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There is considerable current interest in neural modeling of the attentional blink
phenomenon. Two prominent models of this task are the Simultaneous Type Serial
Token (ST?) model and the Locus Coeruleus-Norepinephrine (LC-NE) model. The former of
these generates a broad spectrum of behavioral data, while the latter provides a
neurophysiologically detailed account. This paper explores the relationship between
these two approaches. Specifically, we consider the spectrum of empirical phenomena
that the two models generate, particularly emphasizing the need to generate a reciprocal
relationship between bottom-up trace strength and the blink bottleneck. Then we discuss
the implications of using ST? token mechanisms in the LC-NE setting.

© 2007 Elsevier B.V. All rights reserved.

1. Introduction

The attentional blink (AB) (Chun and Potter, 1995; Raymond et
al., 1992) is one of the most studied temporal attention tasks. It
is of particular interest since, firstly, it elucidates the length of
an attentional episode (Bowman and Wyble, 2007) and,
secondly, it has been shown to reflect a very late attentional
bottleneck (Luck et al., 1996; Rolke et al., 2001; Shapiro et al,,
1997a,b; Vogel et al., 1998). The latter of these makes it a
particularly interesting task for studying the nature of
conscious perception (Dehaene et al.,, 2006). Specifically,
targets that are missed during the blink are nonetheless
processed for sensory and semantic features (Luck et al., 1996;
Rolke et al., 2001; Shapiro et al., 1997a,b; Vogel et al., 1998).
Thus, it seems that blinked targets are extensively evaluated;
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however, they do not quite receive sufficient processing to
reach conscious awareness (Dehaene et al., 2006). Arguably
then, the AB isolates the essential aspects of conscious
perception; that is, the difference between missed and seen
T2s exactly reflects the additional processes that are required
to turn a rich preconscious representation into a conscious
percept (Dehaene et al., 2006). In a similar vein, the AB also
seems to be revealing with regard to the nature of working
memory (WM), viz, the blink can be argued to reflect the
essential processes that are required for an item to be encoded
into working memory (WM).

The majority of attentional blink (AB) research has been
behavioral in nature. However, there has been considerable
recent interest in (1) identifying neural correlates (Marois et
al., 2000; Martens et al., 2006; Nieuwenhuis et al., 2005b; Rolke
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et al., 2001; Vogel and Luck, 2002; Vogel et al., 1998) and (2)
developing neurally explicit computational explanations (Bat-
tye, 2003; Bowman and Wyble, 2007; Chartier et al., 2004;
Dehaene et al., 2003; Fragopanagos et al., 2005; Nieuwenhuis et
al.,, 2005b). Amongst these, the Simultaneous Type Serial
Token (ST?) (Bowman and Wyble, 2007) and the Locus
Coeruleus-Norepinephrine (LC-NE) (Nieuwenhuis et al.,
2005b) models are notable approaches, since the former
reproduces a broad spectrum of AB phenomena and the latter
ties into a concrete neurophysiological substrate. In a sense,
the ST? model works down from the behavioral data, while the
LC-NE model works up from the neurophysiology. Thus, an
important research question concerns how these two models
relate to one another. In particular, to what extent can the
neurophysiological mechanisms highlighted in the LC-NE
model be reconciled with the cognitive-level mechanisms
inherent in the ST? model? This is the issue that we explore in
this article.!

Although we will consider a number of empirical phenom-
ena, a particular focus will be on the robust finding that the AB
is attenuated when a blank is placed after the first target (T1)
(Chun and Potter, 1995). This is of particular significance since
itreflects a more general finding that the easier the T1 task, the
shallower the blink (Bowman and Wyble, 2007; Chun and
Potter, 1995; Jolicoeur, 1998; Wyble and Bowman, 2005). In
neural network terms, this phenomenon suggests that the
greater the T1 bottom-up trace strength, the smaller the AB.
Thatis, that there is a reciprocal relationship between bottom-
up trace strength and the AB bottleneck.

A similarity between the LG-NE and ST? approaches is that
they both assume attentional enhancements that are triggered
by detection of a salient stimulus (e.g. a target stimulus) and are
short-lived. In ST?, the enhancement is the transient attentional
enhancement (TAE), which is realized by a mechanism called
the blaster, while in the LG-NE model the enhancement arises
from the locus coeruleus itself. That said, the two enhance-
ments do have somewhat different purposes. ST?’s blaster aids
detection and WM encoding of weak items, while the LC is
assumed to have its affect on decision and response systems,
where it optimizes processing in multilayer decision systems
(Aston-Jones and Cohen, 2005). However, both approaches
assume that it is unavailability of this attentional resource
(TAE-blaster and LC respectively) that is the direct cause of the
blink. The mechanism that causes this unavailability is, though,
very different in the two cases. In ST?, the TAE-blaster is held
offline by ongoing Working Memory (WM) encoding. This
preserves the integrity of such encoding by preventing a second
item from corrupting the episodic integrity of the encoding of a
first item. In the LC-NE model, after firing, the LC enters an
intrinsic refractory period in which itis difficult to refire. Itis this
difference between the approaches that is at the heart of the
comparison we make in this article.

More specifically, we will argue that the previously men-
tioned reciprocal relationship between bottom-up trace
strength and the AB bottleneck suggests that unavailability

1 We concentrate on just two models here. However, Bowman
and Wyble (2007) present a detailed review of the full spectrum of
models.

of the attentional enhancement should, indeed, be tied to
working memory encoding. This is because more strongly
represented items would be encoded faster into WM, causing
the attentional enhancement to be offline for a shorter period,
thereby alleviating the blink. We will also highlight a neural
mechanism, which we call a gate-trace pair that ensures that
more strongly represented items are indeed encoded more
rapidly into WM.

We will begin (in Section 2) by introducing the AB and
highlighting what we consider to be the key behavioral
phenomena that computational models should replicate.
Then we review the ST? and LC-NE models in Section 3. We
follow this with an assessment of the two models in Section 4.
Then we explore the addition of an ST?-style gate-trace
mechanism to the LC-NE model in Section 5. Finally, we
discuss the implications of our work in Section 6.

2. The attentional blink
2.1. The task

The AB is commonly observed during Rapid Serial Visual
Presentation (RSVP) (e.g. Chun and Potter, 1995; Raymond et
al,, 1992), in which a sequence of items are presented at the
same spatial location with each rapidly replacing the
previous item; the rate of presentation typically being around
10 items per second (unless otherwise stated, we assume
such a presentation rate throughout the article). At such
speeds, items only yield fleeting mental representations and
targets within the sequence can be missed. The AB (Raymond
et al, 1992) can be observed in RSVP tasks in which two
targets are placed in the sequence. If the first target (T1) is
correctly reported, report of the second target (T2) is impaired
when it appears within 200 to 500 ms of the onset of the first
target.

In this paper, we focus on Chun and Potter’s (1995) blink
taskin which participants must report the identity of two letter
targets (T1 and T2) presented in a stream of digit distractors
(we call this the letters-in-digits task). This task can be argued to
yield a pure test of the blink, in the sense that there is no task
switch between the T1 and the T2 tasks, which has been
argued to be a potential confound (Chun and Potter, 2000).

2.2. The AB phenomena

We claim that the following are key AB phenomena that
computational models should reproduce.

. A basic blink curve with lag-1 sparing.

. Increased processing of T1+1 slot.

. Blink attenuation with T1+1 blank.

. Blink attenuation with T2+1 blank.

. Delayed consolidation for T2s seen during the blink.
. Spatial specificity of the lag-1 enhancement.

. T1-T2 costs at lag-1.

. Late stage bottleneck.

. Spreading the sparing.
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We discuss these phenomena in turn.
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2.2.1. The basic blink

A typical AB serial-position curve, arising from the letters-in-
digits task (Chun and Potter, 1995) is shown as the Basic Blink
condition in Fig. 3(b). Points to note are,

1. the blink is a 200 ms-500 ms (approx.) interval post T1
onset in which performance on T2, conditional on correct
report of T1 (i.e. T2|T1) is significantly reduced;

2. generally the blink has a sharper onset than offset; and

3. if T2 immediately follows T1 it is reported at baseline
levels, which is described as lag-1 sparing.

2.2.2. Increased processing of T1+1 slot

There is a good deal of evidence that the item (whether it be
a distractor or a target) immediately after the first target in a
dual target RSVP stream is particularly deeply processed. For
example, in a letter detection AB paradigm, Chua et al
(2001) found that a distractor immediately following a T1
primes a later T2 more than it would at other positions
relative to T1. This finding suggests that the T1 opens up a
short window of enhancement, which includes the following
distractor.

Furthermore, lag-1 sparing suggests increased processing
when the T1+1 item is a target. In fact, in some blink tasks (in
particular, those in which there is no task switch between T1
and T2) T2 performance at lag-1 can be above baseline; that s,
above the post recovery (e.g. lags 7 and 8) level of T2
performance; see section 5.2 in Bowman and Wyble (2007).

Thus, it seems that the occurrence of the T1 initiates a brief
window of generalized attentional enhancement. Further-
more, there is evidence that this window has a fixed minimal
extent; that is, it lasts at least 120 ms (Potter et al., 2002) also,
see section 5.1 of Bowman and Wyble (2007) and experiment 1
of Nieuwenhuis et al. (2005b). The emphasis here is on
“minimal extent”, since there is evidence that the window
can be extended when a sequence of target items is presented;
see the Spreading the Sparing section to follow.

2.2.3. Blink attenuation with T1+1 blank

The blink is attenuated if a blank is placed in the T1+1
position, but not if the blank is placed at T1+2 (Chun and
Potter, 1995; Raymond et al., 1992), see Fig. 3(b). This suggests
that when T1 is easier to perceive, T2 is also more easily
perceived.

It is generally accepted (e.g. see Seiffert and Di Lollo, 1997)
that, although weak in the sense of classic masking studies
(e.g. Enns and Di Lollo, 2000), each RSVP item masks the item
that precedes it. Thus, the activation of a node representing
an item is curtailed by the arrival of the mask. Therefore, an
item that is masked has a shorter activation trace than an
unmasked item. Attenuation of the blink with T1+1 blank
then suggests that unmasked targets are consolidated into
WM more easily than masked targets. Although, see Olivers
(2007) and Raymond et al. (1992) for an alternative perspec-
tive, which suggests that the blink is the result of a period of
reactive inhibition, which is initiated to prevent the T1+1
distractor from entering WM. However, a comparison
between the bottleneck models presented here and this
theory awaits a concrete computational instantiation of the
reactive inhibition account.

We regard blink attenuation with T1+1 blank to be a
particularly significant phenomenon, since it reflects a broad
finding that making T1 processing easier attenuates the blink
(Bowman and Wyble, 2007; Chun and Potter, 1995; Jolicoeur,
1998; Wyble and Bowman, 2005).2 In neural networks terms,
this suggests that increased T1 activation attenuates the blink
or, in other words, there is a reciprocal relationship between
T1 bottom-up trace strength and the AB bottleneck.

2.2.4. Blink attenuation with T2+1 blank

In the same spirit, the strength of the T2 trace (as also
regulated by backward masking) affects blink depth. Although
empirical studies have not directly assessed this fact, it has
been shown that the blink is absent if T2 is the last item in the
stream (Giesbrecht and Di Lollo, 1998), where it will auto-
matically be unmasked, see Fig. 3(b). This was confirmed by
Sessa et al. (2006) and Vogel and Luck (2002). Thus, we will in
fact model complete abolition of the blink with T2 as the last
item in the stream.

In summary then, ease of target processing modulates
blink depth. In fact, for both targets, there is a reciprocal
relationship between bottom-up trace strength and the blink
bottleneck, with stronger targets generating weaker blinks.

2.2.5. Delayed T2 consolidation
In typical AB studies, the blink is not total; that is, T2
performance is never zero at any lag. This raises the question
of the fate of T2s seen during the blink. There are two extreme
positions, viz that seen T2s breakthrough or outlive the blink. In
particular, T2 manipulations that attenuate the blink (e.g.
increasing the personal or emotional salience of the T2
(Anderson, 2005; Shapiro et al.,, 1997a)) are sometimes
described as T2 breakthrough effects. However, it may be
that this term is not completely appropriate. For example,
improved T2 performance during the blink does not seem to
reduce T1 identification, which one might expect if a T2 broke
through, thereby causing it to compete with T1.
Furthermore, ERP studies suggest that T2 consolidation is
delayed during the blink (Martens et al., 2006; Sessa et al., 2006;
Vogel and Luck, 2002). The key measure considered being T2-
P3latency, i.e. the time from T2 stimulus onset to correspond-
ing P3 peak. This raises the possibility that particularly salient
or perceptually strong T2s survive the blink because they
generate stronger representational traces that can outlive the
blink. Conclusively distinguishing between breaking through
and outliving is difficult; however, the finding of delayed T2
consolidation during the blink is revealing and serves as a
clear cut finding that models should replicate.

2.2.6. Spatial specificity of lag-1 enhancement

As previously discussed, the lag-1 attentional enhancement is
generalized, in the sense that an enhancement is observed
whatever the lag-1 item (e.g. target or distractor). However,
there is evidence that the enhancement is not spatially

2 Although see McLaughlin et al. (2001), who do not find blink
attenuation with T1 difficulty. However, we suspect that this
finding is a result of the non-standard (skeletal) presentation
employed and the brief targets and target-mask onset asynchro-
nies employed.
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generalized. In particular, Visser et al. (1999) have shown that
there is no sparing if a lag-1 T2 appears in a different spatial
location to T1, suggesting that the enhancement is restricted
to the location of the initiating stimulus. This finding has been
generalized to a spatial cueing setting (Wyble et al., submitted
for publication-b).

2.2.7. T1-T2 costs at lag-1

Lag-1 sparing does not come free of cost. Initial evidence for
this perspective is the reduced T1 performance at lag-1, see
Fig. 3(d), suggesting competition between T1 and T2 at this lag
(see also Potter et al., 2002). Further evidence of lag-1 costs
arises from data on temporal order confusion; that is,
situations in which T1 and T2 are both identified, but are
“perceived” in the wrong order. As shown in Fig. 3(d), at lag-1,
participants are only about 70% accurate at reporting the
temporal order of targets (Chun and Potter, 1995). This deficit
in order report disappears rapidly as the two targets are
moved apart, reaching 95% accuracy by lag-3.

In fact, Bowman and Wyble (2007) go even further, claiming
that lag-1 sparing is only observable for simple targets. They
suggested that with more complex target types, for example,
those with migratible component parts, lag-1 is not spared
(see Bowman and Wyble, 2007, section 5.3). This was argued to
reflect a loss of episodic distinctiveness, which, depending
upon the form of the task employed, could arise as feature or
component conjunction errors (Chun, 1997a), repetition blind-
ness (Chun, 1997b) or order inversions (Chun and Potter, 1995).

As a reflection of this evidence, in the context of this paper
and letters-in-digits tasks, we suggest that computational
models should generate a decline in T1 performance and an
increase in temporal order confusion at lag-1.

2.2.8. Late stage bottleneck

Although not per se a behavioral phenomenon, an important
constraint on models is the late stage nature of the AB
bottleneck. It is beyond the scope of this article to fully
elaborate all the supporting data (see Bowman and Wyble,
2007, section 3.2 for a more detailed account), however, the
data is extensive, including priming studies (Shapiro et al.,
1997b), “breakthrough” effects (Anderson and Phelps, 2001;
Shapiro et al., 1997a) and ERP data (Luck et al., 1996; Rolke et
al., 2001; Vogel et al., 1998). All these studies suggest that the
AB arises after sensory and also some degree of semantic
processing. That is, even though a T2 may be missed during
the blink, it is nonetheless extensively processed, in respect of
the extraction of both visual and semantic features. ERP
findings are particularly compelling in this respect since they
have shown that early visual components (the N1 and P1) and
semantic effects (the N400) are present irrespective of whether
T2 is missed or seen. In contrast, a component typically
associated with WM update (the P3) is reduced when a T2 is
presented during the blink compared with when it is
presented outside that period (Luck et al., 1996; Vogel et al,,
1998).

2.2.9. Spreading the sparing

There is recent evidence that the blink is not absolute, in the
sense that sparing can be extended beyond lag-1 if a
continuous stream of targets is presented (Di Lollo et al,

2005; Olivers et al., 2005). Although spreading the sparing is a
newly discovered phenomenon, there are earlier findings in
the literature that might be viewed as related to it. For
example, it has often been observed that performance is
spared at lag-2 in the T1+1 blank condition, see Fig. 3(b).
However, (as justified in Section 4.2.3) the sequence T1 T2 (i.e.
T1 blank T2) could be argued to be almost identical to T1 T1 T2
(since absence of a backward mask enables a target’s iconic
representation to continue unabated). Thus, the sparing at
lag-2 in the T1+1 blank condition could also be argued to arise
because of the presence of a continuous stream of targets.

3. The models

We introduce the ST? and LC-NE models in turn, starting with
ST

3.1.  The ST? model

The Simultaneous Type, Serial Token model of temporal
attention provides an abstract neural model of episodic
attentional processing. The model incorporates constituent
processes of such episodes: visual processing, item identi-
fication, attentional selection and encoding into working
memory. ST? is targeted at modeling the letters-in-digits
task (Chun and Potter, 1995), although ongoing work is
seeking to expand the applicability of the model by
considering tasks that contain a task switch and identify
targets with colour marking. The model particularly encap-
sulates the episodic distinctiveness hypothesis of the AB
(Bowman and Wyble, 2007); that is, that the AB reflects a
system attempting to allocate unique episodic contexts to
targets.

The overall architecture of the ST model (strictly Neural-
ST?) is shown in Fig. 1. Before discussing the components of
the architecture, we highlight a central distinction used in the
model.

3.1.1. Types-tokens

The types-tokens distinction has been considered in the
context of a number of temporal attention tasks (Chun,
1997b; Kanwisher, 1987, 1991). We use the term type to
describe all featural properties associated with an item. This
includes both sensory and semantic features. For example, the
type representation of the letter K would contain, 1) all
semantic features, e.g. that the item is in the category of
letters and it follows L in the alphabet and 2) all the
constituent features that comprise the visual representation
of the letter, e.g. its shape, the angled line segments that
comprise it and the colour in which it appears.

In contrast, a token represents instance specific (or
episodic) information about the occurrence of an item. Thus,
a token indicates that a particular type has occurred and also,
when, relative in time to other items, it occurred. In the ST?
model, WM encoding is the process of associating (or binding)
a token to a currently active type; we also use the term toke-
nization to describe this process. In this sense, once bound,
tokens act as “pointers”, from which the corresponding type
can be regenerated when required, e.g. at retrieval.
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Fig. 1 - Structure of ST?. Connectivity into and out of the binding pool is only shown schematically and for one type-token
association, but applies for all type-token associations. This connectivity ensures that each token activates a portion of the
binding pool, as does each type. The overlap between these portions defines a particular type-token association, for full details
see Bowman and Wyble (2007). Only pairwise lateral inhibition is shown between token gates, but is present between all token
gates. Conceptually, the binding pool and the blaster sit between stages 1 and 2. In particular, projections to and from the
blaster arise from both stage 1 and the binding pool (which is post stage 1).

3.1.2. First stage

Input activation propagates through layers that abstractly
represent steps of visual processing. These layers contain
inhibitory interactions that generate masking effects. The
fleetingness of item representations arises from these inter-
actions, which determine bottom-up trace strength. Thus,
activation traces are greatly weaker for a stimulus followed by
another stimulus, as opposed to a stimulus followed by a
blank; see (Bowman and Wyble, 2007). We differentiate
between such traces, by describing them as either strong
(followed by a blank) or weak (followed by a stimulus).

The early visual processing layers feed into layers that
abstractly represent type oriented processing, including
extraction of semantic and conceptual features (Potter, 1993).
The “output” of stage 1 is the Task Filtered Layer (TFL), at
which task demand foregrounds nodes corresponding to
targets. The TFL is the gateway through which items
(corresponding to fully processed types) can be encoded into
tokens.

3.1.3.  Second stage
The first stage yields a decaying trace of the visual and
semantic features of target items within the TFL. The first

stage is parallel in the sense that different items can be
simultaneously active at the TFL. In contrast, stage two
implements sequential encoding of these items into WM,
with this sequentiality emerging from mechanisms that
attempt to ensure that items are discretely bound into WM.
Before discussing the details of ST?s token system, we
highlight a general neural mechanism (called a gate-trace
pair), of which ST? makes liberal use.

3.1.3.1. Gate-trace active maintenance. We introduce this
mechanism in general terms (i.e. beyond the specifics of ST?),
since we believe it tackles a problem in active memory in
general. A standard way to set-up an activation-based WM
(Cowan, 2001) is to include a layer of units with strong self-
loops, with one unit per item that can be encoded, e.g.
Davelaar and Usher (2004). Although its simplicity gives it
value, there are difficulties with such an approach, see
sections 2.5 and 6.1 of Bowman and Wyble (2007). Here we
focus on one particular difficulty.

Specifically, such an active maintenance layer would not
be well-behaved in a heavily competitive setting, i.e. in the
presence of strong lateral inhibition. The idea that representa-
tions compete for access to attentional and perceptual



30 BRAIN RESEARCH 1202 (2008) 25-42

processes and indeed WM is well accepted (Desimone and
Duncan, 1995). The difficulty is that, once encoded, i.e. in a
self-sustaining attractor state, an item would impose strong
competitive pressure on the remainder of the layer, poten-
tially preventing any other item from being represented. As a
result, with strong (selective) competition, such a WM system
would have a capacity of one.® Although certainly not the only
solution to this problem, gate-trace pairs are, we would argue,
an elegant approach.

A gate-trace pair is an inhibitory interneuron circuit,
involving an excitatory gate node and a self-sustaining
inhibitory trace node. Each token in Fig. 1 has this format,
with the gate node shown at the bottom of the circuit and
the trace node at the top. The gate node is so named because
it acts as a gate to the trace node. That is, activation of the
trace node (which is in a closed circuit with the gate) is
completely caused by the gate.* The trace node is so named
because, once activated above threshold, it will self-sustain;
thus it maintains the trace of an item in WM. However, once
over threshold, the trace node will also suppress the gate
node. Importantly, when gate nodes are placed in an
inhibitory competition (see the tokens layer of Fig. 1), a re-
ceptive competitive active memory is obtained. Because trace
nodes maintain representations and gates are removed
from the competition once their traces have been allocated,
the layer can engage in a series of (competitive) encoding
episodes.

Gate-trace circuits have the further benefit that encoding
time is inversely related to activation strength. The time to
encode a stimulus using a gate-trace pair is the interval from
when the gate starts to be active to when its corresponding
trace node crosses threshold. Importantly, this time will be
shorter the stronger the extrinsic (bottom-up) activation of the
gate.”> Because of this property of gate-trace pairs, they
naturally yield a reciprocal relationship between bottom-up
trace strength and encoding time, which we will shortly argue
underlies the depth of the AB in ST?.

3.1.3.2. Token binding. During presentation of an RSVP
stream, above threshold target items at the TFL can activate
a token, thereby initiating a tokenization process. The token
system is a competitive gate-trace layer with additional
mechanisms that ensure tokens become available in a
predefined order. While a token is being bound, binding pool
units situated between the token’s gate node and the active
TFL node are incrementally allocated. Importantly, these units
also have a gate-trace format; thus, they also have the

? Note that the emphasis on strong (selective) competition is
important here, since weaker forms of competition can be
reconciled with higher capacity WMs (e.g. Davelaar and Usher,
2004).

* In this sense, the approach has similarities to a set of other
models in which WM update is gated (Braver and Cohen, 2000;
Frank et al., 2001).

> Modulo the nonlinearity in activation dynamics, the time to
threshold for the trace node is directly proportional to the area
under the gate node’s activation curve; and the higher the gate
activation, the quicker the area builds up.

characteristic that the rate of encoding is proportional to the
strength of the TFL activation.

As required by the ST? theory, tokens are made available
sequentially during encoding. The gate nodes of the tokens
compete to become available at the beginning of a trial and
again whenever a token has completed binding, which
inactivates its gate node. Thus, ST? ascribes unique episodic
contexts and thereby preserves order of encoding when items
are presented slowly enough.

It is possible that binding pool nodes allocated from
different tokens may project to the same TFL node. This
corresponds to the situation in which multiple instances of
the same type have been bound, i.e. a repetition. It is also
possible for the system to reach states in which there are
binding pool units allocated from one token to many TFL
nodes. At rapid presentation rates, such as those found in AB
experiments, a target may become strongly active at the TFL
while a previous target is being tokenized. In this situation,
both items can be bound into the same token. That is, both
items are encoded, but order information is lost.

At retrieval, the model first locates bound tokens (as
indicated by active trace nodes) and then identifies binding
units within the binding pool allocated from each token. If
binding units are allocated, the type (or types) “pointed to” by
those units is retrieved. The recall phase also determines
perceived order of encoding. If a token has been bound, which
points to multiple types then the model is prone to confusing
the order of presentation; see Bowman and Wyble (2007).

3.1.4. Binding pool

Types and tokens are bound via a pattern of sustained
activation in a pool of binding units; see Fig. 1. In particular,
there is no synaptic change involved in this binding
mechanism (Bowman and Wyble, 2007). Thus, the binding
pool is an activation-based memory for type-token associa-
tions. The projections into and out of the pool are arranged
such that each type-token association is represented by a
portion of the pool. We have explored both localist and
distributed binding pools. The former would contain a
unique binding unit for each type-token association, while
the latter overcomes the lack of scalability of the former
through overlapping type-token associations (Bowman and
Wyble, 2007).

3.1.5. Transient attentional enhancement: the blaster

ST? suggests that when the visual system detects an item that
may be task relevant, a transient attentional enhancement
(TAE) occurs, which is directed at the location at which that
item appears. For a weak (masked) item, the contribution of
this enhancement is critical in enabling it to activate a token
and thereby be encoded.

The TAE is implemented by a mechanism called the blaster;
see Fig. 1 (full implementation details can be found in
Bowman and Wyble, 2007). Above threshold activity in any
node of the TFL (which task demand ensures will only happen
for targets) excites the blaster through the projection marked
(a) in Fig. 1. The blaster sends a powerful excitatory projection
to type nodes in stage-1 (through the projections marked (b)
in Fig. 1). This causes a general, but short lived, excitation of
TFL nodes.
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3.1.5.1. Suppression of the TAE by ongoing tokenization. The
cause of the blink is inhibition through the projection marked
(c) in Fig. 1. This link ensures that, while binding units are
being allocated, the blaster is held offline. Importantly, this
inhibition is not active while an existing encoding is being
maintained. Since binding units are in fact gate-trace circuits,
the gate is only active during an allocation period,; it is the gate
of each binding unit that has an inhibitory projection to the
blaster; see Bowman and Wyble (2007).

Therefore, the general behavior of the blaster is a brief spike
of excitation followed by a period of inactivity until the
completion of the current token binding. This is the mechanism
by which the model exhibits an AB: unavailability of the blaster
protects the integrity of the T1 binding by limiting attentional
resources that could cause binding intrusions. This is consistent
with our central theoretical position that the blink is the marker
of a system that is attempting to allocate distinct episodic con-
texts. Thus, it “deliberately” sacrifices T2s in order to ensure the
episodic integrity of T1, i.e. that it is unambiguously tokenized.

3.2. The LC-NE model

Nieuwenhuis et al.’s LC-NE model (Nieuwenhuis et al., 2005b)
makes an important contribution to understanding the AB; a
strength being that the model is framed within the context of a
broad neurophysiological theory of attentional function
(Aston-Jones and Cohen, 2005; Aston-jones et al., 2000;
Nieuwenhuis et al., 2005a; Usher et al.,, 1999). Perhaps of
most importance, the LC-NE theory proposes a specific
neurophysiological underpinning to the P3 (Nieuwenhuis et
al.,, 2005a), which is being extensively used as an ERP correlate
of attentional processing in the AB context (Kranczioch et al.,
2003; Luck et al., 1996; Martens et al., 2006; Vogel and Luck,
2002; Vogel et al., 1998). Thus, the LC-NE theory proposes a
unified explanation of temporal attention, which reconciles
the AB phenomenon, neurophysiology, electrophysiology (in
respect of the P3) and neural modeling.

The model explains the AB in terms of the functioning of the
locus coeruleus (LC) (Nieuwenhuis et al., 2005b), a minute brain-
stem structure (German et al., 1988) that projects widely to the
cortex, with a special emphasis on areas involved in attentional
processing (Aston-Jones et al., 2000). The model particularly
focuses on the behavior of the LC while it is in phasic mode. In
this mode of behavior, only salient items activate the LC,
generating a phasic LC response. During such a response, LC
innervation of the cortex ensures that the excitatory response
of cortical neurons is amplified. In a visual discrimination task,
monkey LC neurons activated with a temporal profile that
seems to match the AB (Aston-Jones et al.,, 2000). This
observation prompted the (Nieuwenhuis et al., 2005b) model;
see Fig. 2. The model can be divided into two components: the
behavioral network and the LC. We discuss these in turn, before
considering how the model generates an AB.

3.2.1. Behavioral network

The behavioral network is a simple feed-forward system, with
major inter-layer connections being one-to-one. The network
comprises three layers: Input, Decision and Detection; see Fig. 2.
In the AB context, a sequence of stimuli is presented at the
input layer to simulate the RSVP stream.

Detection
Layer

Decision
Layer

Input
Layer

4—— excitatory

T1L, T2: targets 1~ multiplicative

<@——— inhibitory 1_ modulation

D: distractors
Fig. 2 - This depiction of the LC-NE model is a redrawing of
Fig. 2 of Nieuwenhuis et al. (2005b). Note, inhibitory and
crosstalk connections between T1 and D are not shown for
simplicity of presentation and point size of arrows indicates
weight strength. This diagram is reproduced from Bowman
and Wyble (2007).

The decision layer implements an ongoing competition
between three alternatives: the two targets and a single unit
abstractly modeling all distractors. Nodes in the decision layer
compete through lateral inhibition. Crosstalk connections are
also included between input and decision nodes, reflecting
feature similarity between stimuli. The decision layer projects
in one-to-one fashion to the detection layer, which serves as
the output from the model. On the assumption that only
targets are reported, the detection layer does not represent
distractors. Finally, excitatory self-loops are included to
sustain activation at decision and detection nodes. However,
these loops are not strong enough to yield an active memory.

3.2.2. LC firing

The LC circuit modulates activity in the behavioral network.
Specifically, the LC is excited by detection of a salient
stimulus. In the context of Nieuwenhuis et al.’s AB model,
this means that targets fire the LC, as reflected by target nodes
in the decision layer having excitatory projections to the LC.
LC activity has a modulatory effect on the behavioral network,
by simulating the release of Norepinephrine (NE). This release
multiplicatively scales the afferent signals to network units,
transiently adjusting their gain. Amplification of the multi-
plicative gain “sharpens” the sigmoidal transfer functions
(Aston-Jones and Cohen, 2005) making decision and detection
layer units temporarily more responsive.

3.2.3.  Refractory period—how the model blinks
However, after firing, the LC enters a refractory period. This
arises since, while NE enhances processing in cortical areas,
local NE release within the LC is believed to be autoinhibitory.
Thus, following a phasic response, this autoinhibition gen-
erates an LC refractory period, during which further LC phasic
response is rare (Nieuwenhuis et al., 2005b).

In the LC-NE model, it is unavailability of the LC during its
refractory period that causes the blink. That is, the model
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blinks as a result of the following sequence of events. Firstly,
the T1 fires the LC, which provides a window of enhancement
lasting around 150 ms. Secondly, following this T1-induced
firing, the LC enters its refractory period. Thirdly, T2s arriving
during this period are unable to immediately re-fire the LC
and, consequently, do not benefit from a timely (NE-induced)
increase in gain. This leaves T2s arriving during the refractory
period at a disadvantage, ensuring that only particularly
strong T2s get reported.

Blink recovery arises since, if the T2 follows the T1 after a
sufficient time interval, the LC will have recovered from its
refractory period and the T2 will be able to fire it. Indeed, the
LC-NE model suggests that the AB profile will exactly follow
the profile of the LC refractory period.

4, Assessment of models

We assess the two models against the empirical phenomena
previously highlighted. We start with ST?.

4.1.  The ST? model

4.1.1.  The basic blink
The ST? model generates a blink because the blaster is
suppressed by ongoing T1 tokenization. T2s at lags 2 and 3

a) Model: T2IT1

100 T p——g—-=4 g L g ,g
50 A\

4— 100 -W

60 1

/

fall at the point of maximum impairment (see Fig. 3(a)), due to
the length of time they have to wait for the blaster to come
back on line. The impairment decreases monotonically
through lags 4, 5 and 6, as it becomes more likely that
tokenization of the T1 finishes before T2 has decayed.

However, at lag-1, T2 is close enough in time to T1 to take
advantage of the (T1-initiated) blaster firing. Thus, the model
demonstrates lag-1 sparing (see Fig. 3(a)). However, although
T2 is typically encoded at lag-1, invariably, this only occurs
into the first token, alongside T1.

4.1.2. Increased processing of T1+1 slot

ST?’s TAE provides an enhancement that begins shortly after
an initiating item (the T1 in an AB setting) and is very brief
(lasting around 50 ms). Thus, in an AB setting, the blaster
enhances the T1 and T1+1 slots. There are a number of
phenomena that this mechanism enables the model to
exhibit. Firstly, as just discussed, the model generates lag-1
sparing. Secondly, in fact the model’s lag-1 performance has
a tendency to be elevated above baseline (i.e. post recovery
and single target performance); see Fig. 3(a) and the 50 ms
SOA data in Fig. 19 of Bowman and Wyble (2007). (As
discussed in Section 2.2.2, this is also found in humans.)
Thirdly, in Bowman and Wyble (2007) we reproduced Chua
et al’s (2001) finding that a distractor is a more effective
prime of a T2 if it is preceded by a T1. Finally, although we
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Fig. 3 - The ST?> model’s performance (a, c) compared to human data (b, d). In all cases, a letters-in-digits task was considered
with a 100 ms SOA. T2 performance (a, b) represents the accuracy in reporting T2 on trials in which T1 was reported. In panels c
and d, the lines at the top of the graph show T1 accuracy, while the lines at the bottom denote the percent chance for the
reported order of T1 and T2 to be inverted. Human data are from Chun and Potter (1995) except the T2 end of stream data, which
is from Giesbrecht and Di Lollo (1998). Horizontal axes represent lag, while vertical axes denote accuracy. In the T1+1 blank
condition there is no lag-1 case, since that slot is blank. Model data reproduced from Bowman and Wyble (2007). This diagram is

reproduced from Bowman and Wyble (2007).
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have not provided a data fit, the model is consistent with
the finding of labile attention at short T1-T2 SOAs (Potter et
al., 2002).

4.1.3. Blink attenuation with T1+1 blank

The model demonstrates the key finding that inserting a
blank in the T1+1 slot attenuates the blink; see Fig. 3(a). The
sequence of events that generates this phenomenon is as
follows. Firstly, an unmasked item yields a strong activation
trace. Thus, a T1 followed by a blank generates a higher
amplitude trace at the TFL. Secondly, and this is the critical
step, tokenization, both in the sense of binding unit and
token allocation, completes more quickly. This is because,
through the previously discussed gate-trace mechanism, the
model turns activation strength into encoding duration, on
the principle that stronger evidence for an item (as
encapsulated by activation strength) leads to more rapid
encoding into WM. Thus, placing a blank after a T1 greatly
shortens its tokenization. Thirdly, tokenization will be more
likely to have finished before the T2 has decayed at the TFL,
increasing the probability that the T2 will fire the blaster.

One subtlety of the T1+1 blank data is that performance
is particularly elevated at lag-2. The ST? model obtains a
qualitatively similar pattern at lag-2, since it is the only data
point in which T2 is not strongly forward masked. (Although
backward masking is far stronger, weak forward masking is
also included in ST?) Absence of forward masking increases
the bottom-up trace strength of the T2, which gives it a
small advantage according to the principles we discuss in
the next section. However, it could be that lag-2 sparing in
the T1+1 condition is actually a reflection of a form of
spreading the sparing (as discussed in Section 2.2.9), which
would explain the quantitatively smaller effect that the ST?
model (which does not reflect spreading the sparing)
currently obtains.

However, the key principle that blink attenuation with
T1+1 blank reflects is that there is a reciprocal relationship
between bottom-up trace strength and blink depth. This is
obtained in ST? by tying tokenization time to trace strength.

4.1.4. Blink attenuation with T2+1 blank

We compare the model to data from Giesbrecht and Di Lollo
(1998), who examined the effect of placing T2 at the end of the
stream; see Fig. 3(a). As required, the blink is obliterated.
However, the ST? model obtains attenuation of the blink with
T2 unmasking in a different manner to attenuation with T1
unmasking. Specifically, a T2+1 blank produces strong T2
traces that are more likely to outlive the blink. That is, T2
unmasking does not affect how long the blaster is held offline
by T1 tokenization, but it does make the T2 more “resilient” to
this blaster unavailability.

4.1.5. Delayed T2 consolidation

Following on from the previous subsection, T2s encoded by
ST? during the blink typically possess strong activation
traces. (Variation in activation strength could reflect sponta-
neous noise or inherent differences in how particular targets
stand out; Wyble and Bowman, 2005.) Consequently, T2s are
often seen during the blink because they outlive blaster
unavailability. As a result, in the average, T2s are consoli-

dated later during the blink. Fig. 4(a) shows new simulation
results from the ST? model that encapsulates this effect, by
measuring the peak of TFL activity for the T2 node. The T2
consolidation delay qualitatively mirrors the blink curve: T2
consolidation is most delayed when the blink is deepest and
undelayed (i.e. at baseline) post blink recovery. Interestingly,
the model suggests that T2 consolidation at lag-1 is
accelerated, relative to post recovery baseline, which is
consistent with the, previously discussed, increased proces-
sing of the T1+1 slot.

Although a human study which explores the full spectrum
of lags is not available, there is solid evidence of delayed T2-
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Fig. 4 - T2 consolidation delay by lag for the ST? and LC-NE
models. For ST?, consolidation delay was measured as the
time from target onset to peak amplitude of the TFL unit for
that target. For LC-NE, consolidation delay was measured as
the time from target onset to peak amplitude of the detection
layer unit for that target. At each lag we averaged across all
seen T2 trials. All ST? parameter settings were as presented
in Bowman and Wyble (2007). Note though that even though
the qualitative match between these two sets of data is very
good, quantitatively they are very different, as reflected by
them being presented on very different scales.
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P3s during the blink® (Martens et al., 2006; Sessa et al., 2006;
Vogel and Luck, 2002); see Section 2.2.5. This provides
important support for the ST? model. In addition, confirma-
tion of accelerated T2 consolidation at lag-1 would be
particularly compelling evidence for the model; although,
this is difficult to demonstrate since it is hard to isolate a T2 P3
at lag-1.

4.1.6. Spatial specificity of lag-1 enhancement

Although the model has not yet been used to simulate spatial
phenomena, from a theoretical perspective, the ST? blaster is
spatially specific. That is, it is rapidly directed towards the
location at which a salient item occurs. This is consistent with
the heritage that underlies this mechanism, viz, transient
spatial attention, as identified by Nakayama and Mackeben
(1989). As previously discussed, this spatial specificity is
consistent with findings in RSVP presentation settings (Visser
et al,, 1999; Wyble et al., submitted for publication-b).

4.1.7. T1-T2 costs at lag-1

ST? does exhibit T1-T2 costs atlag-1. The loss in T1 accuracy at
lag-1 (see Fig. 3(c)) arises since, when T2 is very strong and T1
weak, binding can complete before T1 is strongly active,
yielding a successful binding from token 1 to T2 and a failed
binding to T1. Moreover, at lag-1, the model is inaccurate at
determining the order of the two targets; see Fig. 3(c). Atlag-1,
often, both T1 and T2 are bound to the first token. This reflects
a loss of episodic information: due to the temporal proximity
of T1 and T2, the model fails to allocate discrete episodic
contexts for the two targets. These findings of costs at lag-1
are supported by human data; see Section 2.2.7.

4.1.8. Late stage bottleneck

Itis argued in Bowman and Wyble (2007, section 4.8) that ST?is
consistent with a late bottleneck. In particular, none of the
type layers in ST? is strongly suppressed during the blink. That
is, types are always, at least to some extent, extracted from a
target, regardless of whether it is blinked. However, typically, a
T2 that is seen during the blink has a stronger trace than a
missed T2, either by variation of input strength, or by being
excited by the blaster.

4.1.9. Spreading the sparing

In respect of the parameter settings used in Bowman and
Wyble (2007), the ST? model does not replicate spreading the
sparing. The inhibitory projection from the binding pool to the
blaster (marked (c) in Fig. 1) is sufficiently strong that ongoing
tokenization renders the blaster unavailable soon after T1
starts to be encoded. Thus, the model exhibits lag-1 sparing,
but, in the context of a continuous sequence of targets and a
standard SOA of around 100 ms, it does not exhibit lag-2 or -3
sparing. This is because, whether interleaved with distractors

¢ Although the quantitative match between ST?s T2 consolida-
tion latencies and human P3 latencies is surprisingly close, the
effect size (i.e., difference between consolidation latencies inside
the blink and post recovery) suggested by the model is somewhat
larger than in the human data (Martens et al., 2006). However, a
full investigation of this issue awaits further ERP studies and a
targeted effort to generate P3s from the model.

or not, any target appearing in the 200 to 500 ms interval post
T1 onset, will not be able to fire the blaster immediately.

A revision of the model in which suppression of the blaster
is not absolute and a somewhat more sophisticated token
system is used, is under submission (Wyble et al., submitted
for publication-a). In this revised model, a continuous stream
of target-related activity can repeatedly refire the blaster, but
at the expense of loss of episodic distinctiveness, e.g. order
and repetition blindness errors (Wyble et al., submitted for
publication-a). This revised model also replicates the finding
that the blink can be reversed, in the sense that, although a T2
in the sequence T1 D T2 T3 would be blinked, the T3 would not
be (Olivers et al., 2005). This is because the T2 overcomes
blaster suppression; however, because of the difficulty of
refiring the blaster, T2 misses this benefit, which falls on the
T3.

4.2, The LC-NE model

We now move to an assessment of the LC-NE model. The
simulation results that we present are based upon the
equations and parameter settings presented in Nieuwenhuis
et al. (2005b), which we have re-implemented. Evidence that
we have faithfully replicated the Nieuwenhuis et al. model is
given by the fact that we generate a blink curve consistent
with that found in Nieuwenhuis et al. (2005b). (Although, to
maintain consistency with the presentation of ST? data, and
indeed the human behavioral data, we use the conditional
measure: T2 | T1. This though has little major effect on the
shape of the basic blink curve.)

4.2.1. The basic blink

The LC-NE model generates a blink curve with lag-1 sparing;
see Fig. 5. As previously suggested, the blink obtained follows
the profile of the LC refractory period and lag-1 is spared, since
it benefits from the NE release arising from the T1-induced LC
firing.
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Fig. 5 - Standard blink conditions generated from the
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point, since it contains the blank. For full details of conditions
see main text.
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4.2.2. Increased processing of T1+1 slot

The T1-induced LC firing benefits the T1+1 slot. Further-
more, the enhancement is item non-specific, in the sense
that it would also benefit a distractor in the T1+1 slot.
Thus, the model should be viewed as consistent with the
finding of increased priming from distractors following T1s
(Chua et al, 2001). Nieuwenhuis et al’'s model is also
consistent with a temporal, rather than sequential (by-
item) interpretation of blink onset. That is, it suggests that
the T1-induced enhancement has a minimal extent, which
is broadly fixed and is not regulated by intervening
distractors. This is supported by a number of findings; see
Section 2.2.2.

4.2.3. Blink attenuation with T1+1 blank

In the LC-NE model (Nieuwenhuis et al., 2005b), the length of
the LC refractory period is not fixed. Rather, stronger LC
firings yield a longer refractory period. This raises a problem,
since strength of LC firing is determined by the strength of
the target that drives it. Thus, greater bottom-up trace
strength leads to a longer refractory period. This facet of
Nieuwenhuis et al’s model has the consequence that
unmasking T1s (ie. T1+1 blank conditions) deepens and
lengthens the blink.

We have explored this issue with simulation runs. As
acknowledged by the authors, the LC-NE simulation pre-
sented in Nieuwenhuis et al. (2005b) does not model
masking. Thus, we have had to indirectly model the effects
of following a T1 by a 100 ms blank instead of a distractor.
Specifically, we model an RSVP sequence containing a T1
followed by a blank as .... D T1 T1 D ...., where a standard
(nonblanked) T1 is modelled as .... D T1 D D .... (Ds denote
arbitrary distractors). (See Appendix A, Section A.2, for
discussion of the technical issues associated with this
manipulation.) This approach is consistent with the observa-
tion that the after-image of a visual stimulus remains for
some hundreds of milliseconds if a masking item does not
follow (see, e.g. the iconic memory literature (Coltheart, 1983;
Sperling, 1960) or single cell recordings of persistence in the
visual pathway (Keysers and Perrett, 2002; Keysers et al,,
2005)).

The results of our simulations are shown in Fig. 5. As
predicted, the model shows a deeper and longer blink for the
T1+1 blank condition and this is indeed because stronger LC
firing (arising from stronger T1s) leads to a longer refractory
period. This weakness of the model was acknowledged in
Nieuwenhuis et al. (2005b).

4.2.4. Blink attenuation with T2+1 blank

The LC-NE model does generate blink attenuation with a T2 +1
blank. In order to match T2 end of stream data, we
investigated a similar manipulation to that just discussed,
but now for T2. Specifically, we compared sequences of the
form ....DT1IDD T2D .... (basic blink, lag-3) with those of the
form .... D T1 D D T2 T2 T2 .... (T2 End of Stream, lag-3). As
found with humans (see Fig. 3(b)), the model exhibited ceiling
performance, see Fig. 5. As was the case with the ST? model,
the blink is removed with T2 unmasking, since high amplitude
T2s benefit from higher intrinsic strength and a greater ability
to outlive the LC refractory period.

4.2.5. Delayed T2 consolidation

T2 consolidation latencies are indeed delayed during the blink.
This can be seen in Fig. 4(b),/ which shows the results of
generating T2 consolidation latencies from our reimplemen-
ted LC-NE model. Furthermore, as was the case for ST?, the LC-
NE model generates accelerated P3 consolidation latencies
(relative to recovery baseline) at lag-1. This is again because
the lag-1 item benefits from the T1-induced enhancement,
which here amounts to NE release generated by the T1-
induced LC firing. In fact, the LC-NE model generates the same
qualitative pattern of T2 consolidation latencies by lag as the
ST? model, which gives strong credence to this particular
theoretical prediction.

4.2.6. Spatial specificity of lag-1 enhancement

The LC-NE enhancement is assumed to be completely
generalized, both featurally and spatially. That is, any item,
whatever its features or spatial location, would be enhanced.
In other words, the LC-NE provides a purely temporal filter. As
acknowledged by Niewenhuis et al., this means that the LC-NE
model cannot explain the spatial specificity of lag-1 sparing, at
least, without assuming a further mechanism to provide that
specificity (Nieuwenhuis et al., 2005b); see Section 2.2.6.

4.2.7. T1-T2 costs at lag-1

The LC-NE model does not generate T1-T2 costs at lag-1.
Firstly, as can be seen in Fig. 5, there is no decrement in T1
performance at lag-1.2 In addition, the model does not encode
order information. Thus, the finding of increased order
inversions at lag-1 cannot be investigated.

4.2.8. Late stage bottleneck

It is difficult to be definitive with regard to the stage of the
bottleneck in the LC-NE model, since one would need to
postulate a more detailed relationship between layers of the
model and stages of processing. Of most relevance would be
the attribution of semantic processing to a particular layer in
the model. In such an abstract model as the LC-NE model,
such attribution is not obvious. This said, a comparison of the
activation traces generated by seen and missed T2s does not
obviously suggest an early bottleneck. In particular, seen
and missed T2s generate almost identical decision layer
traces, while detection layer traces are more different, al-
though, even missed T2s do elicit nontrivial detection layer
activation. Furthermore, the theoretical underpinnings of

7 1f this pattern of data were to be related to P3 latencies, then
the quantitative match would not be perfect. In particular,
latencies are much shorter here than that suggested by P3s. In
addition, the effect size (i.e., difference between consolidation
delays inside and outside the blink) is smaller than that suggested
by P3 data (Martens et al., 2006).

8 In fact, as should be evident from Fig. 5, the model has a
tendency to produce enhanced T1 performance at lag-1. This is
due to a technical detail concerning the handling of distractors,
which means that targets have lower decision layer activations
than distractors. As a result, a T1 followed by a target (the T2)
receives less suppression at the decision layer than a T1 followed
by a distractor. This though is an implementation detail, which
we consider separate from the theoretical position of the LC-NE
model.
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the LC-NE hypothesis are also consistent with a late bottle-
neck. For example, Shea-Brown et al. (submitted for
publication) suggests that a primary role of the LC-NE
system is to facilitate post decision processing. Thus, as
far as it is possible to say, the LC-NE model is consistent
with a late stage bottleneck.

4.2.9. Spreading the sparing

The LC-NE model does not generate spreading the sparing.
This is evident in the lag-2 data point of the T1+1 blank
condition, see Fig. 5. As previously discussed, this data point is
modelled as a stream of distractors containing the subse-
quence T1 T1T2,i.e. a continuous sequence of targets. For this
data point, the model performs below the basic blink curve
(see Fig. 5), while humans are almost at baseline performance
(see Fig. 3(b)).

Because of the nature of the LC refractory period, the LC-NE
model fails to spread the sparing. This is because, firstly, if a
T1 fires the LC, it will go into a refractory period (in this sense it
is ballistic) and, secondly, ongoing bottom-up activation to the
LC (as generated by a continuous stream of targets) cannot
overcome the refractory period. More specifically, our inves-
tigations with the LC-NE model suggest that when presented
with a continuous stream of particularly strong targets a
robust refractory period remains (even though its shape may
change somewhat).

4.3. Discussion

Beyond the realm of specific behavioral phenomena, there are
a number of other important differences between the ST? and
LC-NE approaches. Firstly, ST?s TAE is an additive enhance-
ment, while the LC enhances by increasing the gain of the
activation function. Thus, Nieuwenhuis et al’s mechanism is
multiplicative, which yields a gating aspect that is not present
with ST?s TAE/blaster. ST?s additive enhancement has the
virtue of simplicity; in particular, it does not require any
mechanisms that are not present in the most standard neural
networks framework. However, although the additive bias
approach works well in the ST? context, in which the
enhancement is very brief, we have had trouble modeling
spreading the sparing with this mechanism. Spreading the
sparing suggests a more sustained amplification or, at least, a
rapid series of attention pulses. In this context, an additive
bias is susceptible to pushing even stimuli never presented
over threshold, due to the accumulation over time of additive
excitation. As a result, our revision of the ST? framework to
handle spreading the sparing has moved to a multiplicative
gain (Wyble et al., submitted for publication-a). Thus, in this
respect, the two models are converging.

Secondly, as acknowledged by the authors, Nieuwenhuis et
al’s approach does not sustain a memory trace to the end of a
trial. That is, T1 and T2 activations rise and fall at the
detection layer with a time-course in the range of a few
hundred milliseconds of simulated time. WM maintenance is
viewed as a separate mechanism that is beyond the scope of
the LC-NE model of Nieuwenhuis et al. (2005b).

This section has demonstrated that both the ST? and LC-NE
models generate a number of the key empirical phenomena.
However, both (as currently formulated) have difficulty with

spreading the sparing and the LC-NE model additionally has
difficulties replicating blink attenuation with T1+1 blank, T1-
T2 costs at lag-1 and requires the assumption of an additional
mechanism to explain the spatial specificity of the lag-1
enhancement. Since we believe it is such a central data point,
in the next section we discuss how the LC-NE model could be
extended in order to model the reciprocal relationship
between bottom-up trace strength and the AB bottleneck.
This will have the additional benefit of adding a WM
maintenance mechanism to the model. Furthermore, we
discuss what implication such additions would suggest for
LC neurophysiology.

5. Extending the LC-NE model with gate-trace
pairs

Our intent is not to develop a fully formed alternative blink
model. Rather, this section simply considers a possible
extension of the LC-NE model that would enable it to simulate
blink attenuation with T1+1 blank and maintain items in WM
beyond encoding. The mechanisms that we consider are
inspired by those already present in ST This is undertaken as
an exploratory exercise that, in particular, could inform
further neurophysiological investigations of the LC-NE sys-
tem, especially of the major projections between the cortex
and LC. It thus also clarifies the neurophysiological implica-
tions of the cognitive-level mechanisms proposed by ST?.

In the LC-NE network, transient representations of deci-
sion results arise at the detection layer, which is where the LC-
NE implementation of Nieuwenhuis et al. (2005b) finishes.
However, one could also imagine a WM encoding system that
“reads out” from these detection layer activations. Such a
system could be based upon the gate-trace mechanisms we
have highlighted in the ST? context (see Section 3.1.3). We
explore this possibility in the context of the LC-NE model.
However, it is important to note that in this exploration we
leave the basic LC-NE model unchanged; thus, we highlight a
strict extension of the LC-NE system of Nieuwenhuis et al.
(2005b). The structure of the extended system is shown in Fig.
6 and implementation details can be found in Appendix A.

As is inherent in the gate-trace approach, the trace nodes
maintain items in WM, while gate nodes enable items to be
encoded into WM, i.e. they gate access to trace nodes. The
gate-trace extension behaves as follows. Firstly, activation
onset of gate nodes mirrors detection node activations, subject
to a small time delay. Secondly, active gate nodes drive their
corresponding trace node until it crosses threshold, at which
point encoding is deemed to have completed. As a result, the
trace node rapidly suppresses its gate and enters a self-
sustaining attractor state at which point the target has been
successfully encoded into WM.

Thus, the gate-trace extension adds the capacity to hold
items in WM once they have been successfully encoded.
However, in addition, we have investigated tying LC suppres-
sion to ongoing encoding, according to the ST? principle that
withholding of the attentional enhancement should be
coupled to length of WM encoding. Thus, we have also
added a projection from gate nodes to the LC. Overall, this
has an inhibitory effect on the LC, although it passes through
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Fig. 6 — Extended LC-NE model. Note, inhibitory and crosstalk connections between T1 and D are not shown for simplicity of
presentation. Interface nodes, interface the gate-trace system with the LG, ensuring gradual interactions between the

components.

an intermediate node on the way. We call these intermediate
nodes interface nodes, since they interface gate nodes with
the LC. They are needed to turn the sharp changes in
activation that occur at the gates into more gradual effects
on the LC. Sharp discontinuities of input to the LC, whether
they be excitatory or inhibitory, disrupt the sensitive balance
between LC state and NE level, generating spurious changes in
LC state. This is particularly the case with regard to the offset
of activation of the T1 gate, which (due to trace node
suppression) is very rapid.

The behavior of this system with regard to the key
phenomena is shown in Fig. 7. For these data, a target was
considered as “seen” if its corresponding trace node was in its
attractor state at the end of the simulated trial. (In contrast,
the detection unit crossing threshold counted the target as
“seen” in the original LC-NE model; Nieuwenhuis et al., 2005b.)

Thus, the extended LC-NE model generates an interesting
profile of data. Firstly, it generates a longer basic blink curve,
which is more consistent with human data. Secondly, attenua-
tion of the blink with T2+1 is preserved. Thirdly, as antici-
pated, the model obtains blink attenuation with T1+1 blank.
The lag-2 data point remains a difficulty with the LC-NE model,
as performance can only recover, at best, to the level defined by
the refractory period, no matter how rapidly the T1 is encoded.
This difficulty would be partially offset by an implementation
of weak forward masking, as was done in the ST? model
(Bowman and Wyble, 2007). Furthermore, as suggested pre-

viously, the good performance obtained at lag-2 in the T1+1
blank condition, could be attributed to a spreading the sparing-
like effect since, as we argue, the T1+1 blank is akin to
sustaining an iconic representation of T1, yielding a conti-
nuous sequence of target-related activity.
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Fig. 7 - Standard blink conditions generated from the
extended LC-NE model. Accuracy is T2 | T1 for all conditions
except T1. For T1+1 blank, lag-1 is not a valid data point,
since it contains the blank. For full details of conditions see
main text.
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The extended LC-NE model does generate blink attenua-
tion with T1+1 blank. However, a number of phenomena
remain problematic, e.g. T1-T2 costs at lag-1 and spreading
the sparing. A full consideration of the former of these would
require, first, a careful consideration of T1-T2 competition at
lag-1 and, second, the addition of something like the ST?
binding pool and token system, in order to investigate order
errors (which as a by-product would introduce a means to
represent repetitions). Such investigations are beyond the
scope of this article.

Spreading the sparingis a difficulty for all published models
(although, a revised ST? model that handles the effect is under
submission (Wyble et al., submitted for publication-a)). How-
ever, this phenomenon is particularly tricky for the LC-NE
framework to handle; we return to this issue in the final
discussion, as we do to the question of the spatial specificity of
the lag-1 enhancement.

However, with regard to the central theme of this article,
this section has shown how the LC-NE framework could be
extended to model blink attenuation with T1+1 blank by
incorporating an ST?-inspired gate-trace mechanism. In fact,
such a mechanism would be consistent with the more general
finding of modulation of blink depth by ease of the T1 task
(Jolicoeur, 1998; Wyble and Bowman, 2005).

Finally, what then would be the implications of the
extensions introduced here for neurophysiology? Firstly,
there is nothing controversial with regard to gate-trace
circuits, since inhibitory inter-neurons are common-place in
the brain (O'Reilly and Munakata, 2000). Thus, the central
point of uncertainty is the suggested projection from WM
encoding areas to the LC, which should have an inhibitory
effect. Although it is known that there are major projections
from frontal areas (especially orbital frontal cortex and the
anterior cingulate) to the LC (Aston-Jones and Cohen, 2005),
whether these have the required characteristics to support the
extended LC system remains to be answered. For an approach
such as that suggested in this section to obtain greater
credence, projections such as these would need to be
identified in the primate brain.

6. Final discussion

The ST? model provides a concrete and broad scope theory of
the AB, which matches a large spectrum of empirical
phenomena. In particular, the model generates a blink curve
with lag-1 sparing, increased processing of the T1+1 slot, blink
attenuation with T1+1 blank, blink attenuation with T2+1
blank, delayed consolidation for T2s seen during the blink and
T1-T2 costs at lag-1. In addition, the mechanisms postulated
are consistent with the known spatial specificity of the lag-1
enhancement and a late stage blink bottleneck. The major
outstanding phenomenon that the currently published imple-
mentation of the model does not address is spreading the
sparing.

Nieuwenhuis et al’'s LC-NE model suggests a compelling
theory for the cause of the AB based on a neurophysiologi-
cally prescribed theory of attentional function (Aston-Jones
and Cohen, 2005; Gilzenrat et al., 2002; Nieuwenhuis et al.,
2005a). The model also generates a number of the key AB

phenomena; for example, it generates a blink curve with lag-
1 sparing, increased processing of the T1+1 slot, blink
attenuation with T2+1 blank and delayed consolidation for
T2s seen during the blink. It is also broadly consistent with a
late stage bottleneck. However, it does not generate blink
attenuation with T1+1 blank, T1-T2 costs at lag-1 or
spreading the sparing and (without the assumption of a
further mechanism) the LC theory does not generate a
spatially specific lag-1 enhancement.

While the ST? model is neurophysiologically plausible, in
the sense that it is formulated using known neurobiological
mechanisms, there is uncertainty concerning the exact
localisation of some of ST?s components (although, see
Bowman and Wyble (2007, section 4.9) for a proposal in this
respect). Thus, an exploration of the relationship between
Nieuwenhuis et al’s brain-level proposal and ST?’s cognitive-
level proposal is valuable. This is what we have considered in
this article.

It should also, though, be acknowledged when compar-
ing the two models that they have somewhat different
intent and scope. ST? is a more elaborate model than
the LC-NE model, containing more layers and components.
This reflects ST®s intent to be a relatively broad scope
model of temporal attention and WM encoding and main-
tenance. In contrast, the LC-NE model, as presented in
Nieuwenhuis et al. (2005b), does not claim to model WM;
rather its value lies with the fact that a blink effect is
obtained despite only adding a minimal set of additional
assumptions to those included in previous LC-NE models
(Gilzenrat et al., 2002).

6.1. The blaster and the LC

The LC enhancement and ST?'s TAE/blaster have a number of
similarities, e.g. both are initiated by detection of a salient
stimulus, they are type non-specific and their temporal
profiles are similar. However, there are important differences
between the two.

Firstly, the blaster is postulated to have its effect on
stimulus representations relatively early in the processing
pathway, certainly no later than inferotemporal cortex and
perhaps actually in visual cortex (Bowman and Wyble, 2007).
The hypothesis being that “blasted” types obtain greater
bottom-up trace strength, giving them an encoding/tokeniza-
tion advantage. Thus, in ST?, the attentional gate works by
regulating bottom-up trace strength. In contrast, the LC is
suggested to have its main effect on decision and response
systems (Aston-Jones and Cohen, 2005). Furthermore, LC
innervation is not dense in visual cortex (especially primary
visual cortex) (Nieuwenhuis et al., 2005a) and LC innervation
of the temporal lobes is more focused on the superior
temporal gyrus (especially, the Temporo-parietal Junction
(TPJ)) than the inferior temporal gyrus.

Secondly, the blaster is assumed to be spatially specific;
however, the LC enhancement would be expected to be
spatially general, as suggested by neuroanatomical studies
of the pattern of noradrenergic projections (Nieuwenhuis
et al, 2005a). The LC-NE approach cannot resolve this
difficulty without introducing a further mechanism that
enhances specific locations, and that mechanism is likely to
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be similar to ST?s blaster. One speculative (and perhaps
less than parsimonious) explanation could be that the LC
provides the temporal profile of a transient form of atten-
tion, such as produced by the blaster. One of the candidate
areas for locating the blaster is the TPJ (Bowman and Wyble,
2007) and the LC is known to strongly innervate the TPJ. If
one assumed a spatially specific amplifier at the TPJ, then
the LC could be “amplifying the amplifier” in a transient
fashion.

6.2. Correlates of the P3

An important question is how to relate models to the P3. The
LC-NE theory suggests a specific neural substrate for the P3
(Nieuwenhuis et al., 2005a). The link from activation traces in
the LC-NE model to the P3 though is not clear-cut. In
particular, all the target-induced activations in the LC-NE
model peak and indeed finish a good deal earlier than the
known time-course of the P3, as is evident in Fig. 4(b). Thus,
these target-induced activations are not direct analogues of
the P3. This leaves the possibility that the P3 is an indirect
(delayed) consequent of these target-induced activations; that
is, that there is a latency offset between model activation
traces and what is observed as the P3. However, assessment of
this explanation awaits a concrete proposal for the mechanics
of this latency offset. Although not perfect, the time-course of
ST? target activation (especially at the TFL) is more consistent
with that of the P3, which, in an RSVP setting peaks between
400 and 450 ms after the onset of the eliciting stimulus.
Ongoing work in our lab is directly addressing the issue of how
to generate P3 profiles (and other ERP components) from the
ST? model.

6.3. Bottom-up trace strength and blink depth

This article has particularly attempted to emphasize the
reciprocal relationship between bottom-up trace strength
and blink depth and the importance this phenomenon has
for models of the AB. In particular, this relationship falsifies
many of the simpler AB models that one could imagine. Most
of the obvious ways to obtain a blink-like effect would imply
that the size of the impairment would be directly propor-
tional to the size of the T1 bottom-up activation trace, i.e.
stronger T1 activations would generate deeper blinks. For
example, a very simple way to obtain a blink-like impairment
would be via a layer of mutually inhibitory item nodes. Thus,
while the T1 was active, it would suppress any T2 at that
layer. Along with a number of other difficulties (c.f. Bowman
and Wyble, 2007), this approach suggests that stronger T1s
would more strongly inhibit T2s and thus, stronger Tls
would generate deeper blinks. In contrast, in ST?, stronger
T1s are encoded more rapidly, which means that T2s have to
wait less before starting encoding. Any competitor neural
model needs to postulate a means to obtain this key
reciprocal relationship.

6.4. Spreading the sparing

Modeling spreading the sparing represents the most signifi-
cant challenge in the AB literature. In the context of the ST?

and LC-NE models, at the least, this phenomenon suggests
that unavailability of the attentional enhancement (blasting
or NE release respectively) is not absolute and that an
unbroken stream of salient stimuli should be able to overcome
this unavailability. The phasic mode LC firing hypothesis
inherent in the LC-NE model seems particularly difficult to
reconcile with this requirement, as spreading the sparing
stands against the existence of an (effectively) uncounterac-
tible refractory period. The parameter settings in Nieuwenhuis
et al. (2005b) ensure that the refractory period cannot be
overcome through an unbroken stream of target-related
activity.

In contrast to the notion that an inherent refractory period
of attentional allocation is the cause of the blink, the ST?
model suggests that the cause is a deliberate suppression of
attention. The advantage of this account is demonstrated in
the model of Wyble et al. (submitted for publication-a), which
gives ongoing target activity the capacity to overcome
suppression of the blaster. As a result, a continuous sequence
of targets can be encoded “together” into WM. However, this
increased identity encoding comes at the cost of a decline in
episodic distinctiveness, which manifests as a loss of tem-
poral order information and increased repetition blindness
within a continuous sequence of targets.
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Appendix A. Implementation details
Al The extended LC-NE model

Pairs of gate-trace nodes for each target stimulus, connected
to their corresponding detection layer nodes, form the “read
out” system for WM encoding. In addition, interface nodes
translate gate node activation into inhibition of the LC-NE
system. The state Z of a node is updated once every iteration,
by numerically integrating the ordinary differential equation
for that node using a simple Euler method and then comput-
ing the activity of the node using its sigmoidal activation
function f(Z) which is defined as,

1
f(Z) = 1+ e 92D

where g is the multiplicative gain and b is the bias. The
dynamic effect of the noradrenergic output u on g is modelled
as

g=B+ku

where B is the base level of gain and k is a scaling constant
fixed at 1.5.
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The differential equation for computing the state of a gate
node G is given by

d;(—tc = —X¢ + wer[f(Xr) — 0], + werf(Xg)

where X; is the state of G, wgr (4) is the weight of the link from
detection layer node T to G, wgr (-10) is the weight of the link
from G’s trace node R to G, 0 (0.532) is a threshold set to the
baseline activity level of T and [x]=max(x, 0). The equation
above is used to compute the state of G only after f (X7) crosses
the threshold of 0.67 used in the original LC-NE model. The
activation function for X, i.e. f(X;), uses a base level gain (B) of
1 and a bias (b) of 1.

The equation for computing the state of a trace node R is
given by:
dXz

5t = ~Xr+ wrof (Xe) + wref (Xe)

where Xy is the state of R, wgg (0.2) is the weight of the
connection from the gate node G to R and wgg (3) is the weight
of the self-loop on R. The activation function for X, i.e. f(Xg),
uses a base level gain (B) of 20 and a bias (b) of 0.3.

The equation for computing the state of an interface node I
is given by:

TI% = — X1 + wic min(f(Xc), 1)

where X; is the state of I, wic (20) is the weight of the
connection from the gate node G to I, 7 (10) is the time
constant of X; and u (0.8) is an upper threshold on the activity
level of G that is received by I. The activation function for f(X),
uses a base level gain (B) of 4 and a bias (b) of 1.4.

In the extended model, the LC-NE system receives
inhibitory input from the interface nodes. Consequently,
the equation modeling the LC state variable v is modified
to:

d_]t] = Wux[f (X11) + f(X712)]
+wur ([f(Xnn) = ply + [f(X) = pl.) +v@-v)(v-1) ~u

Ty

where wy (-0.4) represents the weights of the inhibitory
connections from the interface nodes I1 and I2 with
activities f(X;1) and f(X,), respectively, and p (0.8) represents
a lower threshold on the activity of the interface nodes. w,x
(0.3) is the link weight from decision layer to LC and Xr;
and Xp, are the states of the decision units.

All other equations governing the LC-NE system, the
parameters therein and the connection weights as configured
in the behavioral network of the original LC-NE model remain
unchanged. Only the number of iterations comprising a
simulation trial is increased from 2200 to 2400, to extend the
trial over 48 units of model time and incorporate 8 lag
positions for T2.

A.2.  Simulating blanks in the LC-NE model

Consideration of the T1+1 blank condition is confused by the
fact that placing an actual blank after the T1, i.e. presenting....
D T1_D....to the model, obliterates the blink. However, this
is not due to absence of backward masking and indeed

would be inconsistent with the afterimage persistence of
visual stimuli (Keysers and Perrett, 2002; Keysers et al., 2005).
The blink is attenuated with .... D T1 _ D .... because the T2
benefits from reduced inhibitory competition. The blank
interval in the T1+1 position allows the activation level of
the distractor node to fall to nearly resting level. In the LC-
NE model, a T in a sequence .... D _ TD D .... (or, indeed, ....
D_DTD..., etc) will always have an advantage over a T in
a sequence not containing a blank (e.g. .... DD T D D ...).
Thus, blanks placed anywhere in the stream generate a
forward going (in the sense of the stream) competitive
advantage. However, there are a number of reasons why this
cannot serve as an explanation of AB attenuation with T1+1
blank. For example, if the LC-NE decision layer set-up was
taken as a model of target — blank effects in the AB, it
would predict that T1-1 blank should massively improve T1
performance and attenuate the blink, which it does not
(Breitmeyer et al., 1999).
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