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Abstract— Detecting symmetries has many applications in logic
synthesis that include, amongst other things, technology map-
ping, deciding equivalence of Boolean functions when the input
correspondence is unknown and finding support-reducing bound
sets. Mishchenko showed how to efficiently detect symmetries
in ROBDDs without the need for checking equivalence of all
co-factor pairs. This work resulted in practical algorithms for
detecting classical and generalized symmetries. Both the classical
and generalized symmetry detection algorithms are monolithic
in the sense that they only return a meaningful answer when
they are left to run to completion. In this paper we present
anytime algorithms for detecting both classical and generalized
symmetries, that output pairs of symmetric variables until a
prescribed time bound is exceeded. These anytime algorithms
are complete in that given sufficient time they are guaranteed
to find all symmetric pairs. Anytime generality is not gained at
the expense of efficiency since this approach requires only very
modest data structure support and offers unique opportunities
for optimization so the resulting algorithms are competitive with
their monolithic counterparts.

Index Terms— Logic Synthesis, ROBDDs, Symmetry

I. I NTRODUCTION

SYMMETRY detection has been important since the days
of Shannon [1] who observed that symmetric functions

have efficient switch network implementations. Symmetry de-
tection is no less important today and knowledge of symmetric
variables has applications in logic synthesis [2], [3], technol-
ogy mapping [4], [5], combining technology-independent and
technology-dependant stages of logic synthesis [6], detecting
support-reducing bound sets [7], ROBDD minimization [8],
[9] and detecting equivalence of Boolean functions when the
input correspondence is unknown [10]–[12].

The challenge in symmetry detection is to find effi-
cient algorithms for detecting all symmetric variables pairs
(xi, xj) of a given Boolean functionf(x1 . . . xn), that is, find
all pairs (xi, xj) such thatf(x0, . . . , xi, . . . , xj , . . . , xn) =
f(x0, . . . , xj , . . . , xi, . . . , xn). The intuition being thatf re-
mains unchanged under the switching of the variablesxi

and xj . This symmetry is formally known as the first-order
classical symmetry, or the non-skew non-equivalence symme-
try [13]. It can be shown from Boole’s expansion theorem [14]
that this is equivalent to checking equality of the co-factor
pair f|xi←0,xj←1 = f|xi←1,xj←0 where f|xi←a,xj←b =
f(x1, . . . , xi−1, a, xi+1, . . . , xj−1, b, xj+1, . . . , xn). This no-
tion of symmetry had been generalized [13], [15] to the
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symmetry types listed in Table I wheref|a,b abbreviates
f|xi←a,xj←b. These symmetries can be categorized into two
types depending on whether or not a negated co-factor occurs
in the relationship:T1, . . . , T6 coincide with those of Zhanget
al. [12] whereasT7, . . . , T12 correspond to the¬T1, . . . ,¬T6

types in the notation of Zhanget al.

I: Generalized Symmetry Types

Positive Co-factor relations Negative Co-factor relations

T
xi,xj

1
(f) ⇐⇒ f|1,0 = f|0,1 T

xi,xj

7
(f) ⇐⇒ f|1,0 = ¬f|0,1

T
xi,xj

2
(f) ⇐⇒ f|0,0 = f|1,1 T

xi,xj

8
(f) ⇐⇒ f|0,0 = ¬f|1,1

T
xi,xj

3
(f) ⇐⇒ f|0,0 = f|0,1 T

xi,xj

9
(f) ⇐⇒ f|0,0 = ¬f|0,1

T
xi,xj

4
(f) ⇐⇒ f|1,0 = f|1,1 T

xi,xj

10
(f) ⇐⇒ f|1,0 = ¬f|1,1

T
xi,xj

5
(f) ⇐⇒ f|0,0 = f|1,0 T

xi,xj

11
(f) ⇐⇒ f|0,0 = ¬f|1,0

T
xi,xj

6
(f) ⇐⇒ f|0,1 = f|1,1 T

xi,xj

12
(f) ⇐⇒ f|0,1 = ¬f|1,1

We previously presented an anytime algorithm for symmetry
detection for Boolean functions represented as ROBDDs [16].
The algorithm sought to address some of the drawbacks
associated with existing methods that have been proposed
for ROBDDs. One problem that we have found is that the
running time of these algorithms [12], [17] can exceed 12
hours on some ROBDDs of less than a million nodes. Variable
reordering can reduce the size of an ROBDD and thereby
reduce the cost of symmetry detection. However, it is impru-
dent to rely on variable reordering alone to make symmetry
detection tractable since variable reordering techniquescan
themselves be prohibitively expensive and of course, even after
reordering, there is no guarantee that the size of the ROBDD
will actually be smaller. In fact even improving the variable
ordering is NP-complete [18], and is also inapproximable
within a constant factor [19] (that is, if for every given
ǫ > 0, there exists a polynomial-time algorithm for reordering
variables so as to obtain an ROBDD whose size is not larger
than1 + ǫ times that of the minimal size, then it follows that
P = NP ). From the perspective of algorithm design, there
are at least two ways forward: develop a faster symmetry
detection algorithm; recast symmetry detection so that it can
be solved with an anytime algorithm. Anytime algorithms
arise in engineering tasks when it is more attractive to find
an acceptable answer in a reasonable amount of time rather
than the optimal answer in an exorbitant amount of time. In
the context of symmetry detection the challenge is therefore to
devise an efficient algorithm that incrementally detects pairs of
symmetric variables until some given time bound is exceeded.

Thus far, the only incremental algorithms that have been
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proposed for symmetry detection in ROBDDs are those based
on naı̈ve co-factor computation [9], [20], but alas, this ap-
proach is inefficient. The algorithm of Pandaet al. [8] can
be considered to be incremental and does not require co-
factor computation. Instead, the algorithm is formulated in
terms of dynamic variable reordering [21]. This approach
is incomplete for the purposes of symmetry detection, since
the algorithm may not detect all symmetric variable pairs
if variable reordering is prematurely terminated. The most
efficient algorithms proposed thus far for symmetry detection
[12], [17] are monolithic in that they provide no opportunity
for early termination, and yet can sometimes require significant
runtime. In this paper we present a class of efficient anytime
algorithms for classical and generalized symmetry detection.
For clarity, we summarize our contributions as follows:
• The paper presents an incremental, anytime algorithm for

first-order classical symmetry detection. Even considering
the complexity of all the underlying set operations, the
algorithm is inO(n3+n|G|+|G|3) wheren is the number
of variables and|G| the number of nodes in the ROBDD.

• The paper explains how an incremental anytime approach
offers special opportunities for optimization, in that clas-
sical assymetry/symmetry sieves can precede the algo-
rithm and assymetry/symmetry propagation techniques
can be inserted into the main loop of the algorithm.

• The paper proposes a computationally lightweight tech-
nique that often improves the proportion of symmetries
found early on in the operation of the algorithm.

• The paper shows how to refine the anytime algorithm
so as to detect generalized symmetries. An algorithm
for simultaneously detecting allT1, . . . , T12-symmetries
is presented which resides inO(n3 +n2|G|+ |G|3). This
algorithm is underpinned by new symmetry relationships
which take the form, that ifT xi,xj

p (f) and T
xj,xk
q (f)

hold thenT
xi,xj
r (f) holds whereTp, Tq and Tr denote

one of the12 generalized symmetry types. Only a few
of these transitivity results have been previously reported
[22] and these results could well find application in other
symmetry detection problems [23].

• The paper shows that symmetry detection does not re-
quire the creation of intermediate ROBDDs and that
anytime generality need not compromise efficiency.

The remainder of this paper is structured thusly: Section II
presents the necessary preliminaries and Section III surveys
the related work. Section IV presents an anytime symme-
try detection algorithm for classical symmetries. SectionV
explains how the multi-pass nature of the algorithm can be
exploited with asymmetry/symmetry propagation. Section VI
extends the anytime approach to the detection of generalized
symmetries. Section VII quantifies the cost of anytime sym-
metry detection and Section VIII concludes.

II. PRELIMINARIES

In this paper we consider completely specified Boolean
functions f : Booln → Bool where Bool = {0, 1}
that are conventionally written as Boolean formulae de-
fined over a variable setX = {x1, . . . , xn}. The satisfy-
count of an n-ary Boolean function f is defined as

‖f‖ = |{(b1, . . . , bn) | f(b1, . . . , bn) = 1}| [24]. The (Shan-
non) co-factor of a functionf w.r.t a variable xi and
a Boolean constantb ∈ Bool is defined by f|xi←b =
f(x1, . . . , xi−1, b, xi+1, . . . , xn). Multiple variable co-factors,
denotedf|xi1

←b1,...,xim←bm
, can be defined inductively as

f0 = f , fj = fj−1|xij
←bj

andf|x1←b1,...,xm←bm
= fm.

A BDD is a rooted directed acyclic graph where each
internal node is labeled with a Boolean variablexi. Each
internal node has one successor node connected via an edge
labeled 0, and another successor connected via an edge labeled
1. Each leaf node is either the Boolean constant 0 or 1. The
Boolean function represented by a BDD can be evaluated for
a given variable assignment{x1 → b1, . . . , xn → bn} where
bi ∈ Bool by traversing the graph from the root, taking the 1
edge at a node when the variablexi is assigned to 1 and the 0
edge when the variablexi is assigned to 0. The leaf reached
in this traversal indicates the value of the Boolean function
for the assignment. An OBDD is a BDD with the restriction
that the label of an internal node,xi, is always less than the
label of any internal node reachable via its successors,xj ,
that is, i < j. An ROBDD is an OBDD with the additional
constraint that the two successor nodes of any internal node
represent different Boolean functions, and that distinct internal
nodes also represent distinct Boolean functions. Note thatany
internal node of an ROBDD is itself the root of an ROBDD.

Each of the 12 predicatesT xj,xk

i (f) of Table 1 asserts
a symmetry property of a Boolean functionf where the
predicateT xj,xk

i (f) is interpreted as stating that the Boolean
function f is Ti-symmetric in the variable pair(xj , xk).
Strictly, an ROBDDg is not a Boolean function but rather a
representation of one. Therefore to assert symmetry properties
of the functionf that underlies a given ROBDDg, we define
T

xj,xk

i (g) to hold wheneverT xj,xk

i (f) holds. Moreover, we
shall say that a ROBDDg is Ti-symmetric in the variable pair
(xj , xk) iff T

xj,xk

i (g) holds, and duallyg is Ti-asymmetric in
the variable pair(xj , xk) iff T

xj,xk

i (g) does not hold.

III. R ELATED WORK

Early work on detecting symmetric variables in Boolean
functions has focussed on the computation of co-factor pairs,
that is alln2 − n possible co-factors, wheren is the number
of variables. Symmetry is detected by checking their equiva-
lence [20]. The use of ROBDDs to represent Boolean functions
enables not only the efficient computation of co-factors, but
also equivalence to be checked in constant time. However,
repeated co-factoring involves the creation and deletion of
many intermediate ROBDD nodes and for very large ROBDDs
this overhead can be prohibitive. This method is often referred
to as the naı̈ve method [20]. Möller, Mohnke and Weber [20]
thus advocate the use of preprocessing algorithms — sieves
— that detect pairs of asymmetric variables. These linear-time
sieves significantly reduce the number of co-factor pairs that
need to be computed. In general, however, methods built upon
such sieves still require naı̈ve co-factor computation, that is,
calls to the standard co-factoring algorithm [24] the complexity
of which is in O(|G| lg |G|).

Because of the cost of repeated co-factoring, many sym-
metry detection methods endeavor to avoid naı̈ve co-factor



computation. Mölleret al. [20] and Pandael al. [8] detect all
symmetries between variables adjacent in the variable order
with an algorithm inO(|G|). Pandaet al. [8] modify Rudell’s
dynamic variable reordering algorithm [21] to detect symme-
tries between variables that become adjacent when one of the
variables is repositioned in the ROBDD variable ordering.
Symmetric variables are then grouped, and any subsequent
reordering that is applied is required to preserve a contiguous
variable ordering within each group. This approach to sym-
metry detection does not require naı̈ve co-factor computation,
but there is no guarantee that all symmetries will be found if
variable reordering is prematurely terminated.

The algorithm of Mishchenko [17] can detect all symmetric
variable pairs in a ROBDD with justO(|G|3) set operations.
Zero suppressed binary decision diagrams (ZBDDs) [25] are
used to compactly represent a collection of sets of symmetric
variable pairs. However, since each set can potentially contain
O(n2) elements one would expect Mishchenko’s algorithm
to at least reside inO(n2|G|3) and possibly even a higher
complexity class when all set operations are considered.

The generalization of symmetries is a recent development
and has received much attention [12], [13], [15], [26]. This
move to generalized symmetries has inevitably brought withit
the requirement for efficient algorithms to compute them [12],
[26]. It is straightforward to extend the naı̈ve approach of
symmetry detection to all generalized symmetries in Table I
with only a worst-case twofold increase in the amount of work
required. This is because classical symmetry detection re-
quires calculating the co-factorsf|xi←1,xj←0 andf|xi←0,xj←1

whereas generalized symmetries over two variables only re-
quire the co-factorsf|xi←0,xj←0 andf|xi←1,xj←1 to be addi-
tionally computed. (The amount of work required to compute
an equivalence check, such asf|xi←0,xj←0 = f|xi←1,xj←1,
is negligible and a check that involves negation, such as
f|xi←0,xj←0 = ¬f|xi←1,xj←1, is also inO(1) for ROBDDs
with complement edges [27].) This twofold increase in work
is disproportionate to the twelvefold increase in the number
of symmetries that can be detected, however, the overhead
of repeated co-factoring is still prohibitive. Consequently,
symmetry detection methods for generalized symmetries have
progressed along the same lines as those for classical symme-
tries: the algorithm of Zhanget al. [12] mirrors the design of
Mishchenko [17], but is altered to perform multiple passes for
each of the different symmetry types. Hence, the algorithm of
Zhanget al. has the same worst-case complexity of that of
Mishchenko, disregarding constant factors.

An interesting thread of related research focusses on the
problem of extracting symmetries from Boolean functions that
are not represented as ROBDDs [23], [28].

IV. A NYTIME SYMMETRY DETECTION ALGORITHM

In this section we describe our anytime approach to
classical symmetry detection. For pedagogical purposes we
first present Algorithm 1 which is our simplest algorithm
for anytime symmetry detection. In the section that fol-
lows, we build on Algorithm 1 by incorporating optimiza-
tions that exploit its anytime nature. Algorithm 1 takes

as input an ROBDDf and returns a set of index pairs
S = {(i, j) | T

xi,xj

1 (f)} that represent the set
of T1-symmetric variable pairs. The algorithm is com-
posed of two separate procedures:FindAsymmetry and
RemoveAsymmetry. FindAsymmetry(f ) performs two
depth-first traversals over the ROBDDf to detect pairs of
variables(xi, xj) that are provably asymmetric with respect
to T1. RemoveAsymmetry(f, i, C) filters a set of variable
indices C whose symmetry relationship with variablexi is
unknown to return the setC′ ⊆ C that represents those
variablesxj that areT1-symmetric withxi.

Algorithm 1 SymmetricPairs(f )

A← FindAsymmetry(f)
S ← ∅
for i = 1 to n− 1 do

C ← { j | (i, j) 6∈ (A ∪ S) ∧ i < j}
D← RemoveAsymmetry(f, i, C)
A← A ∪ {(i, l), (l, i) | l ∈ C \D}
S ← S ∪ {(i, l), (l, i) | l ∈ D}

return S

The call toFindAsymmetry initializes the set of asymmetric
variable pairsA such that A ⊆ {(i, j) | ¬T

xi,xj

1 (f)}.
The set C is constructed of indices for those variables
whose T1-symmetry relation withxi is as yet undeter-
mined. The set ofT1-symmetric variablesD returned from
RemoveAsymmetry and its complementC \ D are used to
extendS and A respectively. The main loop only requires
n − 1 iterations becauseC = ∅ when i = n. The algo-
rithm that initializesA is justified by lemmata that detail
how T1-symmetric variables place structural constraints on
ROBDDs [9][lemmata 5 and 6]. We state these lemmata below
for completeness:

Lemma 1. If an ROBDD f over a set of variables
{x1, . . . , xn} is T1-symmetric in the pair(xi, xj) and i < j,
then every ROBDD rooted at a node labeledxi must contain
a node labeledxj .

Lemma 2. If an ROBDD f over a set of variables
{x1, . . . , xn} is T1-symmetric in the pair(xi, xj) and i < j,
then every path from the root off to a node labeledxj must
visit a node labeledxi.

Lemmata 1 and 2 provide two conditions under which asym-
metry can be observed. For any given node labeledxi we can
compute the set of all variablesxj that appear in a ROBDD
that is rooted at that node, and any variable not appearing in
this set is necessarilyT1-asymmetric withxi. Furthermore,
for any given node labeledxj , we can compute the set of
all variablesxi that appear onall paths from the root of the
ROBDD to the node, and any variable not appearing in this set
is T1-asymmetric withxj . These asymmetry conditions can
be checked together in just two depth-first traversals of the
ROBDD, each traversal takingO(n|G|) time since each node
is visited singly and at mostn variables need be considered.

The symmetry relations between the variables are computed
in a series of passes. The validity of this decomposition is
justified by the proposition:
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1: The ROBDDf for the formula(x1 ∧ x2) ∨ x3

Proposition 1. An ROBDD f over a set of variables
{x1, . . . , xn} is T1-symmetric in the pair(xi, xj) andi < j iff

1) every ROBDD rooted at a node labeledxi is T1-
symmetric in(xi, xj) and,

2) every path from the root off to a node labeledxj passes
through a node labeledxi.

Proof.

• Consider theif direction.

– Sincef is T1-symmetric in the variable pair(xi, xj),
f(b1, 1,b2, 0,b3) = f(b1, 0,b2, 1,b3) for all b1 ∈
Booli−1, b2 ∈ Boolj−i−1 and b3 ∈ Booln−j .
Let g = f(b1, xi, . . . , xn) henceg|xi←1,xj←0 =
g|xi←0,xj←1.

– Suppose for the sake of a contradiction that there
exists a path from the root to a node labeled
xj that does not pass through a node labeled
xi. Thus, let g = f(b1, 0,b2, xj , . . . , xn) =
f(b1, 1,b2, xj , . . . , xn) for someb1 ∈ Booli−1 and
b2 ∈ Boolj−i−1. Thus g|xj←0(b3) = g|xj←1(b3)
for all b3 ∈ Booln−j. Hence g|xj←0 = g|xj←1

which is a contradiction sinceg is reduced.

• Consider theonly-if direction, arguing by the con-
trapositive. Suppose there existsb1 ∈ Booli−1,
b2 ∈ Boolj−i−1 and b3 ∈ Booln−j such that
f(b1, 1,b2, 0,b3) = 1 and f(b1, 0,b2, 1,b3) = 0. Let
g = f(b1, xi, . . . , xn).

– Supposeg|xi←0 6= g|xi←1. Thus g is labeled
xi, hence there exists someb2 and b3 such that
g|xi←1(b2, 0,b3) = 1 and g|xi←0(b2, 1,b3) = 0
as required.

– Supposeg|xi←0 = g|xi←1. Henceg is not labeledxi.
Let h = g(0,b2, xj , . . . , xn) = g(1,b2, xj , . . . , xn).
Observeh|xj←0 6= h|xj←1 since h|xj←0(b3) 6=
h|xj←1(b3) as required.

The f(b1, 1,b2, 0,b3) = 0 and f(b1, 0,b2, 1,b3) = 1
case follows analogously.

One may wonder if the second condition in the proposition
is actually necessary. Figure 1 illustrates that this condition
cannot be relaxed. Observe that the variable pair(x2, x3) is
T1-symmetric in the ROBDD rooted atx2, moreover the pair

(x2, x3) is T1-symmetric foreveryROBDD rooted at a node
labeledx2. However, the pair(x2, x3) is T1-asymmetric in the
ROBDD f , and indeed there exists a path from the root off
to the nodex3 that does not visit a node labeledx2.

The proposition allows exhaustive checking to be decom-
posed into a series of passes; one pass for each variable
xi. Observe that when the loop is entered in Algorithm 1,
FindAsymmetry has already added all the pairs(i, j) to A
such that there exists a path from the root to a node labeled
xj which does not pass through a node labeledxi. An index
j for such a pair cannot arise inC. Hence it remains to
remove those indicesj ∈ C which violate the first condition
of the proposition, that is, thosej ∈ C for which f is T1-
asymmetric in the pair(xi, xj). This is precisely the role
of RemoveAsymmetry(f, i, C) in Algorithm 2 where the
parameteri delineates the variable under consideration in the
pass. The algorithm uses the functionindex(f) which merely
returns the index of the root of an ROBDDf , that is,i if the
root of f is labeledxi.

Algorithm 2 RemoveAsymmetry(f, i, C)

if C = ∅ ∨ f = true ∨ f = false then
return C

j ← index(f)
if j > i then

return C
else if j = i then

return RemoveAsymmetryVar(f|xi←0, f|xi←1, C)
else

C ← RemoveAsymmetry(f|xj←0, i, C)
return RemoveAsymmetry(f|xj←1, i, C)

An index j should be removed fromC whenever
f|xi←0,xj←1 6= f|xi←1,xj←0. This T1-asymmetry check is
satisfied if there existsa ∈ Booli−1 andb ∈ Boolj−i−1 such
that f(a, 0,b, 1, xj+1, . . . , xn) 6= f(a, 1,b, 0, xj+1, . . . , xn)
where i refers to the position betweena and b. If
k = index(f), f0 = f|xk←0 and f1 = f|xk←1 then show-
ing f(a, 0,b, 1, xj+1, . . . , xn) 6= f(a, 1,b, 0, xj+1, . . . , xn)
amounts to detecting eitherf0(a, 0,b, 1, xj+1, . . . , xn) 6=
f0(a, 1,b, 0, xj+1, . . . , xn) or f1(a, 0,b, 1, xj+1, . . . , xn) 6=
f1(a, 1,b, 0, xj+1, . . . , xn) for some (smaller)a ∈ Booli−2.
This recursive reduction explains the recursive nature of
RemoveAsymmetry. The testj > i implements a form of
early termination since ifj > i there is no opportunity for
removing any index fromC. The leavestrue and false also
trigger early termination.

At the heart of RemoveAsymmetry is a call to
RemoveAsymmetryVar(f|xi←0, f|xi←1, C) which is ap-
plied to an ROBDD whose root is labeled with the variable
xi. When a call toRemoveAsymmetryVar is initially
encountered, its first and second parameters areg0 = g|xi←0

and g1 = g|xi←1. At this point, it remains to search for
some b ∈ Boolj−i−1 such thatg0(b, 1, xj+1, . . . , xn) 6=
g1(b, 0, xj+1, . . . , xn). This is in turn realized by showing
either g00(b, 1, xj+1, . . . , xn) 6= g10(b, 0, xj+1, . . . , xn) or
g01(b, 1, xj+1, . . . , xn) 6= g11(b, 0, xj+1, . . . , xn) for some
(smaller) b ∈ Boolj−i−2 where g00 = g0|xi+1←0, g10 =
g1|xi+1←0, g01 = g0|xi+1←1 and g11 = g1|xi+1←1. A



Algorithm 3 RemoveAsymmetryVar(g0, g1, C)

if g0 = true ∨ g0 = false then
j ←∞

else
j ← index(g0)

if g1 = true ∨ g1 = false then
r ←∞

else
r ← index(g1)

if C = ∅ ∨ j = r =∞ then
return C

else if j = r then
(l, g00, g01, g10, g11)← (j, g0|xj←0, g0|xj←1, g1|xr←0, g1|xr←1)

else if j < r then
(l, g00, g01, g10, g11)← (j, g0|xj←0, g0|xj←1, g1, g1)

else
(l, g00, g01, g10, g11)← (r, g0, g0, g1|xr←0, g1|xr←1)

if g01 6= g10 then
C ← C \ {l}

C ← RemoveAsymmetryVar(g00, g10, C)
return RemoveAsymmetryVar(g01, g11, C)

recursive formulation ofRemoveAsymmetryVar can be
obtained from this recursive reduction. When bothg0 and
g1 are leaf nodes, no further reduction can be applied and
RemoveAsymmetryVar terminates.

The three cases in Algorithm 3 are required to accommodate
the reduction inherent in ROBDDs. Thej = r condition
selects the case wheng0 and g1 are labeled with the same
variable xj . In this case we computeg0|xj←1 and g1|xj←0

and check thatg0|xj←1 6= g1|xj←0. If the check is satisfiedj
is removed fromC. Whenj < r the co-factorg1|xj←1 = g1

hence the asymmetry checkg0|xj←1 6= g1|xj←0 reduces to
g0|xj←1 6= g1. If this check is satisfiedj is removed fromC.
The r < j case is analogous except thatr is removed.

Caching can be applied to ensure that the function
RemoveAsymmetryVar is not called twice on the same pair
of ROBDDsg0 andg1. Moreover, the complexity of a call to
RemoveAsymmetryVar is in O(|G|2) if C is represented
as an array ofn Booleans. Then computingC \ {l} is in
O(1), as is the testC = ∅ when C is augmented with a
counter to record|C|. Overall,RemoveAsymmetryVar can
only be invoked a total of|G| times from within Algorithm 1,
thus RemoveAsymmetryVar contributesO(|G|3) to the
overall running time. Then−1 calls toRemoveAsymmetry
cumulatively costO(n|G|). Returning to the main loop of
Algorithm 1, observe that the setsA andS can be augmented
in O(n) time whenD is also represented as an array ofn
Booleans andA and S are represented asn × n adjacency
matrices. Algorithm 1 is therefore inO(n2 + n|G| + |G|3).
Interestingly, although this improves on the algorithm of
Mishchenko when set operations are considered, it does not
improve on the naı̈ve co-factor computation method [9], [20]
which resides inO(n2|G| lg(|G|)).

V. OPTIMIZED ANYTIME SYMMETRY DETECTION

In this section we propose a series of optimizations for
Algorithm 1. The resulting refined algorithm retains the in-
cremental nature of the original algorithm, and shows how in-
crementality can be exploited by several optimizations. These

optimizations seek to reduce the size of the setC, and hence
the running time of the callRemoveAsymmetry(f, i, C), by
enriching the setsA and S on-the-fly before, and between,
iterations of the main loop. The symmetry sieve algorithms
proposed by [9], [10], [20] suggest a way to refine the setsA
andS before the loop is entered. Furthermore, it is possible to
take advantage of the transitivity of theT1-symmetry relation
to add further pairs toA and S between iterations. The
novelty is not in the optimizations themselves, but rather
that an anytime reformation of symmetry detection naturally
accommodates various useful optimizations [9], [10], [20]. The
optimized algorithm listed in Algorithm 4 takes an ROBDD
f and returns the setS of T1-symmetric variable pairs.

Algorithm 4 OptimizedSymmetricPairs(f )

A′ ← FindAsymmetry(f)
M ← SatisfyCounts(f)
for i = 1 to n do

for j = i + 1 to n do
if M(i) 6= M(j) then

A′ ← A′ ∪ {(i, j), (j, i)}
(A, S)← FindAdjSymmetry(f)
(A, S)← (A ∪A′, S \A′)
for i = 1 to n− 2 do

(A,S)← SymmetryClosure(A,S)
C ← { j | (i, j) 6∈ (A ∪ S) ∧ i + 1 < j}
D← RemoveAsymmetry(f, i, C)
A← A ∪ {(i, l), (l, i) | l ∈ C \D}
S ← S ∪ {(i, l), (l, i) | l ∈ D}

return S

SatisfyCounts(f) returns a mappingM from variable
indices to a natural number that can be used to distinguish
pairs of T1-asymmetric variables, that is, ifM(i) 6= M(j)
then (xi, xj) are T1-asymmetric.FindAdjSymmetry(f)
returns two sets of index pairsA and S where
{(i, j) | ¬T

xi,xj

1 (f)∧ j = i + 1} ⊆ A ⊆ {(i, j) | ¬T
xi,xj

1 (f)}
andS = {(i, j) | T

xi,xj

1 (f)∧ j = i + 1}. Since the procedure
FindAdjSymmetry finds all adjacentT1-symmetric and
T1-asymmetric pairs, the number of loop iterations can be
relaxed fromn − 1 to n − 2. SymmetryClosure(A1, S1)
takes as input two setsA1 andS1 of variable pairs known to
be T1-asymmetric andT1-symmetric respectively. Then, by
reasoning about transitivity, a pair of sets(A2, S2) is computed
which are T1-symmetric and T1-asymmetric such that
A2 ⊇ A1 and S2 ⊇ S1. The proceduresSatisfyCounts,
FindAdjSymmetry andSymmetryClosure are detailed
in Sections V-A, V-B and V-C respectively. Section V-D
presents some heuristics which endeavor to increase the
proportion ofT1-symmetric variable pairs that are discovered
early on in the execution of the main loop of Algorithm 4.

A. Satisfy Counts

A consequence ofT1-symmetry, which can also be used
to detectT1-asymmetry [10], relates the satisfy count of one
positive co-factor of a variable to the satisfy count of another:

Lemma 3. If a Boolean functionf over a set of vari-
ables{x1, . . . , xn} is T1-symmetric in the pair(xi, xj), then
‖f|xi←1‖ = ‖f|xj←1‖.



Computing the satisfy counts of all co-factors can be realized
using a single depth-first traversal of the ROBDD inO(n|G|)
time [10]. Finding the resultant asymmetries additionallyre-
quiresn2 comparisons in Algorithm 4, and thus the overall
complexity of this sieve isO(n2 + n|G|).

B. Adjacent Symmetries

The following result follows immediately from Proposi-
tion 1 and details a special case of symmetry which relates
to variables that are adjacent in the ROBDD ordering:

Corollary 1. An ROBDD f over a set of variables
{x1, . . . , xn} is T1-symmetric in the pair(xi, xi+1) iff

1) every ROBDD rooted at a node labeledxi is T1-
symmetric in(xi, xi+1) and,

2) every path from the root off to a node labeledxi+1

passes through a node labeledxi.

The force of this result is that the equivalence
f|xi←0,xi+1←1 = f|xi←1,xi+1←0 can be checked inO(|G|)
time for all adjacent variable pairs [20]. In fact Proposition 1
leads to a further result that can detectT1-asymmetric variable
pairs that are not necessarily adjacent in the variable ordering:

Corollary 2. An ROBDD f over a set of variables
{x1, . . . , xn} is T1-asymmetric in the pair(xi, xk) if there
exists a nodeg in f labeledxi with successor nodes labeled
xk andxl wherei+1<k≤ l andg|xi←0,xk←1 6= g|xi←1,xk←0.

These non-consecutiveT1-asymmetric pairs can be detected
in O(|G|) time. Of course, the firstO(|G|) tactic for en-
riching A and S can only be deployed in conjunction
with FindAsymmetry; the second tactic is independent of
FindAsymmetry.

C. Symmetry Closure

The following lemma can be obtained by recalling that a
functionf remains unchanged under the switching of any pair
of T1-symmetric variables:

Lemma 4. If a Boolean functionf over a set of variables
X = {x1, . . . , xn} is T1-symmetric in the pairs(xi, xj) and
(xj , xk) thenf is alsoT1-symmetric in the pair(xi, xk).

This transitivity result provides a way of enriching the set
S, that is, if (xi, xj), (xj , xk) ∈ S then it follows that
(xi, xk) is also aT1-symmetric pair, henceS can be en-
riched with (xi, xk). Further, if (xi, xj) ∈ S, (xi, xk) ∈ A
then it follows that the pair(xj , xk) is T1-asymmetric, that
is, A can be enriched with(xj , xk). This follows since if
(xj , xk) is T1-symmetric then by the lemma it follows that
(xi, xk) is T1-symmetric, which is a contradiction. Adding
those variable pairs toA and S which can be inferred
through transitivity is not dissimilar to computing the tran-
sitive closure of a binary relation. This motivates adapting
an algorithm such as the Floyd-Warshall all-pairs-shortest-
path algorithm [29], [30] to this task. The complexity of
this transitive algorithm is inO(n3) when A and S are
represented asn × n adjacency matrices. Each iteration of
the main loop of Algorithm 4 incurs an additional call to

SymmetryClosure, which computes the transitive closure,
and pushes the overall complexity intoO(n4 + n|G| + |G|3).
Recall thatSatisfyCounts andFindAdjSymmetry are
in O(n|G|) and O(|G|) respectively which have no impact
on the overall asymptotic complexity. However, although the
Floyd-Warshall is attractive because of its simplicity, the
complexity can be reduced toO(n3 + n|G| + |G|3), or even
lower, by substituting Floyd-Warshall with an incremental(on-
line) transitive closure algorithm [31].

D. Variable Choice Heuristics

The astute reader may have noticed that the correctness
of Algorithm 4 is not compromised by the order in which
variables are considered in the main loop. One may wonder
therefore if considering variables in a different order canspeed
up the algorithm. One natural approach is to choose a variable
xi that maximizes|{(xi, xj) 6∈ (A ∪ S) ∧ i < j}|. The ratio-
nale behind this greedy heuristic is to ensure that the call to
RemoveAsymmetry resolves the maximal number of vari-
able pairs whoseT1-symmetry relation is unknown. The dual
of this heuristic is to choose a variablexi for which unknowns
remain which minimizes|{(xi, xj) 6∈ (A ∪ S) ∧ i < j}|. Moti-
vation for this heuristic comes from literature [32] on comput-
ing signatures for Boolean functions so as to determine input
correspondence. This is the problem of determining whether
the variables of one ROBDD can be reordered so that the re-
sulting ROBDD is equivalent to another. It has been observed
that if the currently known asymmetry sieves [10], [20] leave
only a handful of pairs for which a symmetry is unknown, then
these variables are likely to be involved in some symmetry
relationship [32]. Therefore, focusingRemoveAsymmetry
on the variable with the least unknowns is likely to discover
T1-symmetries. We call these two heuristicsmax and min
respectively. It should be pointed out that for both these heuris-
tics, a variable can be chosen inO(n) time by maintaining
a counter for each variablexi that records the number of
unknowns, that is,|{(xi, xj) 6∈ (A ∪ S) ∧ i < j}|. The counter
for xi is decremented each time a pair(xi, xj) is added toA or
S. The cumulative overhead of running the heuristic over the
loop body is inO(n2) which is absorbed into the asymptotic
running time of the algorithm.

VI. GENERALIZED ANYTIME SYMMETRY DETECTION

In this section we show how to extend the anytime algorithm
presented in the previous section to also detect the generalized
symmetry types given in Table I. The section presents a series
of novel results which detail the structural constraints that
generalized symmetries place on an ROBDD. The force of
these results is that they justify the construction of asymmetry
sieves since an ROBDD cannot possess a symmetry if the
structural constraints that follow from that symmetry do not
hold. These results also explain how generalized symmetry
detection can be decomposed into a series of passes. In
addition, the section presents a number of novel transitivity
results of the form, that ifT xi,xj

p (f) and T
xj,xk
q (f) hold

then T
xi,xj
r (f) holds whereTp, Tq and Tr denote one of

the 12 generalized symmetry types. These transitivity results



allow assymetry/symmetry propagation to be inserted between
the passes of any anytime generalized symmetry detection
algorithm.

Algorithm 5 takes as input an ROBDDf and returns the set
of triples S = {(i, j, k) | T

xi,xj

k (f)}. The algorithm is com-
posed of three distinct procedures.FindFastSymmetry(f)
returns a pair(A, S) such thatA = {(i, j, k) | ¬T

xi,xj

k (f) ∧
k ∈ K} and S = {(i, j, k) | T

xi,xj

k (f) ∧ k ∈ K}
whereK = {3, 4, 9, 10}. FindSlowAsymmetry(f) returns
a set A′ ⊆ {(i, j, k) | ¬T

xi,xj

k (f) ∧ k ∈ K ′} where
K ′ = {1, . . . , 12} \ K. In an analogous fashion to before,
GeneralRemoveAsymmetry(f, i, C) filters a set of pairs
C to return a subsetC′ ⊆ C. If the Tk-symmetry relationship
between the variablesxi and xj is presently unknown then
(j, k) ∈ C. The returned setC′ ⊆ C is precisely those pairs
C′ = {(j, k) ∈ C | T

xi,xj

k (f) ∧ k ∈ K ′}.

Algorithm 5 GeneralizedSymmetricPairs(f )

(A,S)← FindFastSymmetry(f)
A← A∪ FindSlowAsymmetry(f)
for i = 1 to n− 1 do

C ← { (j, k) | (i, j, k) 6∈ (A ∪ S) ∧ i < j}
D ← GeneralRemoveAsymmetry(f, i, C)
A← A ∪ {(i, l, k), (l, i, k) | (l, k) ∈ C \D}
S ← S ∪ {(i, l, k), (l, i, k) | (l, k) ∈ D}

return S

A. Fast Symmetries

Interestingly, some types of generalized symmetry are easier
to compute than others. In fact,T3 and T4-symmetries and
T9 and T10-symmetries can be computed inO(n|G|) and
O(n2|G|) respectively, utilizing the following two proposi-
tions. The proofs for the results reported in this section
are similar in spirit to that of Proposition 1 and therefore,
for reasons of continuity, are relegated to an accompanying
technical report [33].

Proposition 2. An ROBDD f over a set of variables
{x1, . . . , xn} is T3-symmetric (resp.T4-symmetric) in the pair
(xi, xj) and i < j iff

1) if whenever an ROBDDg occurs inf at a node labeled
xi then g|xi←0 (resp.g|xi←1) does not contain a node
labeledxj and,

2) every path from the root off to a node labeledxj passes
through a node labeledxi.

Proposition 3. An ROBDD f over a set of variables
{x1, . . . , xn} is T9-symmetric (resp.T10-symmetric) in the
pair (xi, xj) and i < j iff

1) if whenever an ROBDDg occurs inf at a node labeled
xi then every path throughg|xi←0 (resp.g|xi←1) visits
a nodeh labeledxj such thath|xj←0 = ¬h|xj←1 and,

2) every path from the root off to a nodeh labeledxj

which does not visit a node labeledxi, satisfies the
property thath|xj←0 = ¬h|xj←1.

The first and second conditions of Proposition 2 can be
checked in two depth-first traversals both requiringO(n|G|)

time and thus allT3 and T4-symmetries can be detected
in O(n|G|) time overall. DetectingT9 and T10-symmetries
resides inO(n2|G|) since Proposition 3 implies thatT9 and
T10-asymmetries can be found by systematically searching
through all pairs of variables(xi, xj), checking thatf includes
a path that neither containsxi norxj . These propositions assert
thatT3, T4, T9 andT10-symmetries are surprisingly tractable,
and therefore suggest that these symmetries are particularly
interesting for those applications where it is not necessary to
compute all types of generalized symmetry [10]–[12].

B. Slow Symmetries

Computing the remaining generalized symmetries, namely
T2, T5, T6, T7, T8, T11 andT12, requires more effort. The fol-
lowing four propositions explain how each of these symmetry
relations can be computed in a series of passes where each
pass computes all the symmetry types for each variablexi.

Proposition 4. An ROBDD f over a set of variables
{x1, . . . , xn} is T2-symmetric in the pair(xi, xj) andi < j iff

1) every ROBDD rooted at a node labeledxi is T2-
symmetric in(xi, xj) and,

2) every path from the root off to a node labeledxj passes
through a node labeledxi.

Like before, the proposition asserts that allT2-symmetries
can be found in two stages. The first stage, a lightweight
preprocessing step, marks a pair(xi, xj) as T2-asymmetric
if f contains a path to a node labeledxj that does not pass
through a node labeledxi. The second stage, which amounts to
exhaustive search, examines each node labeledxi and checks
whether the ROBDD rooted at that node isT2-asymmetric
in (xi, xj). The first check is one of a number carried out
by the call toGeneralRemoveAsymmetry in the main
loop of Algorithm 5. The second check is realized in the
function FindSlowAsymmetry which precedes the main
loop. Thus, paradoxically, the first check is applied chronolog-
ically after the second check.GeneralRemoveAsymmetry
and FindSlowAsymmetry also carry out checks to ver-
ify the first and second conditions of both Propositions 6
and 7. The simple structure of Proposition 5 permitsT5

and T6 symmetries to be detected without a preprocess-
ing step; these symmetries are solely detected within the
GeneralRemoveAsymmetry procedure.

Proposition 5. An ROBDD f over a set of variables
{x1, . . . , xn} is T5-symmetric (resp.T6-symmetric) in the pair
(xi, xj) and i < j iff every ROBDD rooted at a node labeled
xi is T5-symmetric (resp.T6-symmetric) in(xi, xj).

Proposition 6. An ROBDD f over a set of variables
{x1, . . . , xn} is T7-symmetric (resp.T8-symmetric) in the pair
(xi, xj) and i < j iff

1) every ROBDD rooted at a node labeledxi is T7-
symmetric (resp.T8-symmetric) in(xi, xj) and,

2) every path from the root off to a nodeh labeledxj

which does not visit a node labeledxi, satisfies the
property thath|xj←0 = ¬h|xj←1.



Proposition 7. An ROBDD f over a set of variables
{x1, . . . , xn} is T11-symmetric (resp.T12-symmetric) in the
pair (xi, xj) and i < j iff

1) every ROBDD rooted at a node labeledxi is T11-
symmetric (resp.T12-symmetric) in(xi, xj) and,

2) every path from the root off passes through a node
labeledxi.

The following two lemmata detail structural properties of
ROBDDs that hold in the presence ofT5, T6, T7, T8, T11 and
T12-symmetries. The absence of these properties imply that
these symmetries cannot hold. In the case of Lemma 5, an
O(n|G|) complexity algorithm can be applied to ascertain
whether every ROBDD rooted at a node labeledxi contains
a node labeledxj . This result therefore provides a sieve
for T5 and T6-symmetries that can be incorporated into
FindSlowAsymmetry. A sieve for T7, T8, T11 and T12-
symmetries follows from Lemma 6 since the two cases of
the lemma can both be checked inO(n|G|) time. This is also
implemented withinFindSlowAsymmetry.

Lemma 5. If an ROBDD f over a set of variables
{x1, . . . , xn} is T5-symmetric (resp.T6-symmetric) in the pair
(xi, xj) andi < j then every ROBDD rooted at a node labeled
xi contains a node labeledxj .

Lemma 6. If an ROBDD f over a set of variables
{x1, . . . , xn} is T7-symmetric (resp.T8-symmetric, T11-
symmetric andT12-symmetric) in the pair(xi, xj) and i < j
then every ROBDDg rooted at a node labeledxi satisfies the
property that

1) g contains a node labeledxj or,
2) g|xi←0 = ¬g|xi←1.

The recursive structure ofGeneralRemoveAsymmetry
follows that of RemoveAsymmetry except that the call
GeneralRemoveAsymmetryVar(f|xi←0, f|xi←1, C) lies
at its heart.GeneralRemoveAsymmetryVar in turn mim-
ics the structure ofRemoveAsymmetryVar except that it
performs co-factor checks forT1, T2, T5, T6, T7, T8, T11 and
T12-symmetries. Note that theT3, T4, T9 andT10-symmetries
are already completely determined byFindFastSymmetry
and hence need not be reconsidered. The complexity of a
single call toGeneralRemoveAsymmetryVar is O(|G|2)
and since this function can only be invoked a total of|G| times
in Algorithm 5 when caching is applied, it follows that the
overall complexity of this procedure isO(|G|3). The prepro-
cessing checks implemented withinFindSlowAsymmetry
for Propositions 2, 4 and 7 all requireO(n|G|) time whereas
the preprocessing required for Propositions 3 and 6 take
O(n2|G|). Algorithm 5 thus resides inO(n2|G|+|G|3) overall.

C. Generalized Symmetry Propagation

To reduce the cost of each iteration of the main loop of Al-
gorithm 5, one can apply asymmetry/symmetry propagation in
the spirit of that employed in Algorithm 4. Tsaiet al. [22] have
reported transitivity results for some generalized symmetries,
but to fully exploit asymmetry/symmetry propagation these
results need to be extended to all12 generalized symmetries.

Algorithm 6 GeneralRemoveAsymmetry(f, i, C)

if C = ∅ ∨ f = true ∨ f = false then
return C

j ← index(f)
if j > i then

return C
else if j = i then

return GeneralRemoveAsymmetryVar(f|xi←0, f|xi←1, C)
else

C ← GeneralRemoveAsymmetry(f|xj←0, i, C)
return GeneralRemoveAsymmetry(f|xj←1, i, C)

Algorithm 7 GeneralRemoveAsymmetryVar(g0, g1, C)

if g0 = true ∨ g0 = false then
j ←∞

else
j ← index(g0)

if g1 = true ∨ g1 = false then
r ←∞

else
r ← index(g1)

if C = ∅ ∨ j = r =∞ then
return C

else if j = r then
(l, g00, g01, g10, g11)← (j, g0|xj←0, g0|xj←1, g1|xr←0, g1|xr←1)

else if j < r then
(l, g00, g01, g10, g11)← (j, g0|xj←0, g0|xj←1, g1, g1)

else
(l, g00, g01, g10, g11)← (r, g0, g0, g1|xr←0, g1|xr←1)

if g10 6= g01 then
C ← C \ {(l, 1)}

if g00 6= g11 then
C ← C \ {(l, 2)}

if g00 6= g10 then
C ← C \ {(l, 5)}

if g01 6= g11 then
C ← C \ {(l, 6)}

if g10 6= ¬g01 then
C ← C \ {(l, 7)}

if g00 6= ¬g11 then
C ← C \ {(l, 8)}

if g00 6= ¬g10 then
C ← C \ {(l, 11)}

if g01 6= ¬g11 then
C ← C \ {(l, 12)}

C ← GeneralRemoveAsymmetryVar(g00, g10, C)
return GeneralRemoveAsymmetryVar(g01, g11, C)

One such extension that involvesT1 and T3-symmetries is
presented in the following lemma:

Lemma 7. If a Boolean functionf over a set of variables
{x1, . . . , xn} is T1-symmetric in the pair(xi, xj) and T3-
symmetric in the pair(xj , xk), thenf is T3-symmetric in the
pair (xi, xk).

Proof. Suppose T
xi,xj

1 (f) and T
xj,xk

3 (f) hold. Thus
f|xi←1,xj←0 = f|xi←0,xj←1, therefore f|xi←1,xj←0,xk←0

= f|xi←0,xj←1,xk←0 and likewise f|xi←1,xj←0,xk←1 =
f|xi←0,xj←1,xk←1. Also f|xj←0,xk←0 = f|xj←0,xk←1, thus
f|xi←0,xj←0,xk←0 = f|xi←0,xj←0,xk←1 andf|xi←1,xj←0,xk←0

= f|xi←1,xj←0,xk←1. Therefore f|xi←0,xj←0,xk←0 =
f|xi←0,xj←0,xk←1 andf|xi←0,xj←1,xk←0 = f|xi←1,xj←0,xk←0

= f|xi←1,xj←0,xk←1 = f|xi←0,xj←1,xk←1. Hencef|xi←0,xk←0



II: Transitivity Results
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= f|xi←0,xk←1 andT xi,xk

3 (f) holds.

Table II summarizes a collection of lemmata that state implica-
tional relationships between various generalized symmetries.
For example, if T xi,xj

3 (f) and T
xj,xk

4 (f) hold for some
ROBDD f thenT xi,xk

3 (f) also holds. Implicational relation-
ships that have been previously reported [22] are marked
with a †. Proofs for all the other implicational relationships
of Table II can be found in the accompanying technical
report [34]. Many of these results are established with proofs
whose structure mirrors that used to substantiate lemma 7.
The correctness of the remaining results, flows from multiple
applications of the following lemma that states equivalences
between the generalized symmetries of the formT x,y

i (f) and
T y,x

j (f) for any ROBDDf for variousi, j ∈ {1, . . . , 12}.

Lemma 8.
1) T x,y

1 (f) ⇐⇒ T y,x
1 (f) andT x,y

7 (f) ⇐⇒ T y,x
7 (f)

2) T x,y
2 (f) ⇐⇒ T y,x

2 (f) andT x,y
8 (f) ⇐⇒ T y,x

8 (f)
3) T x,y

3 (f) ⇐⇒ T y,x
5 (f) andT x,y

9 (f) ⇐⇒ T y,x
11 (f)

4) T x,y
4 (f) ⇐⇒ T y,x

6 (f) andT x,y
10 (f) ⇐⇒ T y,x

12 (f)

Proof. For brevity we only consider the positive cases.

•

T x,y
1 (f) ⇐⇒ f|x←1,y←0 = f|x←0,y←1 ⇐⇒

f|y←1,x←0 = f|y←0,x←1 ⇐⇒ T y,x
1 (f)

•

T x,y
2 (f) ⇐⇒ f|x←0,y←0 = f|x←1,y←1 ⇐⇒

f|y←0,x←0 = f|y←1,x←1 ⇐⇒ T y,x
2 (f)

•

T x,y
3 (f) ⇐⇒ f|x←0,y←0 = f|x←0,y←1 ⇐⇒

f|y←0,x←0 = f|y←1,x←0 ⇐⇒ T y,x
5 (f)

•

T x,y
4 (f) ⇐⇒ f|x←1,y←0 = f|x←1,y←1 ⇐⇒

f|y←0,x←1 = f|y←1,x←1 ⇐⇒ T y,x
6 (f)

The value of the above lemma is that it can be applied to
show, for example, that theT x,y

3 /T y,z
7 entry of Table II is a

consequence of theT x,y
7 /T y,z

5 entry. In fact three applications
of the above lemma are needed to establish the correctness of
the T x,y

3 /T y,z
7 entry, as formalised in the following lemma.

Lemma 9. If a Boolean functionf over a set of variables
{x1, . . . , xn} is T3-symmetric in the pair(x, y) and T7-
symmetric in the pair(y, z), then f is T9-symmetric in the
pair (x, z).

Proof. SupposeT x,y
3 (f) and T y,z

7 (f) hold. By two applica-
tions of Lemma 8 it follows thatT y,x

5 (f) and T z,y
7 (f) hold.

HenceT z,y
7 (f) andT y,x

5 (f) hold. By Table II it follows that
T z,x

11 (f) holds and by another application of Lemma 8 it
follows thatT x,z

9 (f) holds as required.

We conjecture that no implicational symmetry relationships
hold for the combinations of symmetry that lead to a blank
entry in the table.

With the results of Table II in place, it is straightforward
to construct an analogue ofSymmetryClosure(A, S) for
generalized symmetries. The complexity of the generalized
closure algorithm remainsO(n3), assuming that an incre-
mental algorithm is applied. Thus the overall running time
of generalized symmetry detection with asymmetry/symmetry
propagation isO(n3 + n2|G| + |G|3).

VII. E XPERIMENTAL RESULTS

The anytime algorithm and all its refinements have been
implemented using the CUDD [35] Decision Diagram pack-
age, so as to assess the efficiency of the anytime approach.
The rationale for this choice of package was that the Extra
DD library [36], which implements Mishchenko’s algorithm,
also uses CUDD. The main experiments were performed on
an UltraSPARC IIIi 900MHz based system, equipped with
16GB RAM, running the Solaris 9 Operating System, using
getrusage to gauge CPU usage in seconds. The CUDD
package, the Extra library, and our algorithm were all compiled
with the GNU C Compiler version 3.3.0 with-O3 enabled.
The algorithms were run against a range of MCNC and ISCAS
benchmark circuits of varying size [37], as well as several
other benchmarks derived from the SAT literature. All timings
are given in seconds and averaged over four runs.

Table III presents the results of these tests, the first four
columns of the table give, respectively, the circuit name, num-
ber of input variables, number of defined functions (outputs)
and the sum of the number of internal ROBDD nodes across
all outputs (which does not consider sharing between outputs).
Column|S| records the total number of allT1-symmetric pairs
found over all the outputs. ColumnRead gives the time in
seconds to read in the benchmark circuit and construct the



III: T1-symmetry Experimental Results with (above) and without (below) variable reordering applied

Circuit # In # Out Σ|G| |S| Read Naı̈ve Möller Mish-GC Mish+GC Any Sat Adj Close

alu2 10 6 192 4 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
alu4 14 8 1099 6 0.01 0.05 0.01 0.01 0.01 0.01 0.01 0.01 0.01
C1355 41 32 65323 0 5.62 49.95 31.93 0.02 0.09 2.13 1.67 1.68 1.68
C1908 33 25 17682 248 2.10 5.71 1.89 0.07 0.12 0.64 0.42 0.26 0.20
C2670 233 140 8904 1547 1.10 64.36 13.50 0.32 4.67 2.84 2.65 2.62 2.21
C3540 50 22 43334 81 14.00 38.37 0.99 0.94 6.84 3.45 2.89 2.35 1.99
C432 36 7 1475 0 0.16 0.64 0.03 0.02 0.02 0.02 0.01 0.01 0.01
C499 41 32 101701 0 3.00 77.09 55.86 0.04 0.09 2.62 2.41 2.42 2.44
C5315 178 123 9434 521 0.72 5.69 0.50 0.28 0.50 0.48 0.36 0.34 0.29
C7552 207 108 29142 1879 7.36 366.18 191.69 0.70 6.34 3.57 3.21 2.01 2.68
C880 60 26 8753 262 0.44 5.20 0.13 0.22 1.01 0.24 0.16 0.12 0.10
dalu 75 16 1728 982 0.45 1.05 0.10 0.06 0.08 0.13 0.11 0.08 0.07
des 256 245 6063 1264 0.35 0.43 0.21 0.13 0.16 0.16 0.15 0.12 0.10
frg2 143 139 2339 1353 0.11 0.25 0.07 0.04 0.08 0.08 0.08 0.05 0.04
i10 257 224 52811 3746 9.49 98.13 4.14 2.09 427.69 1.87 1.54 1.52 1.27
k2 256 245 3029 338 0.04 0.79 0.03 0.07 0.10 0.07 0.04 0.02 0.01
pair 173 137 8599 1910 0.60 2.71 0.50 0.18 0.62 0.48 0.36 0.32 0.28
rot 135 107 4132 364 0.28 2.60 0.10 0.11 0.26 0.39 0.34 0.29 0.23
s4863 153 104 75549 547 87.58 14.78 0.80 0.09 1.28 0.50 0.32 0.29 0.16
s9234.1 247 250 9376 3454 2.16 6.76 0.76 0.39 1.46 0.87 0.74 0.68 0.42
s38584.1 1464 1730 34833 15629 13.10 18.36 1.72 2.89 4.11 4.83 3.26 2.96 2.80
too large 38 3 2312 17 0.15 1.15 0.04 0.04 0.20 0.03 0.02 0.01 0.01
simp12 117 1 292811 23 230.61 >7200 22.19 12.61 61.96 55.55 22.22 21.81 21.96
hom08 95 1 110160 16 128.91 >7200 4.39 4.18 134.31 17.48 4.70 4.74 4.50
ca016 107 1 90033 26 33.45 6444.37 2544.87 19.54 >7200 20.19 17.01 16.36 14.10
urquhart425 68 1 45008 27 23.21 3330.31 1070.31 4.57 >7200 6.94 6.37 6.31 6.23
rope 0006 61 1 11066 13 5.01 564.39 216.53 0.40 28.17 1.28 1.03 0.99 0.98
ferry10 116 1 3141 38 6.18 140.32 64.45 0.34 >7200 0.44 0.42 0.46 0.48
gripper12 129 1 17035 43 165.65 >7200 >7200 7.05 5365.41 35.35 34.89 34.80 36.32

C1355 41 32 110675 0 10.25 111.41 52.68 0.13 0.33 6.11 5.89 5.90 5.91
C1908 33 25 30832 248 0.16 14.95 4.21 0.13 0.30 1.01 1.00 0.98 0.38
C2670 233 140 9869047 1547 39.19 >7200 3854.76 907.71 >7200 187.10 161.23 156.32 124.86
C3540 50 22 4618194 81 21.80 >7200 122.09 132.72 5488.75 71.64 68.23 66.08 65.04
C432 36 7 32151 0 0.20 14.36 0.38 0.77 45.23 0.68 0.46 0.45 0.45
C499 41 32 110675 0 0.14 94.66 50.72 0.40 0.45 5.29 4.97 4.96 4.96
C880 60 26 600998 262 8.29 704.54 10.23 13.90 2242.11 7.75 6.84 5.63 5.20
dalu 75 16 5128 982 0.06 1.43 0.38 0.12 0.17 0.67 0.64 0.61 0.34
des 256 245 15209 1264 0.19 0.73 0.47 0.15 0.33 0.21 0.20 0.17 0.11
frg2 143 139 6679 1353 0.04 0.47 0.05 0.11 0.19 0.09 0.08 0.07 0.04
i10 257 224 150353 3746 0.61 1203.85 30.26 5.89 >7200 5.61 5.12 4.86 4.12
pair 173 137 118066 1910 0.20 132.46 4.45 6.62 35.50 2.37 2.18 2.16 2.08
rot 135 107 13565 364 0.10 12.72 0.31 0.32 4.50 0.61 0.31 0.30 0.22
s4863 153 104 126988 547 2.63 20.60 1.45 5.30 5.71 1.41 1.08 1.01 0.82
s9234.1 247 250 4434504 3454 20.14 >7200 1415.88 1407.20 >7200 183.84 158.36 145.94 141.26
s38584.1 1464 1730 150554 15629 3.70 337.59 23.01 16.70 132.16 3.12 3.04 3.01 2.80
simp12 117 1 758330 23 76.23 >7200 139.45 >7200 >7200 105.67 61.94 59.87 57.59
hom08 95 1 893312 16 56.48 >7200 466.21 135.79 >7200 67.79 54.99 50.89 49.00
ca016 107 1 861209 26 60.10 >7200 744.55 305.11 >7200 72.68 59.96 50.90 50.80
urquhart425 68 1 1736705 27 5.96 >7200 974.83 >7200 >7200 83.44 81.84 76.48 72.02
rope 0006 61 1 759039 13 3.14 >7200 225.23 657.74 >7200 35.78 30.76 30.64 30.68
ferry10 116 1 539419 38 88.08 >7200 2177.43 1866.62 >7200 70.34 69.84 54.19 53.42
gripper12 129 1 667877 43 50.95 >7200 2604.07 368.50 >7200 106.32 102.87 85.43 84.90



ROBDD. The remaining columns give the runtimes required
to compute allT1-symmetric andT1-asymmetric pairs. The
first of these,Naı̈ve, is the naı̈ve method which computes
all co-factor pairs. (The results of this method were used to
verify the correctness of all subsequent methods.) The second
column,Möller, applies the sieves of Sections V-A and V-B
to reduce the number of co-factor calculations. The third and
fourth columns,Mish-GC and Mish+GC, are Mishchenko’s
implementation of his own algorithm [36] without and with
garbage collection enabled. The fifth column,Any, is the
unoptimized anytime algorithm presented in Section IV. The
remaining three columns,Sat, Adj and Close, are the times
with the optimizations of Sections V-A, V-B and V-C cu-
mulatively enabled. The garbage generated by Mishchenko’s
implementation stems from its use of ZBDDs to represent sets.
Enabling garbage collection has not impact on our algorithm.

The columns labeledSat, Adj andCloseof Table III suggest
that all the optimizations to the basic anytime algorithm
are worthwhile, though not essential. Interestingly, computing
transitive closure is not prohibitively expensive even when
implemented using the sub-optimal Floyd-Warshall algorithm.
This is because this algorithm can be implemented efficiently
and straightforwardly with three nested loops. This simplicity
of this optimization suggests that it should be applied in
conjunction with the naı̈ve method [20]. The rows of the table
above the double lines record the outcomes of the experiments
when circuits are constructed using dynamic variable ordering.
The so-called automatic variable ordering option providedby
CUDD was applied using the default settings which periodi-
cally activates the sifting algorithm of Rudell [21]. The rows
beneath the double lines repeat the experiments with variable
reordering disabled. This leads to much larger ROBDDs and
therefore constitutes a form of strength test for all algorithms.
Those benchmarks not repeated in the bottom section of the
table correspond to those circuits which are the same size,
with and without variable reordering.

Table III can only be meaningfully interpreted in conjunc-
tion with asymptotic complexity results. Complexity results,
such as the assertion that the basic anytime algorithm resides
in O(|G|3) assumingn ≤ |G|, are ultimately statements about
scalability; such results predict how the running time of an
algorithm will grow with the size of the input ROBDD. These
statements have particular weight when combined with the
experimental results of Table III that gauge the asymptotic
constants. For instance, if the basic anytime terminates within
an acceptable time for very large ROBDDs then (no matter
whether the ROBDD has been created with or without sifting,
and irrespective of the number of symmetries inferred), the
algorithm will terminate within an acceptable time for smaller
ROBDDs. This is because the total number of atomic oper-
ations isO(|G|). Interestingly, the algorithm of Mishchenko
is O(|G|3) in the number of set operations, where each
set operation will have variable complexity depending, for
instance, on the number of represented symmetry pairs. More-
over, when sets are realised as ZBDDs, the cost of each set
operation will also vary due to memoization (caching) effects
and the overheads induced by memory management. This
variability is evident in the columnsMish-GC andMish+GC.

This key difference in the asymptotic complexity explains
why, although the running time of the anytime algorithms
are consistently below 200 secs, and certainly never exceeds
2 hours, that these algorithms are not uniformly faster than
the algorithm of Mishchenko because of the variability of its
ZBDD operations.

Table V presents a comparison between the generalized
symmetry algorithm of Zhanget al. [12] and the gener-
alized anytime approach. Mishchenko’s implementation was
modified to detectT1, T2, T7 and T8-symmetries following
the ideas prescribed by Zhanget al. The timings given for
the anytime algorithm reflect the time required to compute
all 12 generalized symmetry types. This algorithm applies
asymmetry/symmetry propagation between iterations of the
main loop and uses all sieves described thus far.

Figure 2 summarizes the outcome of some experiments
that investigate the relationship between the variable choice
heuristics and the proportion of symmetries found early in the
execution of the algorithm. The graphs display the number
of symmetries found against various timeouts for themin and
max heuristics using the original algorithm as a control. Apart
from the circuits hanoi4, homer08 and rope 0006 (graphs
9, 10 and 11) themin heuristic increases the proportion of
symmetries found early in the execution of the algorithm.
In the case ofdp02s02(graph 5) andgripper12 (graph 8),
the difference betweenmin and both the control andmax is
stark. This suggests that themin heuristic should always be
applied since it never gives a significant slowdown when the
algorithm is run to completion and is beneficial in the case of
early termination. For five of the circuits (graphs 6 to 10) the
number of symmetries grows consistently with time. However,
for other circuits, growth is either more sporadic or biased
towards the latter passes of the symmetry detection algorithm.
For these circuits, only a fraction of symmetry pairs could
be recovered if these algorithms were terminated prematurely.
This is why it is important that anytime generality should not
be achieved at the expense of efficiency.

Finally, one may wonder how the performance of the
classical and generalized anytime algorithms are affectedby
the underlying architecture. Table IV thus summarises the
results of some timing experiments performed with Intel Core2
Duo 2.33GHZ PC (using just one core), equipped with 2GB
of RAM, running MacOSX. The Intel is faster than the
UltraSPARC, but the memory limit of 2GB prevents some
circuits (including all those for the larger SAT benchmarks)
from being constructed. TheMish andZhang columns detail
the timings for the algorithms of Mishchenko and Zhang where
garbage collection is disenabled. As before, the running times
of the ZBDDs algorithms is more variable than those of the
anytime algorithms. It should be noted the relative timingsof
the algorithms may change even between Intel machines, due
to different memory speeds and caching behaviour.

VIII. D ISCUSSION

This paper presents a class of novel anytime symmetry
detection algorithms. The tractability of these algorithms stem
from their use of a single static adjacency matrix to represent



IV: Generalized Symmetry Experimental Results

with variable reordering without variable reordering
Circuit |S| Naı̈ve Zhang-GC Anytime Naı̈ve Zhang-GC Anytime

alu2 29 0.01 0.01 0.01 0.01 0.01 0.01
alu4 35 0.05 0.01 0.01 0.07 0.01 0.01
C1908 2160 9.00 0.50 1.85 24.24 1.34 3.29
C2670 5805 106.96 1.33 2.96 >7200 1106.96 102.69
C3540 1892 72.74 5.47 5.43 >7200 162.91 186.32
C432 212 1.03 0.04 0.12 29.37 95.24 2.93
C499 256 136.53 5.52 16.50 169.79 1.45 16.93
C5315 12515 13.13 2.25 1.90 - - -
C7552 13010 801.86 12.72 22.49 - - -
C880 1759 9.67 0.62 1.13 1309.88 42.39 44.52
dalu 5010 1.65 0.19 0.22 2.49 1.18 1.30
des 8917 0.64 1.69 0.43 1.43 4.80 0.70
frg2 11556 0.40 0.41 0.19 1.00 0.98 0.30
i10 40511 174.88 27.72 19.81 1802.24 63.73 70.29
k2 4750 1.26 0.34 0.14 1.38 0.32 0.15
pair 15949 4.56 1.53 1.21 219.76 64.27 9.10
rot 5948 4.38 0.78 1.05 25.67 10.66 2.57
s635 18451 0.18 0.19 0.05 0.18 0.18 0.03
s838.1 18588 0.42 0.20 0.05 0.38 0.15 0.06
s1196 879 0.25 0.05 0.04 0.42 0.17 0.08
s1269 912 1.13 0.24 0.24 1.67 0.41 0.32
s1423 20947 6.88 1.19 1.10 30.01 2.90 1.81
s3271 3577 0.23 0.27 0.08 2.46 1.15 0.42
s4863 3825 25.25 14.20 4.36 33.10 15.20 5.42
s9234.1 22410 13.53 3.78 1.12 >7200 >7200 287.62
s38584.1 136537 30.44 246.37 2.59 501.34 576.39 10.30
too large 502 2.03 0.21 0.15 1.87 0.39 0.15
simp12 135 >7200 70.33 202.89 >7200 >7200 304.21
hom08 108 >7200 71.44 113.58 >7200 482.30 281.57
ca016 147 >7200 198.45 10.78 >7200 305.11 72.68
urquhart425 184 >7200 >7200 67.70 >7200 >7200 83.44
rope 0006 76 781.21 17.20 14.93 >7200 657.74 35.78
ferry10 174 210.82 3050.82 3.91 >7200 3146.64 365.93
gripper12 220 >7200 59.98 247.64 >7200 673.09 587.28

pairs of symmetric variables. It is important to appreciatethat
there is no obvious way to re-engineer Mishchenko’s algorithm
to use a static adjacency matrix. This is because Mishchenko’s
algorithm is a bottom-up, divide-and-conquer algorithm that
derives the solution to a problem by obtaining, and combin-
ing, the solutions to several sub-problems. Mishchenko [17,
p 1590] points out that caching of the answers to these sub-
problems is required to reduce the computational complexity
from exponential to polynomial yet this requires multiple data
structures to be maintained. By contrast, the anytime approach
merely has to mark nodes as visited in any of the ROBDD
traversals. This explains why anytime generality does not need
to compromise efficiency.

With a view to the future, the iterative nature of the anytime
algorithms proposed in this paper make them good candidates
for parallel evaluation on the 8 and 16 core processors that
are predicated to emerge over the next 5 years. Although the
speedups achieved by parallel evaluation of BDD operations

have often been modest [38], the weak coupling between
the iterations of the main loop of the symmetry detection
algorithms — the property that yields to anytime execution
— also leads to weakly coupled parallel execution.
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