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Abstract 

We develop an unsupervised “dual-network” connectionist 
model of category learning in which rules gradually emerge 
from a standard Kohonen network. The architecture is 
based on the interaction of a statistical-learning (Kohonen) 
network and a competitive-learning rule network. The rules 
that emerge in the rule network are weightings of individual 
features according to their importance for categorisation. 
Once the combined system has learned a particular rule, it 
de-emphasizes those features that are not sufficient for 
categorisation, thus allowing correct classification of novel, 
but atypical, stimuli, for which a standard Kohonen 
network fails. We explain the principles and architectural 
details of the model and show how it works correctly for 
stimuli that are misclassified by a standard Kohonen 
network.  

Introduction 
The categorisation of objects on the basis of their visual 
attributes is a cognitive capacity fundamental to our 
survival. The mechanisms underlying categorisation 
behavior in humans have been the subject of much 
theoretical and empirical work, both in adults and infants. 
Human adults, as well as infants above the age of around 
a year, are able to categorise objects based not only on the 
statistical structure of categories of observed objects, but 
also by making use of rules derived from that structure. 
Rules have the intrinsic advantage of radically reducing 
cognitive load: if an object can be categorised by paying 
attention to only a few of its features, instead of a great 
many, cognitive resources can be freed up for other tasks.  

The ontological status of rules in a connectionist 
modeling framework has from the outset been a hotly 
debated topic (Seidenberg & McClelland, 1989; Pinker & 
Prince, 1988; Chalmers, 1990; Marcus et al., 1999; etc.). 
In this paper we have chosen a conciliatory point of view 
— namely, that rules do, indeed, have a distinct 
ontological status compared to purely statistical-learning 
mechanisms, but these rules, in general, must emerge 
from the “statistical” learning substrate. 

A number of current models of category learning 
incorporate both a module for statistical learning of 
category structure and a rule module. The former 
gradually learns the statistical distributions of the 
perceptual attributes of objects in the world and uses this 
knowledge to determine the category membership of 
newly encountered objects. The rule module, on the other 
hand, has built-in rules capable of categorising these same 
objects directly. These models currently include, notably, 
ATRIUM (Erickson & Kruschke, 1998) and COVIS 
(Ashby et al., 1998). This distinction between statistical 
learning and rule-based learning parallels the distinction 
between exemplar models (Nosofsky, 1988; Kruschke, 
1992; etc.) and prototype models (Rosch, 1978; Posner, 

1986; etc.) of categorisation, as well as the distinction 
between implicit and explicit (i.e., verbal) categorisation 
strategies (Reber, 1967; Ashby et al., 1998, etc.).  

It seems reasonable to assume that the acquisition of the 
rules underlying category structure should be possible 
through experience with stimuli from those categories. In 
other words, it should be possible to extract knowledge of 
the rule automatically from knowledge about the 
statistical distribution of the perceptual characteristics of 
items in each category. Current connectionist models of 
category learning that incorporate rule modules typically 
assume the a priori existence of these rules and model 
their application to the problem of object categorisation. 
These models do not, however, synthesize the rules 
themselves. For example, in ATRIUM (Erickson & 
Kruschke, 1998), the rule module contains an “off-the-
shelf” rule for category membership; the stimulus 
dimension on which the rule is based is hard-wired, and 
the network must learn which values along that dimension 
are associated with each category. Similarly, in COVIS 
(Ashby et al., 1998), several pre-existing rules are hard-
wired into the model’s rule component and learning of the 
rule consists of selecting between available rules to find 
the one most appropriate to the current category structure. 

 

Overview of the model 
 

In what follows we will present a connectionist model of 
unsupervised category learning. This model consists of 
two interacting networks: a “statistical” network that 
learns the distributions of perceptual properties of the 
stimuli in each category and a “rule” network that derives 
its rules by continually monitoring the statistical network. 

The statistical part of the network is a Kohonen network 
(Kohonen, 1982, 1993) and the rules emerge from a 
competitive network that monitors the Kohonen network. 
The Kohonen network self-organizes the inputs into a 
map in which representations of stimuli from the same 
category are clustered together. The competitive network 
monitors the Kohonen network as category learning 
proceeds and determines which input features are the most 
important in — in fact, sufficient for — determining 
category membership. This determination of a feature, or 
set of features, that is sufficient to determine category 
membership is what we mean by rule extraction. 

We have chosen to implement our Kohonen network in 
a neurobiologically plausible manner, using leaky 
integrators, similar to an implementation described by 
Kohonen (1993). We suggest that processing of this type 
could occur in visual cortex and that a plausible candidate 
for the site of the competitive-learning algorithm used to 
model rule extraction could be pre-frontal cortex. 

We will present a simulation that demonstrates the 
operation of the model. In particular, we will provide an 
example of an instance in which the statistical-learning 



 

component of the model (i.e., the Kohonen network) alone 
fails to generalise correctly from the learned category 
structure to a novel, atypical stimulus, whereas the 
combination of the statistical and rule-learning 
components of the model (i.e., the Kohonen and 
competitive learning networks, respectively) succeeds in 
correctly categorising the same stimulus. 

Extraction of a rule  
In the everyday categorisation of most commonly 
encountered classes of objects, the classifier can exploit 
the fact that the items belonging to a given category are 
likely to share a number of visual attributes: birds possess 
feathers, wings and a beak; tables almost always have legs 
and a flat surface; trees have a trunk, as well as leaves (or 
needles) during summertime.  

A “rule” for category membership has traditionally 
been defined, in formal logic, as a necessary and sufficient 
condition — in this case, the presence of certain features 
in a particular combination — that unequivocally 
determines category membership. However, it has been 
recognised at least as far back as Wittgenstein (1951) that 
very few, if any, real-world categories have membership 
rules that meet this lofty standard. Therefore we can, in 
practice, use a “quasi-sufficient” condition for category 
membership as a “rule” for determining whether a given 
object is or is not a member of a real-world category. This 
simply means that, in general, the presence or absence of 
a particular feature (or set of features) is sufficient for 
determining category membership.  

Rules of this nature might include: animals with 
feathers or beaks are birds; animals with gills are fish; 
land animals that weigh more than 5 tons are elephants; 
animals with opposable thumbs are primates; and so on. 
And while it is true that opossums, koalas and giant 
pandas also have opposable thumbs, and that the rule: “If 
X has a beak, X is a bird” caused early 19th century 
zoologists to think that duck-billed platypus specimens 
were a hoax, these rules are generally reliable and, most 
importantly, can be extracted from the feature statistics of 
primates and birds. This is precisely what our model does: 
it identifies, for each category, the feature(s) whose 
presence is diagnostic of membership in that category.  

Further, it may well be that no single feature is 
sufficient for determining category membership, but a 
unique combination of features, each of which may be 
shared with other categories, will be sufficient to ensure 
correct category identification. For example, elephants 
live on land, as do lots of other animals, and weigh more 
than five tons, a property possessed by many species of 
whales. However, the combination of living on land AND 
weighing more than five tons is sufficient for correct 
category identification. Our model is also capable of 
extracting this type of conjunctive combination of features 
for category identification.  

We argue that the emergence of a rule of the above kind 
is accompanied by a decrease in attention to the non-
diagnostic features. And this is why a purely statistical 
approach to categorisation falls short: it has no ability to 
weight various features according to their importance to 
the categorisation task. The rule-network, on the other 
hand, constantly monitors the statistical network and 
provides a means of achieving that weighting. 

Our model is designed only to learn positive diagnostic 

rules, e.g. “if X has a beak, X is a bird”. One way to teach 
the system negative diagnostic rules, such as “if X is 
under 18 X can’t vote”, would simply be to define 
explicitly negative categories (in this case, “can’t vote”). 
One potentially more serious limitation is that the model 
can verify only the conditional statements (if p, then q), 
and not their contrapositive (if ~q, then ~p). In other 
words, the system will learn, “If it has trunk, it is an 
elephant”, but cannot check that “if it is not an elephant, it 
does not have a trunk”. Since, technically speaking, 
verifying the rule requires checking the validity not only 
of the conditional, but of its contrapositive, our system is 
not doing traditional rule-learning. However, in terms of 
the evolution of human cognition, the type of rule learned 
by the present system, however incomplete from the 
standpoint of Aristolean logic, would still have provided 
animals with a significant adaptive advantage over those 
lacking this mechanism. We therefore suggest that our 
mechanism is a plausible account of the way in which 
humans attain at least a subset of the rules they acquire. 

 

The importance of rules 
There is evidence that young infants perform 
categorisation of cats and dogs in a purely bottom-up 
manner, basing their category discrimination on the 
statistical distributions of the perceptual characteristics of 
the two categories (Mareschal, Quinn, & French, 2002; 
French, Mareschal, Mermillod, & Quinn, 2004). On the 
basis of this research, it seems likely that, under the age of 
3-4 months, infants do not learn rules underlying category 
structure. Rather, the data seem to indicate that they 
perform categorisation using a strategy that does not 
differentiate between features that are simply correlated 
with category membership and features whose presence or 
absence can be used to diagnose category membership.  

There are at least two ways in which such a strategy 
might be disadvantageous. First, attending to all 
perceptual features of stimuli, when the application of a 
simple rule would suffice for categorization, squanders 
cognitive resources. Second, and more importantly, a 
purely bottom-up strategy can lead to misclassification of 
certain types of novel stimuli.  

Consider a person who wishes to sort shirts according 
to brand. Many features can be used for this sorting, 
including the quality of the fabric, the quality of the 
sewing, the number and type of buttons, the presence/ 
absence of a collar, etc. But one day he realizes that if 
there is a little green crocodile anywhere on the shirt, it is 
a “Lacoste” shirt. Henceforth, he can identify Lacoste 
shirts without paying any attention whatsoever to the 
other features. He has extracted a rule: IF green crocodile, 
THEN Lacoste. One day he sees a shirt that unlike any he 
has seen before: it is made of leather, has pearl buttons 
and leaves the wearer’s navel exposed. But it has a little 
green crocodile over the left breast. His rule allows him to 
ignore the other features of the shirt and conclude, albeit 
with some surprise, that it is a Lacoste shirt. 

In short, to go from attending to all features to attending 
to only a small subset of category-specific diagnostic 
features, one must learn which features to ignore. During 
the acquisition of the rule, features associated with several 
categories must “drop out” of the representation in the 



 

rule network. This elimination of features as diagnostic 
for categorisation signals the emergence of a rule. 

Operation of the model 
The essence of the present model is the tandem operation 
of a statistical-learning (Kohonen) network and a rule-
extracting network (driven by competitive learning) that 
continuously monitors the state of the statistical-learning 
network. The overarching principle of the rule-extracting 
network is as follows. If a particular input (i.e., feature) 
unit in the Kohonen network has a high-valued weight 
connecting it to only one category output node, and small 
weights to all other category output nodes, then that 
feature is a defining feature for that category, one which 
we will refer to as a “diagnostic” feature. For example, in 
Figure 1 the weight between beak and bird will become 
large during training, while the weights between beak and 
any other category node will remain small (because only 
birds have beaks).  

The rule-network consists of a copy of the original 
Kohonen network in which competition between the 
weights emanating from each feature node determines 
which feature nodes are important for categorisation. 
When a particular feature (e.g., eyes in Fig. 1) is shared by 
a number of categories, the competitive-learning process 
pushes down the values of all of the weights emanating 
from the eyes feature unit in the rule network, so that eyes 
is not a diagnostic feature for any particular category. 

The category response of the network to a given novel 
stimulus is a linear combination of the output of the 
statistical (Kohonen) network and the rule network. 
 
 
 
 
 
 
 
 
 
 

Figure 1. Any animal for which the first feature 
(beak) is active is a bird. In the Kohonen weights, the 
weight between beak and bird is large, while the 
beak-fish, beak-insect, beak-automobile, etc. weights 
are small. This is what the rule-network notices. 

 

Implementation details of the model 
The Kohonen network used in our model is a two-layered 
network with perceptual feature nodes on input and 
category nodes on output. During learning, neighbouring 
regions of the output layer are trained to represent stimuli 
with similar perceptual features, so that representations of 
similar stimuli cluster together. Thus, if stimuli within a 
category share many perceptual features, they are 
“classified” by the Kohonen network as belonging to the 
same category. The network is implemented using leaky 
integrators and interneurons to provide neurobiological 
plausibility, since it has been argued that this type of 
network exists in visual cortex Kohonen (1993). 
 
Statistical-Learning Network  
Kohonen networks are designed to model the type of 

neural processing that occurs in mammalian cortex. The 
Kohonen network in the present model comprises a one-
dimensional array of processing units that receives 
stimulus inputs from the input layer and implements 
lateral excitation and inhibition between neighbouring 
units (Figure 2). The weights from input units (feature 
units) to output units (or category units) are trained by the 
successive presentation of a number of stimulus inputs; 
units’ weights are incrementally adapted on each 
presentation via a Hebb-type learning rule. This results in 
an automatic mapping of stimulus inputs onto a set of 
representations that possess the same topological order as 
the stimuli, that is, similar stimuli are represented in 
neighbouring locations on the output layer.  
 

 
 

Figure 2: Statistical Learning Component of the 
Model. For clarity, only 6 units are shown in the 
input layer; there are 10 input units in the model. All 
output units are coupled with an interneuron and have 
lateral connections to all other output nodes. All input 
units are connected to all output units. 
 
We have attempted to implement the Kohonen network 

of the present model in a biologically plausible manner; 
many of the neuron-like properties are illustrated in 
Figure 2. Lateral interactions are implemented directly 
between individual output units. Each unit in the output 
layer receives input from the input layer, from an 
inhibitory interneuron, and from other collateral units. The 
activations of units in the output layer are then calculated 
iteratively and simultaneously, so that each unit’s 
activation evolves according to the input it receives from 
other units, whose activations are simultaneously being 
adjusted. Both output units and interneurons are subject to 
a degree of activation leakage. This was implemented as a 
set of non-linear differential equations similar to those 
described in Kohonen (1993). 
  
Rule Network  
While other algorithms have been developed (e.g., 
Thomas, van Hulle, & Vogels, 2000) for determining the 
relative importance of the weights in a Kohonen network, 
one of the aims of our model was to implement the rule-
network with structures and mechanisms that could 
conceivably arise in the cortex. Thus, the overarching idea 
of this network — comparison of (by means of 
competition between) the synaptic weights in a copy of 
the statistical-learning network — was implemented by 
introducing a set of rule units whose activations could be 
used to implement this competition (see Figure 3). The 
rule network consists of a copy of the weights of the 
Kohonen network that lead, not to the category nodes of 
the Kohonen network, but to a set of rule units. (We 
acknowledge that there is currently little biological 
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evidence suggesting a precise mechanism by which this 
copy might be made). The copied weights and rule units 
are organized so that for each input feature of the 
Kohonen network there is a “column” of nodes in the rule 
network, i.e. one node for each Kohonen weight 
emanating from that feature. The competition between 
weights emanating from a feature of the Kohonen network 
is thereafter implemented as competition between the 
activation levels of units in the corresponding column of 
nodes in the rule network.  

The detailed operation of the rule network is illustrated 
in Figures 3 and 4. In Figure 3, the manner in which the 
rule network monitors the Kohonen network is shown. 
Each weight emanating from an input feature of the 
Kohonen network to the Category (output) layer 
corresponds to a node in a column of “rule units” in the 
rule network. This column can be said to contain the set of 
rules pertaining to that input feature, e.g. “if feature F, 
then Category Y”. As shown in Figure 3, competition is 
implemented among units in a given column via lateral 
weights. The activity of the rule units allows the rule 
network to determine which weights of the Kohonen 
network – and therefore which of the input features – are 
influential in activating the various category units.  

Crucially, the mechanism of competition within each 
column is what causes activation levels of non-diagnostic 
features to be depressed in the rule network. Assume that 
a given feature in the Kohonen network sends high-valued 
weights to numerous category nodes (e.g., the eyes feature 
node in Figure 1). This will result in a high level of 
activation of the numerous nodes in the column of rule 
nodes associated with that feature in the rule network. 
Mutual inhibition within this column will then depress the 
activations of all of the nodes in that feature column. The 
result will be that this feature will not be perceived by the 
rule network as diagnostic for any particular category. 

The competition between the activated rule units is 
implemented on every trial, thus the system gradually 
determines which feature(s) are diagnostic for 
membership of each category. This diagnostic information 
must not only be averaged over trials and stored, but must 
also be available for retrieval by the network. Both of 
these aims are achieved by developing a set of “rule 
weights” that link the original feature inputs of the 
Kohonen network to the rule units. The rule network’s 
stored knowledge can thus be retrieved by passing the 
input activation through these weights. The input features 
now feed into two networks: the statistical Kohonen 
network, as before, and the rule network. 

The connectivity shown in Figure 3 (the copy of the 
Kohonen weights providing input to the rule units) is used 
to determine the activity of the rule units during training. 
The connectivity shown in Figure 4 – the set of ‘rule 
weights’ – is used to determine the activity of the rule 
units after training, and hence to determine the output of 
the rule extracting component of the model when 
confronted with novel stimuli. The rule weights are 
learned by a Hebb-type algorithm that depends on both 
the input unit activations and the rule unit activations.  

The competition for activation within each column of 
rule units is implemented by each rule unit having a 
recurrent, excitatory link to itself and inhibitory links to 

all other units in the column. The activation of rule units 
is determined first by passing activation from input units 
to rule units, then by iterating the activations of all rule 
units in the column through the mutually inhibitory lateral 
weights for a fixed number of cycles. 

 

Figure 3: The statistical-learning component of the 
model is shown at the bottom of the figure and the 
rule-extracting network is shown above it. The two 
components share a set of input units. Note the 
arrangement of the rule units and the connections 
providing their input (the ‘copy’ of the Kohonen 
weights). These connections are employed in 
determining the activation of the rule units during 
training, and are instrumental in monitoring the 
‘knowledge’ in the Kohonen network. 

Figure 4: The “rule weights” of the rule network 
connect the feature units to the rule units. The rule 
weights are learned via a Hebbian process, which 
depends on the rule unit activations, which are 
determined by the connectivity shown in Figure 3. 

 

Input and output 
The model is trained with stimuli from three categories 

of objects. Many exemplars from each category are 
presented to the Kohonen network. Since, after training, 



 

each category becomes associated with a particular region 
of the Kohonen network output layer, any output unit in 
this region will be said to “represent” the associated 
category. (The units in the center of the region are, in 
general, better representatives of the category than those 
on the periphery of the region.) The model output can 
therefore be interpreted as a “choice of category”. 

During the test phase, the model is presented with a 
novel stimulus and we consider three different outputs 
from the system: the response of the statistical learning 
component alone, the response of the rule network alone, 
and the linear sum of the responses from both components 
of the model. For the response of the statistical learning 
component, we take the most active unit in the output 
layer of the Kohonen network. To determine the rule-
network response, we send the input stimulus activation 
through the rule weights and sum the activations of the 
rule units across the columns for each category output 
node, i.e., there is a row of rule units for each category 
output node. For the “combined” response, the activation 
of the output units of the Kohonen network is linearly 
combined with the activation values from the output 
nodes of the rule network. The greatest combined 
activation value determines the model’s response.  

Simulations 
Stimuli 
Stimuli were represented as an input vector with ten 
elements (or ‘features’). Each feature may be thought of 
as some real-valued property. All stimuli had two high-
valued elements (i.e., features that are present) and eight 
low-valued elements (i.e., features that are absent). These 
values differed for each stimuli, but, for example, 
Category A stimuli always had high values on features 7 
and 8 and low values elsewhere. Specifically, each high-

valued feature could take a pre-normalisation value in the 
range 0.6 to 1, while low-valued features varied between 0 
and 0.1. All stimuli were normalised. The stimuli were 
divided into three categories, A, B, and C, as shown in 
Figure 5. Categories A and B had an overlapping (and 
thus non diagnostic) feature: 8. Each category was defined 
by at least one sufficient feature.  

We trained the model on the three categories of stimuli 
and then tested it on a novel, but atypical stimulus. This 
test item was a stimulus that, because of the presence of a 
diagnostic feature (10), belonged to category C, but also 
had perceptual overlap with stimuli from categories A and 
B because of its (non diagnostic) feature (8). 
 

Method 
The model was trained by presenting 200 exemplars from 
each of the three categories. The weights of the Kohonen 
network and the rule network were updated on every 
stimulus presentation. After training, the combined 
network was presented with an exemplar from each of the 
three categories to ensure that it classified novel elements 
of each category correctly (it did). Then, to demonstrate 
that the network’s acquisition of rules actually made a 
difference in its classification behavior, we tested it on an 
“atypical” test stimulus. This was a stimulus that 
contained at least one diagnostic feature that meant that it 
belonged to a certain category, but also included other 
“distracter” features that were irrelevant for 
categorisation. The idea was that, once the network had 
learned the rule associating that diagnostic feature with a 
particular category, it would ignore the distracter 
feature(s) and produce a correct classification. On the 
other hand, the Kohonen network alone would be misled 
by the distracters and would misclassify the stimulus.  
 

Figure 5. The value of each element in the input vector is shown for a prototypical item from Categories A, B and C, and 
for the Test Stimulus. Stimulus input vectors are normalised. Note that feature 8 is shared by both Categories A and B 
and is thus not a diagnostic feature. The test stimulus includes one diagnostic feature (10) for Category C as well as
feature (8), which belongs to both Categories A and B.  

Figure 6. Left: Weight values of the Kohonen network trained on stimuli from categories A, B and C. Right: the rule 
network has discovered that feature 8 is far less relevant than features 3, 6, 7 and 10 for category determination
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Results 
As training progressed, exemplars from each of the three 
categories began to activate consistently the same region 
of the output layer of the Kohonen network. The diagrams 
in Figure 6 represent the weight values – from feature 
nodes to category nodes – of the Kohonen network (on the 
left) and the rule network (on the right). The pattern of 
weight values of the Kohonen network shows that 
Category A items (features 7 and 8 active) are represented 
by output units 5, 6 and 7), that Category B items 
(features 6 and 8 active) are represented by output units 3 
and 4; and Category C items (features 3 and 10 active) are 
represented by output units 1 and 2.  

Of paramount importance is what happens to feature 
node 8, a non diagnostic feature shared by items in both 
Categories A and B. In the Kohonen network, the weights 
produce — as they should — the activation of category 
units 3 through 8, the units corresponding to Categories A 
and B. But when we look at the column of weights for this 
feature in the rule network, we see that the weights are all 
low-valued. This has arisen because of the mutual 
inhibitory competition from the large number of strong 
feature-to-category weights associated with feature 8 in 
the Kohonen network. Feature 8 has effectively dropped 
out of consideration as a diagnostic feature. 

The novel test stimulus (Figure 5) has an active feature 
10 that makes it a Category C item and also has an active 
“distracter” feature 8. When this stimulus is presented to 
the system, the Kohonen network alone classifies it as 
belonging to Category A, while the rule network alone, as 
well as the combined rule-and-Kohonen network, classify 
it correctly as a Category C item. 

Conclusion 
We have presented a dual-network connectionist model of 
unsupervised categorisation using two interacting 
networks: a Kohonen network for extracting statistical 
information from the input and a competitive-learning 
network that extracts rule information from the Kohonen 
network. The addition of the rule network allows the 
system to correctly categorise novel, but unusual, items 
that the Kohonen network alone misclassifies. 

In addition, preliminary simulations indicate that the 
model is also able to perform supervised category 
learning, which leads to an interesting observation. While 
the model can perform categorisation with feedback for 
stimulus categories with no clustering in stimulus space 
(e.g. the separable but not clustered categories of Erickson 
and Kruschke 1998), it can only perform categorisation 
without feedback if the stimuli cluster naturally into 
categories. This pattern surely echoes human behaviour: 
in an unsupervised version of Erickson and Kruschke’s 
categorisation task, subjects would not have 
spontaneously categorised the stimuli according to the 
experimenter-imposed boundary. Category learning in a 
natural context generally proceeds with little or no 
feedback, but, happily, tends to involve categories that are 
perceptually clustered, at least for living things, making 
the unsupervised task much easier. This highlights a 
potentially fundamental difference between artificially 
constructed, supervised, categorisation tasks, in which 
categories are not clustered in stimulus space, and the type 

of category learning behaviour that is exhibited in a 
natural environment. 
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