language whi
h
ombines the expressivenessof pure Prolog and a signi�
ant subset of Haskell, and provide �rm theoreti
alfoundations for the algorithmi
 debugging of wrong answers in lazy fun
tionallogi
 programming [1℄. However, the starting point of the approa
h is an oper-ational semanti
s (i.e. a goal solving
al
ulus) that is high-level and far froma real e�
ient implementation. For example, there is no sharing of repli
atedterms. In
ontrast we use the ART as base, whi
h is a model of tra
e used inthe Hat system. Important properties of the ART have also been proved [2℄.
Referen
es1. Rafael Caballero, Fran
is
o J. López-Fraguas, and Mario Rodríguez-Artalejo. The-oreti
al foundations for the de
larative debugging of lazy fun
tional logi
 programs.In Herbert Ku
hen and Kazunori Ueda, editors, Fun
tional and Logi
 Program-ming, 5th International Symposium, FLOPS 2001, Tokyo, Japan, Mar
h 7-9, 2001,Pro
eedings, LNCS 2024, pages 170�184. Springer, 2001.2. O. Chitil and Y. Luo. Towards a theory of tra
ing for fun
tional programs basedon graph rewriting. In Pro
eedings of the third international workshop on TermGraph Rewriting, Termgraph, volume 7, 2006.3. Y. Luo and O. Chitil. Proving the
orre
tness of algorithmi
 debugging for fun
-tional programs. In Pro
eedings of the seventh symposium on Trends in Fun
tionalProgramming, TFP, 2006.4. Lee Naish. A de
larative debugging s
heme. Journal of Fun
tional and Logi
Programming, 1997(3), 1997.5. Henrik Nilsson. A de
larative approa
h to debugging for lazy fun
tional languages.Li
entiate Thesis No. 450, Department of Computer and Information S
ien
e,Linköping University, S-581 83, Linköping, Sweden, September 1994.6. Henrik Nilsson. De
larative Debugging for Lazy Fun
tional Languages. PhD thesis,Linköping, Sweden, May 1998. 11

7. B. Pope and Lee Naish. Pra
ti
al aspe
ts of de
larative debugging in Haskell-98. In Fifth ACM SIGPLAN Conferen
e on Prin
iples and Pra
ti
e of De
larativeProgramming, pages 230�240, 2003.8. E. Y. Shapiro. Algorithmi
 Program Debugging. MIT Press, 1983.9. Jan Sparud and Colin Run
iman. Tra
ing lazy fun
tional
omputations using redextrails. In H. Glaser, P. Hartel, and H. Ku
hen, editors, Pro
. 9th Intl. Symposiumon Programming Languages, Implementations, Logi
s and Programs (PLILP'97),pages 291�308. Springer LNCS Vol. 1292, September 1997.10. Mal
olm Walla
e, Olaf Chitil, Thorsten Brehm, and Colin Run
iman. Multiple-view tra
ing for Haskell: a new Hat. In Preliminary Pro
eedings of the 2001 ACMSIGPLAN Haskell Workshop, UU-CS-2001-23. Universiteit Utre
ht, 2001. Finalpro
eedings to appear in ENTCS 59(2).

12

