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Abstract. Refactoring is a technique for improving the design of exist-
ing programs without changing their behaviour. Wrangler is a tool built
at the University of Kent to support Erlang program refactoring; the
Wrangler tool is written in Erlang.
In this paper we present the use of a novel testing tool, Quviq QuickCheck,
for testing the implementation of Wrangler. QuickCheck is a specification-
based testing tool for Erlang. With QuickCheck, programs are tested by
writing properties in a restricted logic, and using the tool these properties
are tested in randomly generated test cases.
This paper first gives overviews of Wrangler and Quviq QuickCheck,
then discusses the various ways in which refactorings can be validated,
and finally shows how QuickCheck can be used to test the correctness of
refactorings in an efficient way.


1 Introduction


Refactoring [7] is a technique for transforming program source code in such a
way that it changes the program’s internal structure and organisation, but not
external behaviour. The key characteristic that distinguishes refactoring from
general code manipulation is its focus on structural change, strictly separated
from changes in functionality. Functionality-preservation requires that refactor-
ings do not introduce (or remove) any bugs. Refactorings typically have two
aspects: program analysis is required to check that certain side-conditions are
met by the program in question in order for the refactoring to preserve behaviour,
and program transformation which carries out the actual program restructuring.
In a slogan: “Refactoring = Condition + Transformation”.


Refactorings can be done manually, but this can be tedious and error-prone for
small programs, and impractical for larger systems. Software tools (“refactor-
ing engines”) can help programmers perform refactorings automatically, and are
available for a variety of languages, including Smalltalk, Java, C#, C++, Haskell,
Erlang, etc. With a refactoring tool, the programmer only needs to select which
part of the program to be refactored and which refactoring to apply, and the
tool will automatically check the side-conditions and apply the transformation
throughout the whole program if the side-conditions are satisfied. Wrangler is
the tool that we are implementing to support refactoring Erlang [1] programs,
and this forms one aspect of ’Formally-Based Tool Support for Erlang Develop-
ment’1 [6], a joint research project between Universities of Kent and Sheffield.
1 FORSE is supported by EPSRC, UK.







Implementing a practical and usable refactoring tool for a real world program-
ming language is by no means trivial. A refactoring tool needs to get access
to the program’s syntax and static semantics (possibly including type informa-
tion), to implement different kinds of program analysis and transformation, and
to preserve the comments, and potentially, layout, of the transformed program.
Among other criteria, such as efficiency, usability and completeness, the reliabil-
ity of a refactoring tool is vital for it to be accepted in practice. A bug within a
refactoring tool can introduce bugs in the refactored programs silently, and such
bugs may be impossible to detect statically, if they result in a valid program
which behaves differently from the original.


The correctness of refactorings implemented can be ensured from several aspects
including, but not limited to, a clear specification clarifying the pre-conditions,
transformation rules, and/or post-conditions of each refactoring; a verification
that argues the correctness of the specification, and most importantly a thorough
testing of the refactoring tool. A traditional way of testing refactoring tools is
to create test cases manually. Each test case contains an input program, a refac-
toring command, and the expected result, which could be either the refactored
version of the input program or the original input program (along with a fail-
ure message) depending on whether the side-conditions are satisfied. Then these
tested cases are usually run with a unit testing tool, such as EUnit [3] for Erlang.
Writing test cases manually is tedious and hard to cover all possible refactoring
scenarios. Incomplete test suite potentially leaves bugs in refactoring tools.


We present the technique of using Quviq QuickCheck [8], a tool developed by
Quviq AB, to automate the testing of Wrangler. Instead of writing small test
programs, we use real-world available Erlang programs as our refactoring input
programs. For example, one of the Erlang programs we have used is Wrangler
itself, which currently contains 25 modules, 20K lines of code in total. Quviq
QuickCheck tests running code against formal specification, using controllable
random test case generation combined with automated test case simplification to
assist error diagnosis. With Quviq QuickCheck, we automate the generation of
refactoring commands and the checking of refactoring outputs. Refactoring com-
mands are generated randomly using the information stored in the annotated
abstract syntax tree (AAST) of the input program. Along with the develop-
ment of each refactoring, we write a collection of properties that the refactoring
should satisfy. Failing to meet one or more of these properties indicates bugs
in the implementation or properties. Each time the testing is run, it generates
100 refactoring commands by default, applies each command to the input pro-
gram, and checks that the properties being tested return true in every case. This
way, we are able to integrate the specification and testing of refactorings very
naturally.


The rest of the paper is structured as follows. In sections 2 and 3, we give
introductions to Wrangler and Quviq QuickCheck. Section 4 gives an overview
of the different ways in which refactoring engines can be tested, and in section 5
we explain our approach to testing Wrangler with QuickCheck, including the







generation of refactoring commands, and the kind of general properties that we
use to test refactorings. In section 6, as an example, we illustrate the testing of
renaming a function. In section 7, we give an evaluation of our approach; related
work is presented in section 8, and conclusions and future work are given in
section 9.


2 Wrangler – An Erlang Refactorer


Wrangler [11,12] is the tool that we are building to provide support for interac-
tive refactoring of Erlang programs. The current version of Wrangler supports
a number of structural refactorings, including rename an identifier, generalise a
function definition, function extraction, move a function definition between mod-
ules, fold expressions against a function definition, etc, and functionalities for
duplicated code detection. More process structure related refactorings are being
added.


Wrangler is built on top of the Erlang syntax-tools package [14] which provides
a representation of the Erlang AST within Erlang. syntax-tools allows syntax
trees to be augmented with additional information as necessary. The Wrangler
AST representation is annotated with a variety of information:


– Comments in the source code are inserted as attachments to the nodes in
the AST at the appropriate place.


– Each function or variable name is associated with its actual source loca-
tion and the location of its defining occurrence, thus reflecting the binding
structure of the program.


– The start and end location of each syntactic entity in the source code is also
stored in the augmented AST, allowing entities to be located by means of
their position, as well as supporting pretty-printing facilities.


– Category information indicating the kind of syntax phrase the AST node
represents, such as expression, function, pattern and so on is also included
in the tree.


– Finally, free and bound variable information is also attached to the AST
representation of each syntax phrase in the source code.


Wrangler is embedded in the Emacs editing environment; to manage communica-
tion between the refactoring engine and Emacs we make use of the functionalities
provided by Distel [13], an Emacs-based user interface toolkit for Erlang.


To perform a refactoring with Wrangler, the focus of refactoring interest has to
be selected in the editor first. For instance, an identifier is selected by placing the
cursor at any of its occurrences; an expression is selected by highlighting it with
the cursor. Next, the user chooses the refactoring command from the refactor
menu, and inputs the parameter(s) in the mini-buffer if required. The Wrangler
tool checks that the focus item is suitable for the refactoring selected, that the
parameters are valid, and that the refactoring’s side-conditions are satisfied.







If all these checks are successful, Wrangler will then perform the refactoring,
and update the program with the new result, otherwise it will give an error
message, and abort the refactoring with the input program unchanged. Undo
is supported by Wrangler; applying undo once reverts the program back to its
state immediately before the last refactoring was performed.


Snapshots of Wrangler are given in Figures 1-2 with a particular refactoring sce-
nario showing the generation of function repeat/1. In Figure 1, the user has se-
lected the expression io:format("Hello\n") in the definition of repeat/1, has
chosen the Generalise Function Definition command from the Refactor menu,
and is just entering a new parameter name A in the mini-buffer. Then the user
would press the Enter Key to perform the refactoring. After the side-condition
checking and program transformation, the result of this refactoring is shown in
Figure 2: the new parameter A has been added to the enclosing function defi-
nition repeat/1, which now becomes repeat/2; the highlighted expression has
been replaced with A(); and at the call-site of the generalised function, the se-
lected expression, wrapped in a fun-expression, is now supplied to the function
call as its first actual parameter. We enclose the selected expression within a
function closure because of its side-effect, so as to ensure that the expression is
evaluated at the proper points. As a design decision, if the generalised function
is exported by the current module, an auxiliary function is created to ensure
that the interface of the module is unchanged, as shown in this example.


Fig. 1. A snapshot of Wrangler







Fig. 2. A snapshot of Wrangler showing the result of generalisation


3 Quviq QuickCheck


Quviq QuickCheck is a property-based testing tool, developed from Claessen
and Hughes’ earlier QuickCheck tool for Haskell [4], re-designed for Erlang with
a number of extensions, of which the most significant is an ability to simplify
failing test cases automatically [8].


Quviq QuickCheck provides an API in Erlang that allows users to write prop-
erties that are expected to hold of programs; these properties are themselves
expressed as Erlang source code. QuickCheck also defines a variety of generators
and combining forms for generators by means of which the user can generate
test data of the appropriate type and distribution for their needs.


As an example, consider the standard list reverse function. One property of this
function is expressed thus:


prop_reverse() -> ?FORALL(Xs, list(int()),
list:reverse(list:reverse(Xs))== Xs).


As an abstract property, this says that reversing a list of integers twice has the
result of returning the original list. In QuickCheck, the functions int/0 and
list/1 are both data generators: int/0 generates random integers, and list/1
generates a list of elements generated by its argument. ?FORALL is an Erlang
macro. ?FORALL(X, Gen, Prop) binds X to a value generated by Gen within
the property Prop. The example property will be said to hold in QuickCheck if
list:reverse(list:reverse(Xs))== Xs) holds for all values of Xs generated
by list(int()).


The property is checked by running 100 random test cases generated by the
generators, and reports success if all tests pass this. If any test case fails, the







(first such) failing case will be printed. 100 is the default value of the number of
test cases generated in each run of QuickCheck, and this figure can be customised
by the user.


A failing test case indicates bugs in either the implementation under test or the
written properties. For example, testing the following property


prop_list_delete()->
?FORALL(I, int(),


?FORALL(List, List(int()),
not (lists:member(I, lists:delete(I, List)))))


against the standard function lists:delete/2 might report


Failed! After 37 tests.
-8
[5, -8, 12, -8, 9]


as lists:delete(I, List) only removes the first occurrence of I in List. Once
a counterexample has been found, the shrinking functionality provided by Quviq
QuickCheck will allow QuickCheck to minimise the failing case as much as pos-
sible. For the above example, the length of the counterexample data will be
reduced, and the output above would be augmented by


Shrinking......(6 times)
-8
[-8,-8]


By writing properties in this style, a QuickCheck user can build up a formal
specification, which is then checked against the implementation by QuickCheck.
The mutual testing of implementation and specification ensures the correctness
of both.


In comparison with traditional automated testing, as provided by systems such
as EUnit [3], which runs the same set of tests repeatedly, QuickCheck allows the
user to run many different tests with little effort, therefore has the potential to
find more bugs. It is, of course, possible to re-run tests simply by re-using a seed
value within the random generation, and so to ensure that regression testing
takes place if required.


The API provided by QuickCheck contains functions for generating both sim-
ple and complex test data, according to distributions described by the user, as
well as macros for writing and testing properties. In the following sections, an
explanation will be given when an API function or macro is used.


4 Validating Refactoring Engines


Refactorings and refactoring engines can be validated in a number of different
ways. In this section we present an overview of the various approaches and their
pros and cons, before explaining our approach in more detail in the next section.







In checking whether the result of a refactoring has preserved behaviour, the
result naturally needs to compile and run without errors; in the remainder of
this section we assume that the results are also checked for being compilable as
well as being tested in various ways we discuss.


4.1 Regression testing of refactored programs


The most popular means of validating refactorings in current use is to ensure
that refactored code meets all the tests that the original version met. As Object-
Oriented refactoring has been identified as one of the central characteristics of
an extreme programming approach, it is reasonable to assume that the test data
will already be in place, and so the advantage of this approach is that the cost
of testing the refactored code is small. This approach means that the refactored
code has the same warranty as the original code.


The approach has two limitations. First, the coverage of the code is necessarily
partial, and so it is possible that bugs have been introduced in the untested parts
of the code. Also, the testing cost can be higher in cases where the test cases
have themselves to be refactored: for instance, if a function is generalised, then
it is necessary to add an extra datum to the test data for each function call.


4.2 Testing the old and new programs


A variant of the previous approach tests the two versions of the program against
each other: on input data taken from an existing test suite, the outputs from
two versions of the program can be compared directly. This approach is lower
cost in the case where there is no pre-existing test data, since it is not necessary
explicitly to state the output values corresponding to the various input data. A
disadvantage is that any framework needs to accommodate the co-existence of
two versions of the code under test.


Neither this nor the previous approach actually checks the structural changes of
the refactored code, and could fail to test that refactorings actually achieve their
purpose. For example, program behaviour preservation can be achieved even if a
malfunctioning refactoring returns the program structurally unchanged without
giving an error message.


4.3 Programs as data


In contrast to the earlier approaches, it is possible to see the refactoring as a
program, and so to supply it with a set of input programs and the corresponding
output programs that are expect to result. Two variants of the check are possible:


– It is possible to analyse the abstract syntax tree (AST) resulting from the
transformation, and to compare this with the expected result. This neglects
the layout of the refactored program.







– In contrast, it is possible to specify the source code to be expected, with a
given program layout. This is a stronger test than the former; since it not
only prescribes the AST but also its particular layout, but this approach is
appropriate when refactoring code is expected to be laid out in a way that
will make it recognisable to its author.


This was the approach that we used first, using the Haskell package HUnit for
testing HaRe (the Haskell refactorer) [10], and EUnit for testing Wrangler.


In our experience, the main disadvantage of writing test cases under this ap-
proach is that it is very tedious, and hard to cover all the refactoring scenarios
especially when both the implementation and the test cases are written by the
same people. Hence we did not gain sufficient assurance about the correctness
of the refactorings implemented.


Other variants of this approach involve a degree of random generation; we will
explore our particular approach in the next section, and discuss related work in
section 8.


4.4 Program verification


Rather than using testing, it is possible to write formal proofs of correctness for
refactoring engines. Two approaches suggest themselves:


– It is possible to produce, program by program, separate proofs of equivalence
between the original and the refactored programs. Such proofs might be
generated by tactic-based proof descriptions, or result from a proof planning
process.


– Alternatively, the formal theorem proved can itself contain a quantifier over
all programs of a certain form (which are the input to the refactoring in ques-
tion). Preliminary work under this approach is to be found in Li’s thesis [9]
and the forthcoming thesis of Sultana [15].


This section has summarised various approaches to validating refactoring en-
gines; we next look at our particular work.


5 Testing Wrangler with QuickCheck


Before adopting QuickCheck as the test engine of refactorings, we used the unit
testing approach, as discussed in the previous section. We concluded that this
mechanism was not ideal, and so to improve the testing of Wrangler, we have
experimented with the idea of using Quviq QuickCheck as the test engine.


Under this approach, a collection of properties are written along with the imple-
mentation of each refactoring. These properties specify the conditions that must
be met by the program after the refactoring, in order for the transformation to
be behaviour-preserving. From the formal specification point of view, these prop-
erties can be viewed as the post-conditions of a refactoring. While there are some







general properties which apply to most of the refactorings, for example, all the
programs after a refactoring must compile successfully, some properties are par-
ticular to individual refactorings, especially those involving structural changes
to the program. Writing properties along with the implementation of refactor-
ings, we are able to make testing an integral part of the refactoring development
process.


Properties are tested on the refactored version of the input program. While
occasionally we have written a few small input programs to test a particular
case, mostly we use real-world Erlang programs as the testing code base. Before
the testing of a specific refactoring, the code base could be examined to make
sure that enough refactoring scenarios are covered in the program. For example,
to test a refactoring involving the communication between processes, we should
choose programs that contain substantial process communications; and to test
a refactoring that transforms a tuple to a record, we need to make sure that
tuples and records are reasonably used in the test program. Apart from manual
examination, the collect/1 function provided by Quviq QuickCheck can be
used to analyse the distribution of the test data when the testing is complete;
and the coverage analysis functionalities provided by the standard Erlang release
can be used to analyse how well the code implementing the refactoring is covered
by running the test cases.


Once the test program has been chosen, refactoring commands are automati-
cally generated using the information stored in the annotated abstract syntax
tree (AAST) of the test program. Both the generation of refactoring commands
and the creation of properties make use of the Wrangler infrastructure API.
The API provides programmer access to the infrastructure on which Wrangler
is built. As the infrastructure has been more thoroughly tested, we trust its ro-
bustness in this exercise. Alternatively, we can also test an API function exposed
by the infrastructure using the same approach.


More about the generation of refactoring commands and the creation of proper-
ties are discussed in the following two sub-sections. Following that, as an exam-
ple, testing of the renaming a function refactoring is examined in more detail.


5.1 Generation of Refactoring Commands


In Wrangler, a refactoring command normally contains the refactoring name, the
name of the source file under refactoring, the focus of the refactoring which can
be a location/range in the program source, and some user inputs. For example,
the refactoring renaming a function has the following interface:


rename_fun(FileName, SrcLoc={Line, Col}, NewName, SearchPaths)


where FileName is the name of the file containing the definition of the function
to be renamed; SrcLoc, which is a tuple containing a line and a column number,
represents the location of one of the occurrences of the function name in the
source; NewName is the new function name, and SearchPaths specifies where to







search for those files that could possibly use this function; this is needed when
the function to be renamed is exported by the module in which it is defined.


As another example, the refactoring generalisation of a function definition has
the following interface:


generalise_fun(FileName, Range={StartLoc, EndLoc}, ParName)


where FileName is the name of the source file containing the definition of the
function to be generalised; Range represents the start and end location of the
selected expression in the source, and ParName is the new parameter name. As
this refactoring only affects the current module, SearchPaths is not needed.


Next, we return to the ‘renaming’ example to explain how refactoring com-
mands can be generated. If a specific file is used as the input program, then the
FileName is fixed, otherwise a file can be randomly chosen from a directory for
each refactoring command. The following function serves to select an Erlang file
from a directory.


gen_filename(Dir) ->
{ok,Files} = file:list_dir(Dir),
ErlFiles = [F|| F <-Files, filename:extension(F)==".erl"],
oneof(ErlFiles).


where the function oneof/1 is a QuickCheck API function which generates a
value using a randomly chosen element of a list of generators; in this example,
all the list elements are constant generators.


Instead of generating source locations using the integer generators provided by
Quviq QuickCheck, the value of SrcLoc is generated based on the location infor-
mation stored in the AAST representation of the chosen Erlang file. As discussed
earlier, in the AAST, each occurrence of a function name is associated with its
location in the source, the name of the module in which it is defined, as well as
its defining location in that module.


To generate a source location, we first collect all those locations which are associ-
ated with the occurrences of function names defined in this file, then choose one
from the collection randomly. This way, we can make sure that selected location
points to a function name defined in the current module. In order to test the
case when the user deliberately points to a location in the source which does
not correspond to a function name defined in the module, we can always add
fake locations to the collection of real ones, or make use of QuickCheck’s fault
injection combinators: fault/1 and fault rate/3.


Some refactorings ask the user to input a new name. For example, to rename
a function, the user needs to input the new function name; and to generalise a
function definition, the user has to input a new variable name. To improve the
possibility that a name conflict/shadow occurs, identifier names are generated
from both pre-created fresh names and those used in the refactored program,







since a name conflict/shadow is possible only when the new name is already used
by program.


The following function generates refactoring commands for renaming a function.


rename_fun_commands(Dir) ->
?LET(FileName, gen_filename(Dir),
{FileName,
oneof(collect_fun_locs(FileName)),
oneof(collect_names(FileName)),
Dir}).


In the above function, Dir specifies where to look for Erlang files to refactor;
?LET is a macro provided by Quviq QuickCheck (?LET(Pat, G1, G2) generates
a value from G1, binds it to Pat, then generates a value from G2 which may
refer to the variables bound in Pat); function collect fun locs/1 adds all the
locations where a locally defined function name occurs in the selected Erlang
file to a list of default locations; collect name/1 adds all the function names
that occur in the source to a list of pre-created fresh identifiers, and as last, we
assume that Dir is the only directory to search for those files that would possibly
be affected by the refactoring.


Suppose that the testing directory is "c:/wrangler-0.1/test", which has three
Erlang files, the following shows part of the refactoring commands generated by
the above function in one run of QuickCheck.


1% {"test.erl",{3,1},module,"c:/wrangler-0.1/test"}
1% {"refac_rename_fun.erl",{243,64},halt,"c:/wrangler-0.1/test"}
1% {"refac_qc.erl",{184,48},ordsets,"c:/wrangler-0.1/test"}
1% {"test.erl",{5,39},"DDD","c:/wrangler-0.1/test"}
1% {"refac_qc.erl",{366,30},get_pos,"c:/wrangler-0.1/test"}
1% {"refac_rename_fun.erl",{117,33},purge_module,"c:/wrangler-0.1/test"}


As an example, the first command means to rename the function whose name
occurs at the location: {line: 3, column: 1} in file test.erl to the new name
module, and search the directory "c:/wrangler-0.01/test" for files in which
the function is used, if the function is exported. The percentage at the beginning
of each line shows the proportion of the total represented by the command.


5.2 Properties


Formally specified or not, each refactoring comes with a set of pre-conditions,
which embody when a refactoring can be applied to a program without changing
its meaning; a set of transformation rules which state how the program should be
transformed to fulfil the refactoring while keeping the program’s semantics un-
changed; and a collection of post-conditions which articulate some properties the
program should hold after the refactoring has been done. While the pre-condition
checking and transformation rules are always explicitly implemented, the check-
ing of post-conditions are normally ignored by the developers of refactoring tools







as we assume that the pre-conditions and transformation rules together should
guarantee the post-conditions.


With the QuickCheck testing approach, we can test most of these post-conditions
explicitly. Ideally, one post-condition that applies to any refactoring is that the
input program and its refactored version should have the same semantics; how-
ever whether two programs have the same semantics is in general not decidable.
Furthermore, even when the two programs have the same semantics, the refactor
still might not have performed the anticipated structural change to the program
correctly as mentioned before. Therefore, instead of checking two programs hav-
ing the same semantics, we test a number of properties that are decidable.


There are a couple of basic properties that should hold by all the refactorings:


– first, the refactoring engine should not crash, i.e. the refactorer should not
terminate with an uncaught exception;


– second, if the refactoring has finished without giving an error message, then
the refactored version of the program should compile successfully (Wrangler
only refactors programs that compile).


Many basic refactorings are bi-directional. Given a refactoring that transforms a
program from P to P ′, we can generally find another refactoring that transforms
program P ′ to P . For example, renaming an entity in a program from A to B,
then renaming it back to A, should produce the original program; as another
example, first generalising a function definition over an expression, then spe-
cialising the function on the newly added parameter with the expression should
always produce the original function. This feature of refactoring allows us to
write properties that embody mutual testing of refactorings.


During the implementation of Wrangler, we always try to separate the pre-
condition checking part from the transformation part. One of the benefits of
doing this is that it allows the mutual testing of condition-checking and trans-
formation. For example, performing the transformation with the knowledge that
some of the necessary side-conditions are not satisfied should either make the
refactoring engine crash or violate some post-conditions in the case that the
transformation (apparently) succeeds.


Apart from those general post-conditions that apply to most of refactorings, each
refactoring also has it own particular post-conditions, especially those concerning
structural changes of the program, as different refactorings change the program
structure in different ways. For some refactorings, there may also be special con-
straints that should hold during the transformation. For example, some refac-
torings are suppose to keep the program’s module interface unchanged; while
others are suppose to keep some particular function interfaces unchanged. All
these constraints can be expressed as QuickCheck properties.


There is no limit on the number of properties one can specify to test a refactoring.
For complex transformations, instead of writing a small number of very complex
properties, we can always write a collection of simpler properties, each of which







specifies only one aspect or a small step of the transformation. Simpler properties
are easier to understand, maintain and reuse.


In the following section, we again take the renaming a function refactoring as
an example to illustrate how properties can be specified and tested.


6 An Example: Testing Renaming a Function


Renaming a function is one of the most basic, but very useful, refactorings,
supported by almost all the existing refactorers. This refactoring renames a
user-selected function name to a new name and updates all the references to it.
When the renamed function is exported by the module, this refactoring could
potentially affect every module in the program. Suppose the old and new function
names (with arity) are bar/n and foo/n respectively, then the side-conditions
on renaming a function are as follows.


1. The new name should be a lexically valid function name, otherwise the trans-
formed program will not compile.


2. No binding for foo/n may exist in the same scope. This condition avoids
name conflict in the scope where bar/n is defined, and violating this condi-
tion will result in the transformed program failing to compile.


3. No binding for foo/n may intervene between the binding of bar/n and any
of its uses, and the binding to be renamed must not intervene between ex-
isting bindings and the uses of foo/n.
This condition avoids name capture, and violating this condition will lead to
the binding structure of the program being changed silently. (‘Binding struc-
ture’ here refers to the association of uses of identifiers with their definitions
in a program, and is determined by the scope of the identifiers).


4. Callback functions should not be renamed. Callback functions in Erlang are
generally named by Erlang OTP behaviours, and must be implemented by
the module calling an OTP behaviour. Renaming, or changing the interface
of, callback functions in either single side will break the protocol between
the OTP behaviour and the module calling the OTP behaviour, and make
the program fail to function properly.


To check the correctness of the implementation, we focus on defining properties
depending on whether the refactoring succeeds or not. If the refactoring com-
pletes without giving an error message, we then test the following properties.


– Renaming the new function back to its original name should affect the same
set of Erlang files in the application, and produce the original program except
for variations of layout. This property also implies the condition that the
refactored version of the program should compile without errors.


– The function-level binding structure of the refactored version of the program
should be the same as, or isomorphic to, that of the original program.
Unlike some functional languages that allow nested function definitions, Er-
lang has a very straightforward function defining structure. In Erlang, all







named functions are top-level functions. The function-level binding struc-
ture of an Erlang program can be represented as a list of tuples:


B = [{{M1, Loc}, {M2, Id, A}}]


and {{M1, Loc}, {M2, Id, A}} ∈ B if and only if the function name Id, which
occurs in module M1 at location Loc, refers to the function defined in M2


whose name is Id and arity is A. To take the possible program layout change
into account, Loc here is a number reflecting the function name’s textual oc-
currence order in the code, instead of the concrete source location.
Suppose the function bar/1 defined in module N is renamed to foo/1, and
the binding structures of the program before and after the refactoring are B
and B′ respectively, then replacing all the occurrences of {N, foo, 1} in B′


with {N, bar, 1} should produce B.
This property is able to find certain bugs that escape detection by the previ-
ous property. For example, an implementation that renames every occurrence
of the selected function name irrespective of its semantics will be found faulty
by this property, but not necessarily by the previous property.


– The programs before and after the refactoring should have the same set of
callback functions if which functions are callback functions has been explic-
itly specified.


If the refactoring fails because one of the side-conditions fails, then the necessity
of the side-condition can also be tested. For example


– Transforming the program when side-condition 1 or 2 does not hold should
produce a program that does not compile.


– Transforming the program when side-condition 3 does not hold should pro-
duce a program that compiles but has a different function-level binding struc-
ture.


A simplified version of the top-level function for testing renaming a function
is given in figure 3. To make it easier to read, we have omitted the part that
handles client modules, however this should not affect the idea expressed by this
function.


7 Evaluation of Approach


A number of other refactorings have been tested using this approach, includ-
ing renaming a variable name, generalisation of a function definition, etc. We
actually started to use Quviq QuickCheck after the first preliminary release of
Wrangler, which was tested on a number of small test cases using EUnit, and
was also manually tested on a large code base.


Even so four bugs were found within the first release of Wrangler in a short time.
All these bugs escaped the pre-release testing due to the incomplete coverage of
the testing suite. Among these bugs, one silently changed the binding structure







qc_rename_fun(Dir) ->
F = ?FORALL(C, (rename_fun_commands(Dir)),
begin


[FileName, SrcLoc, NewName, SearchPaths] = C,
%% backup the current version of the program.


file:copy(FileName, "temp.erl"),
%% get the function name (with arity) to be renamed.


{Mod, FunName, Arity} = pos_to_fun_name(FileName, SrcLoc),
%% calculate the binding structure of the current program.


B1 = fun_binding_structure(FileName),
%% get the name of the callbacks functions if there is any.


CallBacks = get_callback_funs(FileName),
%% apply the refactoring command to the source.


Res = apply(refac_rename_fun, rename_fun, C),
case Res of


%% ChangeFiles contains the names of those files
%% that have been affected by this refactoring.


{ok, ChangedFiles} -> %% refactoring completed successfully.
B2 = fun_binding_structure(FileName), %% new binding structure.


%% get the name of the callback functions if there is any.
CallBacks1 = get_callback_funs(FileName),
C1 = [FileName,NewName, Arity, FunName, SearchPaths],


%% rename the function back to its original name.
%% we cannot use location as it might have been changed.


{ok, ChangedFiles1} = apply(refac_rename_fun, rename_fun_1, C1),
%% property1: renaming in both directions affect the same set of files.


prop1 = ChangedFiles == ChangedFiles1,
%% property2: rename twice should returns to the original file.


Prop2 = pretty_print(FileName) == pretty_print("temp.erl"),
%% property 3: B1 and B2 are isomorphic.
%% rename/3 replaces Mod, FunName, Arity with Mod, NewName, Arity in B1


Prop3 = B2== rename(B1, {Mod, FunName, Arity}, {Mod, NewName, Arity}),
%% property 4: the same set of callback functions.


Prop4 = CallBacks == CallBacks1,
%% recover the original program for the next refactoring command.


file:copy("temp.erl", FileName),
Prop1 and Prop2 and Prop3 and Prop4;


{error,ErrorMsg} -> %% refactoring failed with an error message.
%% carry out the transformation even though the side-conditions
%% do not held; do_rename_fun/4 transforms the program.


_Res = apply(refac_rename_fun, do_rename_fun, C),
case ErrorMsg of
{1, _R1} -> %% failed for side-condition 1;


%% the transformed program should not compile.
file:copy("temp.erl", FileName),
{error, _Reason} = get_AST(FileName), true;


{2, _R2} -> %% failed for side-condition 2;
file:copy("temp.erl", FileName),
{error, _Reason} = get_AST(FileName), true;


{3, _R3} -> %% failed for side-condition 3;
%% the transformed program should compile, but the new
%% binding structure is not isomorphic to the original one.


{ok, _AST} = get_AST(FileName),
B2 = fun_binding_structure(FileName),
file:copy("temp.erl", FileName),
B2 /= rename(B1, {Mod,FunName, Arity},{Mod, NewName, Arity})


end end end),
qc:quickcheck(F).


Fig. 3. The top-level function for testing renaming a function







of the program when the generalisation refactoring is applied, and was detected
by a property we wrote for this refactoring, which states that generalisation and
specialisation are inverse; the other three bugs were all caught by the very basic
properties, for example, one bug caused the refactoring engine to crash because
of an unmatched case clause; and another caused the refactored code fail to
compile because of the improper handling of generalisation on operators.


From our experience so far, the advantages of the QuickCheck approach are as
follows:


– We are able to make the development of refactorings and their testing very
closely integrated. The meaning of each refactoring was further clarified by
the mutual testing of the implementation and the specification.


– Once properties have been written, many different test cases can be run with
very little effort, instead of repeating the same set of test cases every time.
As any Erlang program can serve as the test program, we can run the testing
on as many test programs, especially large programs, as possible.


– Because of the controlled random generation of refactoring commands, and
the large amount of tests we can run, more refactoring scenarios will be
covered, therefore increasing the possibility of finding more bugs. At this
point, one might think of the exhaustive testing of refactorings. While it is
possible to enumerate all the possible refactoring commands when the input
program is very small, it is not practical with large input programs due to
the huge amount of refactoring commands that could be generated.


– This approach scales well to complex refactorings or composite refactorings.
Testing of a complex refactoring does not necessitate the specification of very
complex properties. Instead, we could write a collection of simple properties,
each of which only tests one aspect of the refactoring. A composite refactor-
ings can usually be decomposed into a series of basic refactorings, and each
of these basic refactorings can be tested separately using this approach. This
also corresponds naturally to the implementation of composite refactorings


While properties can be written separately from the implementation of refac-
torings, these properties normally make use of the infrastructure on which the
refactorings are built, therefore familiarity with the infrastructure is essential for
the testing using this approach.


8 Related Work


A number of case studies regarding to the use of Quviq QuickCheck or its prede-
cessor as the test engine have been done and reported, among which one to test
an industrial implementation of the Megaco protocol, and faults that have not
been detected by other testing techniques were found [2]. This case study also
shows the power of shrinking provided by Quviq QuickCheck, and one example
is that a test case consisting of a sequence of 160 commands was reduced to just
seven. Shrinking of refactoring commands does not make the counterexample
any simpler, therefore plays little role in this case study.







The most closely related work on the automated testing of refactorings is the
approach of Daniel et. al. [5]. The core of this approach is ASTGen, a library
for generating abstract syntax trees (ASTs) for Java programs. ASTGen allows
the developer to write imperative generators whose executions produce abstract
syntax trees (ASTs) for refactoring engines. To test a refactoring, a developer
writes a generator whose execution produces thousands of programs with struc-
tural properties that are relevant for the specific refactoring being tested. Several
kinds of properties (oracles) have also been created to automatically check that
the refactoring engine transformed the generated program correctly. Compared
with this approach, our approach is more lightweight, however a developer does
need to make sure that the testing code base covers enough structure features
and refactoring scenarios for the refactoring under testing.


9 Conclusion


Refactoring tools ought to allow program developers to quickly and safely refac-
tor their program, especially large programs. However, a robust and safe refac-
toring tool is hard to develop, and most refactoring tools still contain bugs even
after extensive testing. While unit testing does help to find bugs in refactoring
tools, it is tedious to manually write test programs, and the coverage of the test
cases is hard to guarantee, and it is even harder to test refactoring tools on large
systems.


We have explored the idea of using Quviq QuickCheck to automate the testing
of refactorings. In this approach, the correctness of refactorings is tested against
specifications written in Erlang. Once a test program has been chosen, we auto-
mated the generation of refactoring commands and the checking of refactoring
outputs. Within a short time, a number of bugs were found in the first release of
Wrangler using this approach. The pros and cons of this approach is summarised
in section 7.


We envisage exploring a number of further ideas for automated testing of refac-
torings using QuickCheck.


– It would be also interesting to generate Erlang programs to be refactored to
see whether more combinations of Erlang constructions that provoke faults
in Wrangler can be found.


– One of the options followed by Daniel et. al. in [5] is to compare the effect
of two refactoring engines, namely Eclipse and NetBeans for Java. We will
explore this option for Wrangler and the refactoring engine built by the
group at Eötvös Loránd University, Budapest [12].


– We have not addressed the behaviour checking of programs; it would nev-
ertheless be possible to extend our work to check the results of refactorings
against their original version using randomly-generated input values.


– We have assumed the correctness of our infrastructure library; it would be
instructive to express and then to test crucial properties of the functions in
this library.







We also intend to provide an API to help the specification of properties in the
context of refactorings, and we would also like to adopt this approach to test
our Haskell refactoring tool, HaRe.
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