Communicating Process Architectures 2007 249
Alistair A. McEwan, Steve Schneider, Wilson Ifill, and P&tedch

I0S Press, 2007

(© 2007 The authors and 10S Press. All rights reserved.

A Process-Oriented Architecture for
Complex System Modelling

Carl G. RITSON and Peter H. WELCH

Computing Laboratory, University of Kent, Canterbury, KeZiT2 7NF, England.
{cgr,phw}@kent .ac.uk

Abstract. A fine-grained massively-parallel process-oriented modglatelets (po-
tentially artificial) within a blood vessel is presented.idts a CSP inspired design,
expressed and implemented using the occam-pi languagepdtt of the TUNA pilot
study on nanite assemblers at the universities of York,e5uand Kent. The aim for
this model is to engineer emergent behaviour from the @egetuch that they respond
to a wound in the blood vessel wall in a way similar to that fdimthe human body
—i.e. the formation of clots to stem blood flow from the woumndi $acilitate healing.
An architecture for a three dimensional model (relying stylg on the dynamic and
mobile capabilities of occam-pi) is given, along with meaisans for visualisation and
interaction. The biological accuracy of the current modeleéry approximate. How-
ever, its process-oriented nature enables simple refineftienugh the addition of
processes modelling different stimulants/inhibitorstad tlotting reaction, different
platelet types and other participating organelles) totgreand greater realism. Even
with the current system, simple experiments are possitidehane scientific interest
(e.g. the effect of platelet density on the success of thitirdpmechanism in stem-
ming blood flow: too high or too low and the process fails). &wh principles for
the design of large and complex system models are drawn. &$eritded case study
runs to millions of processes engaged in ever-changing aamuoation topologies. It
is free from deadlock, livelock, race hazards and starmdiip design employing a
small set of synchronisation patterns for which we have @nmsafety theorems.

Keywor ds. occam-pi, concurrency, CSP, complex systems

Introduction

In this paper, a process-oriented architecture for sirmgat complex environment and mo-
bile agents is described. The environment is modelled byeal finpology of stateful pro-
cesses, one for each unit of space. State held includesrémgtt of specific environmen-
tal factors (e.g. chemicals), local forces and the presehegents. Agents are mobile pro-
cesses interacting directly with the space processes inithmediate neighbourhood and,
when they sense their presence, other agents. Mechanisthsimically structuring hierar-
chies among agents are also introduced, allowing them pdegisomplex group behaviours.
The architecture combines deadlock free communicatiotisrpa with (phased barrier con-
trolled) shared state, maintaining freedom from race hizzand high efficiency. We have
usedoccam-11[1,2] as our implementation language.

This research is part of the TUNA project [3,4,5,6,7,8,91ha universities of York,
Surrey and Kent, which seeks to explore simple and formalaisoof emergent behaviour.
Medium term applications are for the safe construction ofsie numbers of nano-
technology robotsraniteg and their employment in a range of fields such as the dispersi
of pollution and human medicine. With this goal in mind, thaper introduces our generic
simulation architecture through specific details of howais lbeen used to simulate platelets
in the human blood stream and the clotting response to injury

250 C.G. Ritson and P.H. Welch / Process-Oriented Complex Bgdtéodelling

1. Architecture
1.1. Dynamic Client-Servers

The simulation architecture is constructed in layers. A lottom lie thesite processes,
representing distinct points (or regions) in the simuladpdce and managing information
associated with that locality. Each site is a pgsgverprocess, handling requests on the
server-end of a channel bundle (unique for each site). lthaive a dynamically changing
set ofclientprocesses (mobile agents), competing with each other &sadhe client-end of
its channel bundle. Each channel bundle contains two ch&nsed in opposite directions:
one from a client to the serverequest and one from the server to a cliemeégponsg All
communication is initiated by one of the clients succesgflialying claim to its end of the
channel bundle and making a request. Once accepted, ther sed this client engage in a
bounded conversation over the channel bundle, honourimg $oe-agreed protocol. So long
as no closed cycle of sudhent-serverelationships exists across the whole process network,
such communication patterns have been proven to be deaiéescKl0,11].

1.2. Space Modelling

To modelconnectedpace, each site has reference to the client-ends of theehaundles
serviced by its immediateeighbours These references are only used for forwarding to vis-
iting clients — so that they can explore their neighbourhaod, possibly, move. Sites must
never directly communicate with other sites, since thatd@utroduce client-server cycles
and run the risk of deadlock. The inter-site references ddfwetopologyof the simula-
tion world. For standard Euclidean space, these neighbodriconnections are fixed. For
example, each site in a 3@ubicworld might have access to the sites that are immediately
above/below, left/right or in-front/behind it. In a mordljuconnected world, each site might
have access to all 26 neighbours in the 3x3x3 cube of whidrt$ the centre. Other inter-
esting worlds might allow dynamic topologies — for examie, creation ofvorm-holes

1.3. Mobile Channels and Processes

Agent
Layer

Q World
Layer
Site Site Site Site Site

Figure 1. A simplified representation of sites and agents. Each siigcgs an exclusive channel bundle for
communicating with visiting agents. Agents obtain coniwgrs to their next site from references held by their
current site.

The world layer (Figure 1) is homogeneous — only sites. Thist(fagent layer is het-
rogeneous. There can be many kinds of agent process, gisitid engaging with sites as
they move around their world. Agent-site protocols falbithiree categories: querying and
modifying the current site state, obtaining access to rmghng sites, and moving between
sites. Agents move through the simulated world registesimdjde-registering their presence
in sites (commonly by depositing free channel-ends thrauigich they may be contacted),
using environmental information (held in the sites) to mdkeisions as they go and, possi-

C.G. Ritson and P.H. Welch / Process-Oriented Complex Bgdtéodelling 251

bly, modifying some environmental factors. An agent onlgaeto hold the channel-end of
its current site and, when relevant, the next site it wisbeanter. For all this the concept of
channel-end mobility [12], a feature o€cam-mtbased on items from the-calculus [13], is
essential.

Figure 1 shows a one-dimensional world where each site liasaonly to the neighbour
immediately to its right. In this world, agents can only mavene direction. The arrows with
circles on their bases represent client-server relatjpoisi(ing to the server). The client-ends
of these connections asharedbetween other sites and agents (shown by the arrows with
solid disc bases). Recall that these connections do prowilevay communications.

1.4. Barriers and Phases

Agents usearriers [14,15] to coordinate access to the sites into time-disfimases An
occam-Tt BARRIER IS (almost) the same as a multiway synchronisation evenSR:@ll en-
rolled processes must reach (synchronise upon) the barragder forall of them to pass.
The resulting phases ensure that they maintain a consigeamtof their environment, and
keep to the same simulation step rate. To prevent agentsngeie world while it is in flux,
at least two phases are required:

discovery: where agents observe the world and make decisions;
modify: where agents change the world by implenting those deciggags by moving
and/or updating environmental parameters).

The basic agent logic is:

WHILE alive
SEQ
SYNC discovery
.. observe my neighbourhood
SYNC modify
.. change my neighbourhood

wherediscovery andmodify are the coordinating barriers.
1.5. Site Occupancy and Agent Movement

In a typical simulation, only one agent will be allowed to opg a given site at any point
in time. Within our architecture, sites enforce this coaistt. If two agents attempt to enter
a site in the same simulation cycle, the decision can bedefhaince (and the first agent to
arrive enters), or made using an election algorithm ltbstcandidate is picked). In the case
of an election algorithm, the modify phase should be sulddal:

first modify sub-phaseagents request to enter the site providing some sort of danogli
information (e.g. mass, aggressiveness, or unigpiteWWhen the site receives a new
candidate, it compares it to the exiting one and overwrhiasit the new candidate is
better.

second modify sub-phaseail agents query the site(s) they attempted to enter agskn, a
ing whowor? On receiving the first of these queries, the site instalsutrentbest
candidate as the new occupier and passes those detailsdotiekdsker and to any
subsequent queries.

However, an optimisation can be made by including the fivetify sub-phase in the
discoveryphase! Only offers to move are made — no world state changstést@ble by the
agents in this phase. The secanddifysub-phase simply goes into theodifyphase. This
optimisation saves a whole barrier synchronisation andwmgey it (section 2.5).

252 C.G. Ritson and P.H. Welch / Process-Oriented Complex Bgdtéodelling
1.6. Agent-Agent Interaction

Some agents in the same locality may need to communicateadh other. To enable this,
they deposit in their current site the client-end of a chaboedle that they will service.
This client-end will be visible to other agents (observiranfi a neighbouring site). However,
agents must take care how they communicate with each otloeder to avoid client-server
cycles and deadlock. A simple way to achieve this is to commach agent from at least
two sub-processes: a server to deal with inter-agent tcéinsa and a client to deal with site
processes and initiate inter-agent calls.

| ' " agent |

[" Agent

O—| Server <—+ Client +—|—>O—i> Server <—+ Client ||

Site

Figure2. Agentsare composed from client and server sub-procespesitent client-server loops and maintain
deadlock freedom.

In Figure 2, the agergerverprocess manages agent state: its clients areliet pro-
cesses of its own and other agents. The agbent process drives all communication be-
tween the agent and the rest of its environment (the sitesvvieh it roams, other agents in
the neighbourhood and higher level agents to which it repedection 1.7). Technically, it
would be safe for the ageserveralso to communicate with the sites.

1.7. Layers of Agents

So far, agents have occupied a single site. Complex agegta(elood clot) may grow larger
than the region represented by a single site and would nesplaio many, registering with
all it occupies. This may be done from a single agent proasaljove) or by composing it
from many sub-processes (odkent part per site). We view the latter approach as building
up asuper-agenfwith more complex behaviour) from many lower level agemts$t{ simpler
behaviour and responsibilities). It introduces a thircelagf processes.

Super-agent

O—|—> Server |

Agent | Client 1 Client 2 |

Site Site Site

Figure3. Super-agents as a layered composition of processes.

C.G. Ritson and P.H. Welch / Process-Oriented Complex Bgdtéodelling 253

In figure 3, clients 1 and 2 share a higher level server prote¢ding information from
both that enables them to act in a coordinated manner. Agensgde the super-agent just
see a single server off a single agent. Such sharing of highelrservers allows us to create
groups of arbitrarily large coordinated agents. The apgr@an be continued hierarchically
to create ever more complex groups, while keeping the cortplef each process manage-
able — see figure 4. Note that some processes are pure seheesstés and mega-agents),
some are pure clients (the lowest level agents) and someearers that sometimes act as
clients to fulfil their promised service (the super-agerti®te that there are no client-server
cycles and that the pure clients (the lowest level agenésiher initiators of all activity.

Mega-agent

Super-agent Super-agent

Agent Agent Agent Agent

Figured. A hierarchy can be constructed among agents to give inergigsgiomplex group behaviours.

2. Human Blood Clotting Simulation

We have introduced the principle components of the sinaradirchitecture: a hierarchical
client-server network of sites, agents and super-agengsndw look at how this has been
applied to simulate the clotting of platelets in the humasollstream [8].

Haemostasis is the response to blood vessel damage, whaegblets are stimulated
to becomestickyand aggregate to form blood clots that seal small woundsyreteg blood
loss and allowing healing. Platelets are non-living agpnésent in certain concentrations in
blood; they are continually formed in bone marrow and havel<ie of around 10 days.
Normally, they are inactive. They are triggered into beaugrsticky by a complex range of
chemical stimuli, moderated by a similarly complex rangentiibitors to prevent a lethal
chain reaction. When sticky, they combine with each othed @roteins like fibrin) to form
physically entangled clots. Summaries can be found in [A,&8], with extensive details
in [19].

The work present in this paper employs a highly simplified elad haemostasis. We
model the smooth and sticky states of platelets, with ttemmstriggered by encountering a
sufficient amount of a single chemickctor released by a simulated wound to the blood
vessel wall. We model no inhibition of clotting, instead @istng only on the initial reaction
to a wound, and relying on a sufficient rate of blood flow to preva chain reaction until it
Is observed.

Clots form when sticky platelets bump together and, with satagree of probability,
become permanently entangled. The velocity of an indiidloed decreases with respect to
the rate of blood flow as its size increases. We are not modedkiher factors for the clotting
material (such as fibrin). Nevertheless, even with this genple model, we have reached the
stage where emergent behaviours (the formation of bloas ellod the sealing of wounds)
are observed and simple experiments are possible that bigveific interest.

254 C.G. Ritson and P.H. Welch / Process-Oriented Complex Bgdtéodelling
2.1. Sites

Sites define the space of the simulated environment. Owr @itearranged into cubic three-
dimensional space (giving each site 26 neighbours). Sitepwae server processes, respond-
ing to agent (client) offers of, or requests for, informatid@hey operate independently, en-
gaging in no barrier synchronisations.

Interacting with the sites, the lowest level agents are dlaateletsand chemicafac-
tors (which, when accumulated in the sites above a certain tbfeésbhan switch passing
platelets into theirsticky state). Blood clots are super-agents, composed of mank-stuc
together platelets.

The sites allow one platelet to be resident at a time and atarequerp number, stick-
iness, size (of the blood clot, if any, of which it is a partdamansaction channel-end (for
later agent-agent communications). Sites use the (clo¢) and uniqueb to pick the best
candidate during the entry elections described in section 1

In addition to platelet/clot information, the sites alsorsta clotting chemical factor
level (obtained from passing factor processes), a uniovértdicating the direction of blood
flow) and ablockingflag (indicating whether the site is part of the blood vessall w in
which case agents are denied entry).

Although using agents to simulate the wall would also be ipbsswve choose to imple-
ment it as a feature of space to save the memory overhead ioighaore agents (with very
trivial behaviour).

Finally, each site has access to/axel (a byte from a shared 3D-array), which it is
responsible for maintaining. Whenever the site changespiiputes a transfer function over
its state to set this voxel. The voxel itself is used to vimgathe simulation via volume
rendering techniques.

2.2. Platelets (Agents)

Our simulation agents model individual platelets in theobloAs in figures 3 and 4, platelets
are pure clients and do not communicate directly with eabkroHowever, they are clients
to their clot super-agent and it is this that keeps them twge® platelet may be in one of
two states:

non-sticky: the platelet queries its local site and reports the blood-ficection and
clotting factor level to its super-agent. It then initiatggy movement as instructed by
the super-agent. The clot’s size and uniguare used to register presence in the sites.

sticky: in addition to the above non-sticky behaviour, the plateéstrches neighbouring
sites for other sticky platelets, and passes their detaits super-agent.

Platelets, along with the chemical factor processes (ge&i3), move and update their
environment. Together with the processes generating timehthee processes controlling vi-
sualisation, they are enrolled and synchronise onlibeveryandmodifybarriers — dividing
the timeline into those respective phases (sections 1.2 &nt).

Note: for programming simplicityall platelets in our current model have a clot process
— even when they are not sticky or part of any clot. We may oggrthose clot processes
away later, introducing them only when a platelet becomie&ystMost platelets in most
simulations will not be sticky!

2.3. Clots (Super-agents)

Clots coordinate groups of platelets. They accumulate tbhedsflow vectors from their
platelets’ sites and make a decision on the direction of rm@re. That decision also depends
on the size of clots, with larger clots moving more slowlyeylalso change platelets from

C.G. Ritson and P.H. Welch / Process-Oriented Complex Bgdtéodelling 255

non-sticky to sticky if sufficient levels of clotting factare encountered (these accumulate
over many simulation steps).

When two or more clots encounter each other, if they contiéckysplatelets theynay
become stuck together and merge. One of the clots takes swip&r-agent for all sets of
platelets in the bump group — the other clots terminate.

In [15], a clotting model in a one-dimensional blood streaas\presented (as an illustra-
tion of mobile channels and barriers). In that system, degidhich clot process takes over
is simple. Only two clots can ever be involved in a collisian arbitrarilly, the one further
upstream wins.

Stepping this model up to two dimensions, multiway colls@re possible since clots
can be shaped with many leading edges in the direction of meme— for example, an “E”-
shaped clot moving rightwards. Furthermore, those maltpllisions may be with just a sin-
gle or many other clots. Fortunately, stepping this up teg¢hdimensions does not introduce
any further difficulties.

To resolve the decision as to which clot survives the caltisianotherelectiontakes
place involving direct communication between the clot stggents. This is outside the
client-server architecture shown in figure 3 (for whose oeasy this election is deemed to
be a bounded internal computation). The clot processes emgstge in nothing else during
this election and that must terminate without deadlock.sBemg about this can then be
independent from reasoning about all other synchronisaiiothe system.

The trick is to order all the communications in a sequencedtaarties know about in
advance. Each clot has amnumber which is registered in all sites currently occupigd®
constituent platelets. Each clot has had reported back iy its platelets, the clatps of all
clots in the collision.

The platelets also place the client-end of a server chaarikeéir clot in the site they are
occupying. They report to their clot the client-ends of thigeo clots in the collision. Thus,
each clot now has communication channels to all the othés giats collision.

High number clots now initiate communication to low numblets. The lowest num-
bered clot is the winner and communicates back the eleatgult; with communication now
from low number clots to high. The choice tHatv numbered clots should win was not ar-
bitrary. Clots are introduced into the world with increasim numbers, so having low num-
ber clots win means that low number clots will tend to amaasefgts. In turn, this reduces
the number of times those platelets need to change supet-aiger collision. Although our
algorithm for ordering communication (not fully outlineere) has yet to undergo formal
proof, it has so far in practice proven reliable.

Platelets communicate with their clot using the sharedhtisd of a server bundle.
By keeping track of the number of platelet processes it ¢osta clot knows how many
communications to expect in each phase (and, so, does motdbe enrolled in the barriers
used by the platelets to define those phases). See sectidor 2Z1iore details of clot and
platelet communications.

2.4. Factors (Agents)

The second and final type of agent in our simulation is onerttaatels the chemical factors
released into the blood by a wounded (damaged) blood ve&isek they move and modify
their environment (the sites), they must engage on the sisoeveryandmodifybarriers as
the platelets.

Factors are launched (forked) into the simulation with dtiaihvector pointing away
from the wound and into the blood vessel. Every simulati@p sthe factor integrates a
proportion of its current site’s blood flow vector with its owector and uses the result to
determine its next move. The effect is cumulative so thantadly the factor is drawn along

256 C.G. Ritson and P.H. Welch / Process-Oriented Complex Bgdtéodelling

with the blood flow. At each site it enters, the factor ince=athe factor strength field, and
modifies the site’s blood flow vector to point back to the wouhke second of these two
actions simulates both the slight pressure drop from an epmmd and other biological
mechanisms which draw platelets to open wounds.

Finally, it should be noted that factors are not considecethke up any space — being
tiny molecules as opposed to full cells. Hence, many arevalibto occupy individual sites.

2.5. Simulation Logic

To provide more detail, here is some pseudo-code (looseslgdanoccam-1t[1,2]) for the
platelet and clot processes.

2.5.1. Platelet Process

Initially, a platelet is attached to its launch site, is méicky, has a clot process to which
only it belongs and has no knowledge of its neighbourhooddfwh assumes is empty of
platelets/clots). Platelets decide whether they want teenio thediscoveryphase; however,
the movement is election based (section 1.5), and the rektiie election is not queried
until themodifyphase. This means that although movement offers are matdedistovery
phase, actual movement does not happen untittbdifyphase.

The“channels” site, new.site andclot/clot.b, used (illegally) in both directions be-
low, representHARED client ends of channel bundles containing request and &Eynnels
(flowing in opposite directions and carrying rich protogoFor further simplicity, the neces-
sarycLAIM operations have also been omitted. They connect, respgtio the current and
(possible) futuresitelocations of the platelet and tloéot process of which it forms a part.

SEQ

WHILE still in the modelled blood vessel
SEQ

SYNC discovery -- all platelets and factors wait here for each other
site ! ask for local chemical factor level and motion vector

site 7 receive above information
clot ! factor.vector.data; forward above information

IF
sticky
SEQ
site ! getclot presence on neighbour sites (in directions thaevpeeviously empty)
site 7 receive above information
clot ! forward information only on clots different to our own (ian clot collisions)
TRUE
SKIP

-- clot decides either on transition to sticky state or mergdumped clots

clot.b 7 CASE

update; clot; clot.b -- our clot has bumped and merged with others

SKIP -- we may now belong to a different clot process
become.sticky

sticky := TRUE -- accumulated chemical factors over threshold
no.change

SKIP

-- clot decides which way, if any, to try and move

C.G. Ritson and P.H. Welch / Process-Oriented Complex Bgdtéodelling 257

clot ? CASE

no.move
SYNC modify

move,; target
SEQ
site ! get.neighbour; target
site 7 new.site
new.site ! enter; clot

SYNC modify

new.site ! did.we.enter; clot

empty phase for us, in this case

get the channel end of the new site
offer to enter new site, giving our clot reference
wait for all other offers to be made

ask if we were successful

new.site 7 CASE

yes
SEQ
clot ! ok -- report ability to move
clot.b 7 CASE
ok -- all platelets in clot can move
SEQ
site ! leave -- leave present site
site := new.site -- commit to new site
fail
new.site ! leave -- give up attempted move
no
SEQ
clot ! fail -- report failure to move
clot.b 7 CASE fail -- clot cannot move as this platelet failed
SEQ -- we have exited the modelled region of space
SYNC discovery -- must get into the right phase for last report

clot ! terminated

2.5.2. Clot Process

Initially, a clot is notsticky and starts with a platelet count.f1atelets) of 1. A clot runs
for as long as it has platelets. It does not need to engage titboveryandmodifybarriers,
deducing those phases from the messages received fronmifsoo@nt platelets. At the start
of each phase, a clot igicky if and only ifall its component platelets aseicky.
The“channels” piatelets/platelets.b used (illegally) in both directions, represent the

server ends of two channel bundles containing request ahdaleannels (flowing in opposite
directions and protocol rich). They service communicaifmom and to all its component
platelets (and are the opposite ends todhe/c10t . channels shared by those platelets).

WHILE n.platelets > O
SEQ

-- nothing will happen till the discovery phase starts
-- we just wait for the reports from our platelets to arrive

SEQ i = 0 FOR n.platelets
platelets 7 CASE
factor.vector.data; local chemical factor level and motion vector
. accumulate chemical factor level and motion vector
terminated
n.platelets := n.platelets - 1

258 C.G. Ritson and P.H. Welch / Process-Oriented Complex Bgdtéodelling

IF
sticky
SEQ
SEQ i = 0 FOR n.platelets
platelets 7 report on any bumped clots

IF
sufficiently hard collision anywhere
SEQ
. run clotting election to decide which clot takes overiterger
SEQ i = 0 FOR n.platelets
platelets.b ! update; winner; winner.b
IF
this.clot = winner
. update number of platelets to new size of clot
TRUE
n.platelets := 0 -- i.e. terminate
TRUE

SEQ i = 0 FOR n.platelets
platelets.b ! no.change

accumulated.chemical.factor > sticky.trigger.theshold
SEQ
sticky := TRUE
SEQ i = 0 FOR n.platelets
platelets.b ! become.sticky

TRUE
SEQ i = 0 FOR n.platelets
platelets.b ! no.change

target := pick.best.move.if.any (n.platelets, motion.vector)
IF
target = no.move
SEQ

SEQ i = 0 FOR n.platelets
platelets ! no.move
-- platelets synchronise on modify barrier

TRUE
SEQ
SEQ i = 0 FOR n.platelets
platelets ! move; target
-- platelets synchronise on modify barrier

all.confirm := TRUE
SEQ i = 0 FOR n.platelets
platelets 7 CASE
ok
SKIP
fail
all.confirm := FALSE
IF
all.confirm
SEQ i = 0 FOR n.platelets
platelets.b ! ok
TRUE
SEQ i = 0 FOR n.platelets
platelets.b ! fail

C.G. Ritson and P.H. Welch / Process-Oriented Complex Bgdtéodelling 259

2.6. Spatial Initialisation

The simulated environment must be initialised before jpgtdeare introduced. It needs to
contain some form of bounding structure to represent théswadlthe blood vessel and the
vectors in the sites must direct platelets along the diwaatf blood flow.

Outside blood vessel vectors
direct platelets out of simulated

Blood vessel wall. Inside blood vessel vectors
direct platelets along it.

y ! / Gap / 2
, Platelet Flow min(Y,2) - Gap
Gap / 2
z i X]

Figure5. Layout of the simulated space in relation to blood vessel.

The blood vessel wall is placed so that it runs parallel toxis i\ simulated space —
the X-axis in our simulations (see figure 5). Our simulatezbdlvessel is simple: a cylinder
with wall thickness of approximately two sites. The wall isyalated by setting the sites to
which it belongs tdlocking

Force vectors inside the blood vessel are initialised sbttiee is a 55%chance of
moving forward along the blood vessel, an 6% chance of molafigor right, and an 8%
chance of moving up or down. A given site vector can only pmirine direction per axis, SO
the vectors point either left or right, and either up or doeug, left and down. The directions
are select randomly per site, with an even distribution ketweach. Changing the initialisa-
tion of these vectors can give subtle changes in simulagtabour — something left largely
unexplored at this time.

The vectors outside the blood vessels are programmed topled@lets to the edges of
the simulated space and beyond. This enhances the bloodftesswhen the vessel wall is
broken. If this were not done, platelets would continue glotuch the same path just outside
the blood vessel.

2.7. Optimisations

A few optimisations to our implementation were made to inwprperformance and memory
usage.

Instead of giving each site an array of client-ends to nedging, a single global array
was used. This array is shared by all sites and significaptlyeges memory requirement.
This is safe as this connectivity information is static — we @aot dealing withwvorm-holes
and dynamic space topologies yettcam-1t does not yet have a language mechanism to
enforce this read-only behaviour (of the connectivity) @ngile time; but manual checking
of our code is simple and deemed sufficient for our purposes he

For performance enhancement, our implementation was mesigo that platelets
(agents) need only query their current site to discover tifte ®f their local neighbourhood.
This is accomplished in two stages. Firstly, site state ggtéaced into an array shared by all
sites. This allows sites to retrieve data from their neighb@n behalf of an agent just by ac-
cessing (shared) memory. This is safe in our simulationumeeagent query and modification

1These are experimental values (not reflecting any biology).

260 C.G. Ritson and P.H. Welch / Process-Oriented Complex Bgdtéodelling

are separated by barriers and individual updates to a sitafe are serialised through that
site’s server interface. Secondly, agents now query tleghioourhood through their current
site, passing it anobilearray of unit vectors and @obilerecord. The site copies from the
shared site state array the data for the specified vectarthatmobile memory, which it then
returns along with its own state. Use of mobile data passell éad forth is very efficient
and removes the need for dynamic memory allocation durimmabagent run-time.

Our final optimisations were to reduce the neighbourhoodcked by the agents. The
previous optimisation reduced an individual search maimipemory copies. As a first step,
search is limited to (the obvious) six directions from thea6ilable — although movementis
permitted in any direction. When a platelet is part of a cladhwther platelets, each platelet
remembers the relative position of other platelets disearound it and does not search
those directions again. Futhermore, if a platelet becormoegtetely surrounded by platelets
of the same clot, it terminates. For our simulation purppsely the outline of clots need be
maintained.

3. Support Processes

A small number of other processes complete the simulatidrpaovide interaction and (3D)
visualisation.

3.1. Platelet Generator

The platelet generator is a process that injects platetetiseaupstreamend of the blood
vessel. It is enrolled on thdiscoveryand modify barriers and restricts the injection (i.e.
forking) of platelets to thenodifyphase (so that each platelet starts correctly synchrgnised
waiting for thediscoverybarrier). The platelet generator is programmed with a tzdédan
be varied at runtime. This rate (together with the crossiseal area of the blood vessel)
determines platelet density in the bloodstream. It setsvedia velocity (slightly randomised
around an average of a 55% probability of movement).

At each simulation step, the number of platelets to be intced is added to a running
count; the truncated integer value of this count used tautatie the number of actual platelets
to be forked. For each new platelet, two random numbers arergeed: a Y and Z offset
from the centre of the blood vessel. So long as these lie mitie blood vessel, the platelet
is injected at that position.

3.2. Wound Process

The wound process allows a user to punch a hole in the bloaklesll. Thewound tool
is rendered as a sphere in the user interface and the useksatitee blood vessel with it. It
creates a hole where there is an intersection between tleeesphd the blood vessel walls.
To do this, it uses the position of the sphere and its radiaspbint lies within the sphere, the
corresponding site is tested to see if iblecking(i.e. part of the blood vessel wall). If so, it
is set tounblockingand four chemical factor processes are forked at its loe#tis a reaction
to the damage). The initial movement vector of each factocgss is initialised (with slight
randomised jitter) so that it travels into the blood vessel.

3.3. Drawing Process

The drawing process has the task of informing the user eterfvhen it is safe to render
the voxel volume. It does this by signaling the user intexfafter thediscoverybarrier and
before themodifybarrier. When the user interface finishes rendering theme|uhis process

C.G. Ritson and P.H. Welch / Process-Oriented Complex Bgdtéodelling 261

synchronises on thaodifybarrier. Using this sequence, the voxels are only rendenadgl
the stablediscoveryphase, and the user interface stays in step synchronisaitiothe sim-
ulation. Rendering of onlpne-in-nsimulation steps is implemented by a simple counter in
this process.

3.4. User Interface and Visualisation

Our simulation architecture is not tied to any specific forivisualisation or interface. We
have built simulations using 2D text and graphical intezigchowever, for our 3D blood
clotting simulations we choose to employ the open sourcealiisation Toolkit (VTK) from
Kitware [20]. Binding foreign language routines irdocam-ttis straightforward [21].

VTK is an open source library written in C++, with Python, Md and Java wrappers.
It has several hundred different classes and a selectiomavhgles illustrating their use.
However, the focus of this toolkit is on loading static camtigom files, not the visualisation
of realtime simulations (known asacking).

For our visualisations, VTK is employed asalume rendererThis means we can di-
rectly visualise what is in effect a 3D array of pixels. Imaity, thevtkvolumeTextureMapper2D
class is used, which turns slices of the 3D volume into 2Duted that are rendered using
OpenGL. This approach is much faster than ray tracing. Tauasfier functions map the byte
voxel data into colour and opacity before it is renderedhboty, and there is evidence of its
use in the field, modern 3D hardware could be programmed tbidartapping in real time,
reducing CPU load and improving rendering times.

Also provided by VTK is a wealth of 3D interaction tools. Inggtice this means that
VTK handles mouse input to manipulate the camera, and thecosgrollable sphere used to
project wounds onto the blood vessel. Input event handlersegistered so that interaction
events, including key strokes, are recorded in an ovengiting buffer from which the
occam-Ttuser interface process can access them.

4. Results and Further Work
4.1. Emergent Behaviour

Using the architecture and simple processes and behawdescsibed, we have been able to
achieve results surprisingly similar to those in the humaahybGiven theight concentration

of platelets (figure 6), wounds to our simulated blood vefsglires 7 and 8) triggers the
formation of clots (figure 9) that eventually formpéug covering the wound and preventing
further blood loss (figure 10). Too low a concentration areldiotting response is too weak
to let sufficiently large clots form. Too high a concentratend a clot forms too early, gets
stuck in the blood vesséleforethe wound and fails to seal it. The clot also gets bigger and
bigger until it completely blocks all blood flow — which carire too the good!

The concentration boundaries within which successfulisgalf a wound is observed
are artifacts of the current simulation model, i.e. they dbmecessarily correspond with the
biology. However, the fact that this region exists for ourdals gives us encouragement that
they are beginning to reflect some reality.

In the human blood stream, clotting stimulation (and intnaoi, which we have not yet
modelled but is certainly needed) involves many differdr@mical factors, cell types (there
are different types of platelet) and proteins (e.qg. fibreryg It is encouraging that our mod-
elling techniques have achieved some realistic resulis 8och a simple model.

The clotting response we observe from our model has beenesgid, but not explicitly
programmed. The platelets are not programmed to spot woamdisict accordingly. They
are programmed only to move with the flow of blood, becomegtan encountering certain

262 C.G. Ritson and P.H. Welch / Process-Oriented Complex Bgdtéodelling

Figure 6. Simulated blood vessel represented by the cylinder, detplatelets.

Figure7. Simulation viewed from different angle, with wound placerhiol on right.

levels of chemical and, then, clump together when they buRefining this so that greater
and greater levels of realism emerge should be possibledhrthe addition of processes
modelling different stimulators and inhibitors of the ¢iog reaction, along with different
platelet types and other participating agents. Becaudeeafdmpositional semantics of CSP
andoccam-Tt, such refinement will not intefere with existing behaviouarg/ays that surprise
— but should evolve to increase the stability, speed, acguaad safety of the platelets’
response to injury.

4.2. Performance

Our process oriented model implementedatam-1thas proved stable and scalable. Simu-
lations have been run with with more than 3,000,000 prosesseommodity desktop hard-
ware (P4, 3.0Ghz, 1GB RAM). Memory places a limit on the sizew simulations. How-
ever, as our site processes only become scheduled whetydinsolved in the simulation,
the available processing power only limits the number oaagents. Bloodstream platelet
densities of up to 2% (an upper limit in healthy humans) imptyan average of around
60,000 agents — actual numbers will be changing all the t®yeling each with an average
processing time of 2 microseconds (including barrier symgisation, channel communica-

C.G. Ritson and P.H. Welch / Process-Oriented Complex Bgdtéodelling 263

Figure8. Having placed a wound, platelets “fall” out of the blood vsand chemical factors can be visualised
by the darkened area.

Figure 9. Given time, chemical factors flow down the blood vessel anab(§ clots can be seen forming as
dark blobs.

tion and cache miss overheads) still enables around 8 sngatteps per second, which is
very useable.

Figure 11 shows performance for simulations on a world of £26x96x96 (2.3M+
sites). The different curves are for different levels oftglet concentration (0.5%, 1.0% and
2.0%). The x-axis shows simulation step numbgengrationy starting from an (unreal-
istic) bloodstream devoid of any platelets — but with theartgtg to arrive from upstream.
Performance does not stablise until the blood vessel igl filleh platelets, which takes 500
generations. This is as expected, given a volume 256 silesgth and with a roughly even
chance of any platelet moving forwards. At 0.5% plateletosortration (an average of ap-
proximately 5,000 agents), we are achieving around 13 sitiaul/steps a second. All these
results have visualisation disabled; in practice, mostroouity graphics hardware has diffi-
cult rendering simulations this size at rates greater tlfdinalnes per second. As the number
of agents doubles to 1.0%, and then 2.0%, performance degjtimearly. Again, this is ex-
pected, given that the computation load has doubled ana@team-Tt process management
overheads are independent of the number of processes baimaged.

264 C.G. Ritson and P.H. Welch / Process-Oriented Complex Bgdtéodelling

Figure 10. With sufficient time and a high enough platelet concentragi@lot forms over the wound.

For the simulations whose results are shown in Figure 1ldtelets and their associ-
ated clots are initialised sticky. This is the worst casel(anrealistic) scenario where clots
will form whenever two platelets collide. As expected, penfiance is lower than that in Fig-
ure 11, because the there are more agents. As clots formslinveydown. This means that
platelets leave the simulation at a lower rate than they ateriag and numbers rise. Even

then, performance rates stabilise given sufficient timethadelationship between the levels
of platelets is consistent.

256x96x96 n1 g100 non-sticky

20
|

p0.5
—e— pl.0
—6— p2.0

15

Steps/s

10

T T T T T
0 500 1000 1500 2000

Generations

Figure1l. 256x96x96 simulations with non-sticky platelets.

C.G. Ritson and P.H. Welch / Process-Oriented Complex Bgdtéodelling 265

256x96x96 n1 g100 sticky

p0.5
—e— pl.o
—e— p2.0

15

Steps/s
10

T T T T T
0 500 1000 1500 2000

Generations

Figure12. 256x96x96 simulations with sticky platelets.

4.3. Future Work

The next steps in our research are to expand and refine oulasioms. For the former, we
need to use either more powerful single machines or, moldgclusters of machines. The
later will be possible usinggny [22], an networking environment for tleecam-1t runtime
system. We have begun tesing a cluster-based implementdtioese simulation models and
initial results, not published here, are quite promising.

For refining the accuracy of the model, we would like to ackithe return of our simu-
lated blood vessel tomormalstate once blood loss through a wound has been stemmed. We
need to introduce factors that inhibit the production otHer clots andustexisting ones
(e.g. all those little ones that were washed away by the Isivedm before they could clump
to the wound). So long as the wound is open, chenical factotddicontinue to be released,
gradually lowering as the wound is closed. Inhibitor agevasld also reduce clotting factor
levels and correct blood flow vectors. The blood vessel wadl aeeds to be able to reform
under the protective clot. Eventually, with the wound hdatke clot would dissipate and the
factors that caused it would disappear.

Further refinement could be explored by integrating aspedather research, both phys-
ical and simulated, into the flow of platelets within the ldagiream [23]. In order to model
these properties we will need to introduce aspects of flurthdyics into our model, and al-
low our simulated clots to roll and sheer. By removing thedrigiovement constraints on
platelets within a clot and giving them a degree of individueedom, the introduction of
these new behaviours should be attainable. For examplegdipgaand appropriate vector
(changing with time) to each of the platelets within a clbe tlot as a whole could be made
to roll or tumble as it moves through the blood vessel.

Finally, we believe that the massively concurrent proaegsated architecture, outlined
in this paper for this simulation framework, can be appliederically to many (or most)
kinds of complex system modelling. We believe that the ideas mechanisms are natural,
easy to apply and reason about, maintainable through rediniefwhere the cost of change
is proportional to the size of that change, not the size ofttsem being changed) and can
be targetted efficiently to modern hardware platforms. Weéerothers to try.

266 C.G. Ritson and P.H. Welch / Process-Oriented Complex Bgdtéodelling
References

[1] P.H. Welch and F.R.M. Barnes. Communicating mobile psses: introducing occam-pi. In A.E. Abdal-
lah, C.B. Jones, and J.W. Sanders, editdbsYears of CSPvolume 3525 ol ecture Notes in Computer
Sciencepages 175-210. Springer Verlag, April 2005.

[2] The occam-pi programming language, June 2006. Avalabhttp://www.occam-pi.org/.

[3] S. Stepney, P.H. Welch, F.A.C. Pollack, J.C.P. Wood¢&KSchneider, H.E. Treharne, and A.L.C. Cav-
alcanti. TUNA: Theory Underpinning Nanotech Assemblema@tbility Study), January 2005. EPSRC
grant EP/C516966/1. Available fromttp://www.cs.york.ac.uk/nature/tuna/index.htm.

[4] P.H. Welch, F.R.M. Barnes, and F.A.C. Polack. CommutmgaComplex Systems. In Michael G.
Hinchey, editor,Proceedings of the 11th. IEEE International Conference agifeering of Complex
Computer Systems (ICECCS-200pages 107-117, Stanford, California, August 2006. IEEEBN:
0-7695-2530-X.

[5] S. Schneider, A. Cavalcanti, H. Treharne, and J. WooklcédcLayered Behavioural Model of Platelets.
In Michael G. Hinchey, editotCECCS-2006pages 98—-106, Stanford, California, August 2006. IEEE.

[6] S. Stepney, H.R. Turner, and F.A.C. Polack. EngineeBngergenc€Keynote Talk) In Michael G.
Hinchey, editor] CECCS-2006pages 89-97, Stanford, California, August 2006. IEEE.

[7] F. Polack, S. Stepney, H. Turner, P.H. Welch, and F.Ra®s. An Architecture for Modelling Emer-
gence in CA-Like Systems. In Mathieu S. Capcarrere, AlexeslFreitas, Peter J. Bentley, Colin G.
Johnson, and Jon Timmis, editoAglvances in Atrtificial Life, 8th European Conference onffitl Life
(ECAL 2005) volume 3630 ofLecture Notes in Computer Sciengeages 433442, Canterbury, UK,
September 2005. Springer. ISBN: 3-540-28848-1.

[8] C. Ritson and P.H.Welch. TUNA: 3D Blood Clotting, 200f:tps: //www.cs.kent . ac.uk/research/
groups/sys/wiki/3D_Blood_Clotting/.

[9] A.T. Sampson. TUNA Demos, January 2005. Availabléatps: //wuw.cs.kent.ac.uk/research/
groups/sys/wiki/TUNADemos/.

[10] P.H. Welch, G.R.R. Justo, and C.J. Willcock. HigheméleParadigms for Deadlock-Free High-
Performance Systems. In R. Grebe, J. Hektor, S.C. HiltoR.Mane, and P.H. Welch, editofsansputer
Applications and Systems '9&lume 2, pages 981-1004, Aachen, Germany, September|B®8Press,
Netherlands. ISBN 90-5199-140-1. See alsotp: //www.cs.kent.ac.uk/pubs/1993/279.

[11] J.M.R. Martin and P.H.Welch. A Design Strategy for Diea#t-free Concurrent Systemslransputer
Communications3(4):215-232, October 1996.

[12] F.R.M. Barnes and P.H. Welch. Prioritised dynamic caminating and mobile processd&E Proceed-
ings — Softwargl150(2):121-136, April 2003.

[13] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobliteocesses — parts | and Journal of Informa-
tion and Computationl00:1-77, 1992. Available as technical report: ECS-LBOS35/86, University of
Edinburgh, UK.

[14] F.R.M. Barnes, P.H. Welch, and A.T. Sampson. Barriarciyonisations for occam-pi. In Hamid R.
Arabnia, editorParallel and Distributed Processing Techniques and Agtians — 2005pages 173-179,
Las Vegas, Nevada, USA, June 2005. CSREA press. ISBN: 11%328-0.

[15] P.H. Welch and F.R.M. Barnes. Mobile Barriers for ocepixSemantics, Implementation and Application.
In J.F. Broenink, H.W. Roebbers, J.P.E. Sunter, P.H. Weddid, D.C. Wood, editorsCommunicating
Process Architectures 200%olume 63 ofConcurrent Systems Engineering Serigages 289-316. 10S
Press, September 2005. ISBN: 1-58603-561-4.

[16] Hemostatis. URLhttp://en.wikipedia.org/wiki/Haemostatis.

[17] Fibrin. URL:http://en.wikipedia.org/wiki/Fibrin.

[18] Disorders of Coagulation and Haemostasis. Availaltlehatp://www.surgical-tutor.org.uk/
default-home.htm?core/preop2/clotting.%htm.

[19] J. Griffin, S. Arif, and A. Mufti.Immunology and Haematology (Crash Course) 2nd Editiory. Mosby,
July 2003. ISBN: 0-7234-3292-9.

[20] W. Schroeder, K. Martin, and B. Lorensefhe Visualisation ToolKitKitware, 2002.

[21] D.J. Dimmich and C.L. Jacobsen. A Foreign Functiontfisiee Generator for occam-pi. In J.F. Broenink
et al., editorCommunicating Process Architectures 2008lume 63 ofConcurrent Systems Engineering
Seriespages 235-248. 10S Press, September 2005. ISBN: 1-588D3-5

[22] M. Schweigler and A.T. Sampson. pony - The occam-pi MekwEnvironment. InCommunicating
Process Architectures 2008msterdam, The Netherlands, September 2006. I0S Press.

[23] I.V. Pivkin, P.D. Richardson, and G. Karniadakis. Bibfiow velocity effects and role of activation
delay time on growth and form of platelet thromtroceedings of the National Academy of Science
103(46):17164-17169, October 2006.

