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Abstract— Detecting symmetries has many applications in logic symmetry types listed in Table | wherg|,;, abbreviates
synthesis that include, amongst other things, technology ap-  f|, _, . _,. These symmetries can be categorized into two
ping, deciding equivalence of Boolean functions when the put v 5a5 gepending on whether or not a negated co-factor occurs

correspondence is unknown and finding support-reducing bond . . - . .
sets. Mishchenko showed how to efficiently detect symmetse in the relationship?, .. ., T¢ coincide with those of Zhanet

in ROBDDs without the need for checking equivalence of all al- [12] whereasTx, ..., T1» correspond to theTy, ..., =T
co-factor pairs. This work resulted in practical algorithms for types in the notation of Zhanet al.

detecting classical and generalized symmetries. Both théassical

and generalized symmetry detection algorithms are monolitic

in the sense that they only return a meaningful answer when
they are left to run to completion. In this paper we present

I: Generalized Symmetry Types

anytime algorithms for detecting both classical and gener&ed P‘f"r"fe Cofactor relations | Nf?itfve Co-factor relations

symmetries, that output pairs of symmetric variables until a ) = flio=flog | T, (f) <= flio=~floa
prescribed time bound is exceeded. These anytime algorithen Ty " (f) <= floo = flia Tgi"”-" (f) <= flo,o="fl1,1
are_complete in th_at given suffl_C|ent time t_hey_ are guarante@ Ty (f) <= floo = floa | Ty ™ (f) < floo =—flo1
to find all symmetric pairs. Anytime generality is not gained at TET(F) = flio=flii | T (f) <= flio = ~fli1
the expense of efficiency since this approach requires onlyexy % c e o
modest data structure support and offers unique opportunites I (f) <= floo=fl0 Ty ” (f) == floo ==/l
for optimization so the resulting algorithms are competitive with Ts" ' (f) = floa=flia | Ty ' (f) = flox==fla

their monolithic counterparts.

We previously presented an anytime algorithm for symmetry
detection for Boolean functions represented as ROBDDs [16]
The algorithm sought to address some of the drawbacks

. INTRODUCTION associated with existing methods that have been proposed

YMMETRY detection has been important since the dayer ROBDDs. One problem that we have found is that the

of Shannon [1] who observed that symmetric functionginning time of these algorithms [12], [17] can exceed 12
have efficient switch network implementations. Symmetry déours on some ROBDDs of less than a million nodes. Variable
tection is no less important today and knowledge of symmetiieordering can reduce the size of an ROBDD and thereby
variables has applications in logic synthesis [2], [3]hte@l- reduce the cost of symmetry detection. However, it is impru-
ogy mapping [4], [5], combining technology-independend andent to rely on variable reordering alone to make symmetry
technology-dependant stages of logic synthesis [6], tiatec detection tractable since variable reordering techniquees
support-reducing bound sets [7], ROBDD minimization [8}themselves be prohibitively expensive and of course, eften a
[9] and detecting equivalence of Boolean functions when theordering, there is no guarantee that the size of the ROBDD
input correspondence is unknown [10]-[12]. will actually be smaller. In fact even improving the variabl

The challenge in symmetry detection is to find effiordering is NP-complete [18], and is also inapproximable
cient algorithms for detecting all symmetric variablesrpaiwithin a constant factor [19] (that is, if for every given
(w4, ;) of a given Boolean functiotf(z, ...z, ), thatis, find ¢ > 0, there exists a polynomial-time algorithm for reordering
all pairs (z;,z;) such thatf(zo,...,z,...,2j,...,2,) = variables so as to obtain an ROBDD whose size is not larger
f(xo,...,2zj,...,%,...,2,). The intuition being thatf re- thanl + e times that of the minimal size, then it follows that
mains unchanged under the switching of the variablgs P = NP). From the perspective of algorithm design, there
and z;. This symmetry is formally known as the first-ordeare at least two ways forward: develop a faster symmetry
classical symmetry, or the non-skew non-equivalence symngetection algorithm; recast symmetry detection so thait ¢
try [13]. It can be shown from Boole’s expansion theorem [14e solved with an anytime algorithm. Anytime algorithms
that this is equivalent to checking equality of the co-factarise in engineering tasks when it is more attractive to find
pair fle;—o0z;-1 = flo;—1,0,0 Where flo,c a2, = an acceptable answer in a reasonable amount of time rather
fxy, .. 21,0, %41, ..., 2j—1,b,2511,...,2,). ThiS no- than the optimal answer in an exorbitant amount of time. In
tion of symmetry had been generalized [13], [15] to thghe context of symmetry detection the challenge is theestior
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proposed for symmetry detection in ROBDDs are those basgfl| = |{(b1,...,bn) | f(b1,...,b,) = 1}| [24]. The (Shan-

on naive co-factor computation [9], [20], but alas, this amon) co-factor of a functionf w.rt a variable x; and
proach is inefficient. The algorithm of Pan@a al. [8] can a Boolean constanb < Bool is defined by f|;,—» =

be considered to be incremental and does not require ¢d«1,...,%;—1,b,%it1,-..,%,). Multiple variable co-factors,
factor computation. Instead, the algorithm is formulated idenoted f|., &b, ,....x,,, —b,, Can be defined inductively as
terms of dynamic variable reordering [21]. This approacfy = f, f; = fi—1 . and flz, by g by = fm-

is incomplete for the purposes of symmetry detection, sinceA BDD is a rooted directed acyclic graph where each
the algorithm may not detect all symmetric variable paiigternal node is labeled with a Boolean variable Each

if variable reordering is prematurely terminated. The mostternal node has one successor node connected via an edge
efficient algorithms proposed thus far for symmetry detecti labeled 0, and another successor connected via an edgedabel
[12], [17] are monolithic in that they provide no opportynit 1. Each leaf node is either the Boolean constant 0 or 1. The
for early termination, and yet can sometimes require sicanifi Boolean function represented by a BDD can be evaluated for
runtime. In this paper we present a class of efficient anytinaegiven variable assignmeft, — b1,...,z, — b,} where
algorithms for classical and generalized symmetry daiacti b; € Bool by traversing the graph from the root, taking the 1
For clarity, we summarize our contributions as follows: edge at a node when the variablgis assigned to 1 and the 0

« The paper presents an incremental, anytime algorithm fedge when the variable; is assigned to 0. The leaf reached
first-order classical symmetry detection. Even considgrifin this traversal indicates the value of the Boolean fumctio
the complexity of all the underlying set operations, théor the assignment. An OBDD is a BDD with the restriction
algorithm is inO(n3+n|G|+|G|*) wheren is the number that the label of an internal node;, is always less than the
of variables andG| the number of nodes in the ROBDD.label of any internal node reachable via its successoys,

« The paper explains how an incremental anytime approai¢tat is,i < j. An ROBDD is an OBDD with the additional
offers special opportunities for optimization, in thatssla constraint that the two successor nodes of any internal node
sical assymetry/symmetry sieves can precede the algepresent different Boolean functions, and that distintrnal
rithm and assymetry/symmetry propagation techniqueedes also represent distinct Boolean functions. Noteahgat
can be inserted into the main loop of the algorithm. internal node of an ROBDD is itself the root of an ROBDD.

« The paper proposes a computationally lightweight tech- Each of the 12 predicate®; " (f) of Table 1 asserts
nique that often improves the proportion of symmetried symmetry property of a Boolean functiofi where the
found early on in the operation of the algorithm. predicateT; """ (f) is interpreted as stating that the Boolean

« The paper shows how to refine the anytime algorithfinction f is 7;-symmetric in the variable paifz;,zy).
so as to detect generalized symmetries. An algorith&irictly, an ROBDDy is not a Boolean function but rather a
for simultaneously detecting alf’, . .., Tio-Symmetries representation of one. Therefore to assert symmetry piieper
is presented which resides @(n? + n2|G| + |G|*). This of the functionf that underlies a given ROBDD, we define
algorithm is underpinned by new symmetry relationshigk; " (¢) to hold whenevefl;”***(f) holds. Moreover, we
which take the form, that iff; "™ (f) and T;""*(f) shall say that a ROBDD is 7;-symmetric in the variable pair
hold thenT;""""i(f) holds whereT},, T, and T, denote (z;,z) iff ;""" (g) holds, and dually is T;-asymmetric in
one of thel2 generalized symmetry types. Only a fewthe variable pailz;, =) iff 7,7""*(g) does not hold.
of these transitivity results have been previously rembrte
[22] and these results could well find application in other 1. RELATED WORK
symmetry detection problems [23]. Early work on detecting symmetric variables in Boolean

« The paper shows that symmetry detection does not femnctions has focussed on the computation of co-factoispair
quire the creation of intermediate ROBDDs and thdbat is alln? — n possible co-factors, where is the number
anytime generality need not compromise efficiency.  of variables. Symmetry is detected by checking their equiva

The remainder of this paper is structured thusly: Section IRnce [20]. The use of ROBDDs to represent Boolean functions
presents the necessary preliminaries and Section 11l garvenables not only the efficient computation of co-factorg, bu
the related work. Section IV presents an anytime symmalso equivalence to be checked in constant time. However,
try detection algorithm for classical symmetries. Section repeated co-factoring involves the creation and deletibn o
explains how the multi-pass nature of the algorithm can teany intermediate ROBDD nodes and for very large ROBDDs
exploited with asymmetry/symmetry propagation. Sectidn \this overhead can be prohibitive. This method is often refer
extends the anytime approach to the detection of genedalize as the naive method [20]. Moller, Mohnke and Weber [20]
symmetries. Section VII quantifies the cost of anytime synthus advocate the use of preprocessing algorithms — sieves

metry detection and Section VIII concludes. — that detect pairs of asymmetric variables. These lingae-t
sieves significantly reduce the number of co-factor paied th
Il. PRELIMINARIES need to be computed. In general, however, methods built upon
In this paper we consider completely specified Booleauch sieves still require naive co-factor computationt ih,
functions f : Bool®* — Bool where Bool = {0,1} calls to the standard co-factoring algorithm [24] the coemjil/
that are conventionally written as Boolean formulae def which is in O(|G|1g|G]).
fined over a variable seX = {zi,...,z,}. The satisfy- Because of the cost of repeated co-factoring, many sym-

count of an n-ary Boolean function f is defined as metry detection methods endeavor to avoid naive co-factor



computation. Molleret al. [20] and Pandal al. [8] detect all as input an ROBDDf and returns a set of index pairs
symmetries between variables adjacent in the variablerorde = {(i,j) | 7y (f)} that represent the set
with an algorithm inO(|G|). Pandeet al. [8] modify Rudell's of T3-symmetric variable pairs. The algorithm is com-
dynamic variable reordering algorithm [21] to detect symm@osed of two separate procedurés:ndAsynmetry and
tries between variables that become adjacent when one of REoveAsymet ry. Fi ndAsymmret ry(f) performs two
variables is repositioned in the ROBDD variable orderinglepth-first traversals over the ROBDP to detect pairs of
Symmetric variables are then grouped, and any subsequeariables(z;,z;) that are provably asymmetric with respect
reordering that is applied is required to preserve a contigu to 77. RenoveAsymet r y(f, i, C) filters a set of variable
variable ordering within each group. This approach to synndices C whose symmetry relationship with variable is
metry detection does not require naive co-factor compmurtat unknown to return the se€’ C C that represents those
but there is no guarantee that all symmetries will be found\variablesz; that areT’-symmetric withz;.
variable reordering is prematurely terminated.

The algorithm of Mishchenko [17] can getect all symmetrig|gorithm 1 SymmetricPairs()
variable pairs in a ROBDD with jusD(|G|”) set operations. —F
Zero suppressed binary decision diagrams (ZBDDs) [25] are?_ (Z')ZI ndAsymet ry(f)
used to compactly represent a collection of sets of symmetrifor i =1 ton — 1 do
variable pairs. However, since each set can potentiallyadton C—{jl,j)&AUS)Ai<j}
O(n?) elements one would expect Mishchenko’s algorithm D — RenoveAsymmetry(f, i, C)
to at least reside irO(n?|G|*) and possibly even a higher 4~ AU{GD. (L) [ 1€ C\ D}

. . ; S «— SuU{(il), (i) |1l e D}

complexity class when all set operations are considered. ety S

The generalization of symmetries is a recent development

and has received much attention [12], [13], [15], [26]. Thigpe ca| toFi ndAsymmet ry initializes the set of asymmetric
move to generalized symmetries has inevitably brought with, - p/e pairsA such thatA C {(i,5) | T (f)}.

the requirement for efficient algorithms to compute them[12rpe set ¢ is constructed of indices for those variables
[26]. It is straightforward to extend the naive approach Qfnqse Ty-symmetry relation withaz; is as yet undeter-

symmetry detection to all generalized symmetries in Tablen{ined_ The set off}-symmetric variablesD returned from
with only a worst-case twofold increase in the amount of WorliiermveAsyrmet ry and its complement’ \ D are used to

required. This. is because classical symmetry detection (giands and A respectively. The main loop only requires
quires calculating the co-factof$;, —1,2;—0 andflz;—o.0;—1  ,, _ 1 jterations becaus€ — () wheni — n. The algo-

whereas generalized symmetries over two variables only {gny that initializes A is justified by lemmata that detail

quire the co-factor|s;—o,z;—0 and fls; 10,1 to be addi- 5, Ti-symmetric variables place structural constraints on
tionally computed. (The amount of work required to compui§oppps [9][lemmata 5 and 6]. We state these lemmata below
an equ'lvglence check, such ﬁﬁufo,wﬁo = fm_el,wjel: for completeness:

is negligible and a check that involves negation, such as

floi—o,2;0 = = fla;—1,2;1, is also inO(1) for ROBDDs Lemma 1. If an ROBDD f over a set of variables
with complement edges [27].) This twofold increase in workZ1, - - -, »} is T1-symmetric in the pai(z;,z;) andi < j,

is disproportionate to the twelvefold increase in the numbthen every ROBDD rooted at a node labeledmust contain

of symmetries that can be detected, however, the overh@afiode labeled;.

of repeated co—factoring is still prohib?tive. Conseq_llyant Lemma 2. If an ROBDD f over a set of variables
symmetry detection methodg for generalized symmgtrles h o1, @a} is Ti-symmetric in the paifz;, ;) andi < J,
p_rogressed alo_ng the same lines as tho_se for cla55|c_al SYMMER every path from the root ¢fto a node labeled:; must
tries: the algorithm of Zhangt al. [12] mirrors the design of visit a node labeled:;.
Mishchenko [17], but is altered to perform multiple passas f )
each of the different symmetry types. Hence, the algoritfim bemmata 1 and 2 provide two conditions under which asym-
Zhanget al. has the same worst-case complexity of that gfetry can be observed. For any given node labelede can
Mishchenko, disregarding constant factors. compute the set of all variables that appear in a ROBDD
An interesting thread of related research focusses on th@t is rooted at that node, and any variable not appearing in
problem of extracting symmetries from Boolean functiorat ththis set is necessarily;-asymmetric withz;. Furthermore,
are not represented as ROBDDs [23], [28]. for any given node labeled;, we can compute the set of
all variablesz; that appear orall paths from the root of the
ROBDD to the node, and any variable not appearing in this set
is T1-asymmetric withz;. These asymmetry conditions can
In this section we describe our anytime approach twe checked together in just two depth-first traversals of the
classical symmetry detection. For pedagogical purposes ROBDD, each traversal takin@(n|G|) time since each node
first present Algorithm 1 which is our simplest algorithms visited singly and at most variables need be considered.
for anytime symmetry detection. In the section that fol- The symmetry relations between the variables are computed
lows, we build on Algorithm 1 by incorporating optimiza-in a series of passes. The validity of this decomposition is
tions that exploit its anytime nature. Algorithm 1 takegustified by the proposition:

IV. ANYTIME SYMMETRY DETECTIONALGORITHM



Proposition 1. An ROBDD f over a set of variables

{z1,...,z,} is T1-symmetric in the paifz;, z;) andi < j iff

(2, x3) Is T1-symmetric foreveryROBDD rooted at a node
labeledzs. However, the paifzz, x3) is T1-asymmetric in the
ROBDD f, and indeed there exists a path from the rooff of
to the noders that does not visit a node labeled.

The proposition allows exhaustive checking to be decom-
posed into a series of passes; one pass for each variable
z;. Observe that when the loop is entered in Algorithm 1,
Fi ndAsymet ry has already added all the pairisj) to A
such that there exists a path from the root to a node labeled
x; which does not pass through a node labetedAn index
j for such a pair cannot arise . Hence it remains to
remove those indiceg € C' which violate the first condition

1: The ROBDD{ for the formula(zi A z2) V x3 of the proposition, that is, thosg € C for which f is T;-

asymmetric in the pait(z;,z;). This is precisely the role
of RenoveAsymetry(f,¢,C) in Algorithm 2 where the
parameteri delineates the variable under consideration in the
pass. The algorithm uses the functiomiex(f) which merely
returns the index of the root of an ROBDR that is,i if the

1) every ROBDD rooted at a node labeled is Ti- (oot of f is labeledz;.
symmetric in(z;, z;) and,
2) every path from the root of to a node labeled; passes Algorithm 2 RemoveAsymmetryf, i, C)

through a node labeled;.

Proof.

if C =0V f=trueV f = false then

return C
. e j «— ind
« Consider thef direction. ‘|7f<]_>n; t;};(r{)

— Sincef is T1-symmetric in the variable paitc;, ), return C
f(b1,1,b2,0,b3) = f(by,0,by,1,bs) forall b, €  else ifj =i then
Booli"1, by, € Booli~i~! and bs € Bool™7 Ireturn RenmoveAsymret ryVar (flz,—o, fle;—1,C)

' ) else

Let g = f(b1,2i,...,xn) heNCYls, 10,0 = C «— RenoveAsymet ry(f|., o, i, C)
9la;—0,z;—1- return RenmoveAsymmet ry(fls;—1,4,C)

Suppose for the sake of a contradiction that there

exists a path from the root to a node labeled, index ; should be removed fromC whenever
z; that does not pass through a node Iabelequcwoywk1 % flos1.2,—0. This Ti-asymmetry check is
z;. Thus, letg = f(b1,0,bz,25,...,2:) = gatisfied if there exista € Booli~* andb & Booli~i~! such
f(b1,1, by, z;, ..., ,) for someby € Bool'™! and  ihat f(a, 0,b,1,2,1,...,2,) £ f(a,1,b,0,2;41,...,22)
by € Bool ="', Thus gls,—o(bs) = gls,—1(P3) \here i refers to the position betweem and b. If
for all by € Bool"™ . Hencegl;—o = glo;—1 k= index(f), fo = flopco and fi = flu.1 then show-

which is a contradiction sincg is reduced. ing f(a,0,b,1,2,11,...,2,) # f(a,1,b,0,2551,...,2n)
« Consider theonly-if direction, arguing by the con-amounts to detecting eithefy(a,0,b,1,2;41,...,2,) #
trapositive. Suppose there exists; < Bool'™!, fy(a,1,b,0,2;11,...,2,) OF fi(a,0,b,1,zj41,...,2,) #
b, € Bool~"! and b; € Bool"™/ such that f(a,1,b,0,2,.1,...,,) for some (smallerh € Bool~2.
f(b1,1,b2,0,bs) =1 and f(by,0,bz,1,bs) = 0. Let This recursive reduction explains the recursive nature of
g=f(b1,2i,...,2n). RenmoveAsymet ry. The testj > i implements a form of
— Supposegl.,—0 # gls,—1. Thus g is labeled early termination since ifi > i there is no opportunity for

— Supposegy

x;, hence there exists some, and bs such that removing any index fronC. The leavegrue andfalse also
gle;—1(b2,0,b3) = 1 and g|,,o(bs,1,b3) = 0 trigger early termination.

as required. At the heart of RenbveAsymetry is a call to
2,0 = glz,—1. Henceg is not labeled:;. RemoveAsymet ryVar (f|z,—o, flz,—1,C) which is ap-
Leth = g(0,ba, zj,...,2,) = g(1,bs,2;,...,7,). Plied to an ROBDD whose root is labeled with the variable
Observeh|,,—g # hls,;—1 since hl,,—o(bs) # i When a call toRenpbveAsymet ryVar is initially

hlz,—1(bs) as required. encountered, its first anq secpnd .parame.terSg@lee 9lzi—o
The f(b1,1,bs,0,bs) = 0 and f(by,0,bs, 1,bs) = 1 and g1 = g|s,—1. At this point, it remains to search for
case follows analogously. O someb € Bool~"' such thatgo(b,1,241,...,2n) #
g1(b,0,z11,...,2,). This is in turn realized by showing
One may wonder if the second condition in the propositicgither goo(b, 1, zj41,...,2,) # gi10(b,0,241,...,25) OF
is actually necessary. Figure 1 illustrates that this diodi go1(b,1,2j41,...,2n) # g11(b,0,211,...,2,) for some

cannot be relaxed. Observe that the variable pair x3) is (smaller)b € Bool’~i=2 where goo = go
T1-symmetric in the ROBDD rooted at,, moreover the pair ¢;

zipt1+-01 J10 =
zin—1 and g1 = g1

.’E,;+1<—01 gOl = gO fI:i+1<—1' A



Algorithm 3 RemoveAsymmetryVai, g1, C) optimizations seek to reduce the size of the@etaind hence

if go = true V go = false then the running time of the caRenoveAsymet ry(f,:,C), b

Jj— o0 enriching the setsA and S on-the-fly before, and between,
else ) iterations of the main loop. The symmetry sieve algorithms
i 9]12 gizx\(/ggl) _ false then proposed by [9], [10], [20] suggest a way to refine the skts

" o0 andsS before the loop is entered. Furthermore, it is possible to
else take advantage of the transitivity of thig-symmetry relation

r « index(g1) to add further pairs toA and S between iterations. The
if C=0Vj=r=octhen novelty is not in the optimizations themselves, but rather

return C
else if j = r then

(1, 900, go1, 910, 911)  (J, golz; 0, Gola; —1, 91|z —0, 9]z, 1)

that an anytime reformation of symmetry detection natyrall
accommodates various useful optimizations [9], [10], [20le

else if j < r then optimized algorithm listed in Algorithm 4 takes an ROBDD
| (, goo, go1, 910, g11) = (4, golz;—0, golz,; 1, 91, 91) f and returns the sef of T;-symmetric variable pairs.
else
l7 k) I bl I ) I Uy Ty . . . . .
if 55019;éog€81thgé(r)1 g11) = (1,60 90, Giler-0: G1ler 1) Algorithm 4 OptimizedSymmetricPairgj
C—C\{l} A’ — Fi ndAsymmet ry(f)
C «— RenpveAsymmet r yVar (goo, gi0, C) M « Sati sfyCounts(f)
return RenpveAsymmet ryVar (go1, g11,C) for i = 1 to n do

for j=4i+1tondo
if M(z) # M(j) then

recursive formulation ofRenoveAsymet ryVar can be (4,5) f/,:‘l_n’g:og]{é;rjn)ré rzg)/]if
obtained from this recursive reduction. When bagih and (A,8) — (AU A", S\ A)
g1 are leaf nodes, no further reduction can be applied andor i =1 to n — 2 do
RenoveAsymet ryVar terminates. (A,S) < Symmet ryC osur e(4,S)

The three cases in Algorithm 3 are required to accommodate ¢ < 17 | (4,7) € (AUS) Ai+1 < j}
the reduction inherent in ROBDDs. Thg = r condition A:jirr?(\;egs();n:ﬁtlreyg,\zl%)
selects the case whegp and g; are labeled with the same S — SU{(i,),(1,i) |1 e D}
variable z;. In this case we computgy|,,—1 and gi|,;—o return S
and check thayo|,,—1 # 91|z, 0. If the check is satisfied
is removed fromC. When j < r the co-factorgi|,,—1 = g1 Sati sf yCount s(f) returns a mappingy/ from variable
hence the asymmetry chegk|.,—1 # gil;—o reduces to indices to a natural number that can be used to distinguish
golz;—1 # g1. If this check is satisfied is removed fromC.  pairs of T}-asymmetric variables, that is, /(i) # M(j)
The r < j case is analogous except thais removed. then (z;,z;) are Ty-asymmetric. Fi ndAdj Symet ry(f)

Caching can be applied to ensure that the functigaturns two sets of index pairsA and S where
RenoveAsymet r yVar is not called twice on the same pair{(i )T ()N =i+1} C AC{(,5) | T ()}
of ROBDDs gy andg;. Moreover, the complexny ofacalltognds = {(i,9) | TY"" (f) A j = i+ 1}. Since the procedure
RempveAsyrmet ryVar is in O(|G|*) if C is represented Fi ndAdj Symmet ry finds all adjacentZ;-symmetric and
as an array ofn Booleans. Then computing’ \ {I} is in  T,-asymmetric pairs, the number of loop iterations can be
O(1), as is the testC = ( when C' is augmented with a relaxed fromn — 1 to n — 2. Symmet ryd osur e(A;, S;)
counter to recordC|. Overall,RemoveAsymmet ryVar can takes as input two setd; andS; of variable pairs known to
only be invoked a total ofG| times from within Algorlthm 1, beT)- asymmetric andl’;-symmetric respectively. Then, by
thus RemoveAsynmet ryVar contributes O(|G|°) to the reasoning about transitivity, a pair of s¢t,, S») is computed
overall running time. The:—1 calls toRenoveAsymetry  which are 7)-symmetric and 7}-asymmetric such that
cumulatively costO(n|G]). Returning to the main loop of 4, > A, and S, O S;. The procedureSat i sf yCount s,
Algorithm 1, observe that the setsand S can be augmented Fj ndAdj Symret ry and Synmet r yCl osur e are detailed
in O(n) time when D is also represented as an arrayrof in Sections V-A, V-B and V-C respectively. Section V-D
Booleans andA and S are represented as x n adjacency presents some heuristics which endeavor to increase the
matrices. Algorithm 1 is therefore i(n? + n|G| + |GI*).  proportion ofT}-symmetric variable pairs that are discovered

Interestingly, although this improves on the algorithm ogarly on in the execution of the main loop of Algorithm 4.
Mishchenko when set operations are considered, it does not

improve on the naive co-factor computation method [9]][2Q\ * gatisfv Counts
which resides ir0(n?|G| 1g(|G])). o

A consequence of’;-symmetry, which can also be used

V. OPTIMIZED ANYTIME SYMMETRY DETECTION to detectT’-asymmetry [10], relates the satisfy count of one

gosmve co-factor of a variable to the satisfy count of deot
In this section we propose a series of optimizations f

Algorithm 1. The resulting refined algorithm retains the inbemma 3. If a Boolean functionf over a set of vari-
cremental nature of the original algorithm, and shows how imables{z1,...,z,} is T1-symmetric in the paifz;, z;), then
crementality can be exploited by several optimizationseseh || f|.,—1|| = || flo;—1]|-




Computing the satisfy counts of all co-factors can be redlizSynmmet r yCl osur e, which computes the transitive closure,
using a single depth-first traversal of the ROBDD(Mn|G|) and pushes the overall complexity inf(n* + n|G| + |G]°).
time [10]. Finding the resultant asymmetries additionaly Recall thatSat i sf yCount s andFi ndAdj Symretry are
quiresn? comparisons in Algorithm 4, and thus the overaih O(n|G|) and O(|G|) respectively which have no impact

complexity of this sieve i€ (n? + n|G|). on the overall asymptotic complexity. However, althouge th
Floyd-Warshall is attractive because of its simplicitye th
B. Adjacent Symmetries complexity can be reduced 0(n? + n|G| + |G|*), or even

lower, by substituting Floyd-Warshall with an incremer{tai-

The following result follows immediately from Pr i- . " .
e following result follows ediately fro opos Iége) transitive closure algorithm [31].

tion 1 and details a special case of symmetry which relat

to variables that are adjacent in the ROBDD ordering:
D. Variable Choice Heuristics

The astute reader may have noticed that the correctness
of Algorithm 4 is not compromised by the order in which
variables are considered in the main loop. One may wonder
therefore if considering variables in a different order speed
up the algorithm. One natural approach is to choose a variabl
x; that maximizes{(z;,z;) ¢ (AU S) Ai < j}|. The ratio-
The force of this result is that the equivalenceale behind this greedy heuristic is to ensure that the oall t
flei—0,2is1-1 = flei—1,2,.,—0 can be checked iO(|G|) RenpbveAsymmetry resolves the maximal number of vari-
time for all adjacent variable pairs [20]. In fact Propasitil able pairs whos@&';-symmetry relation is unknown. The dual
leads to a further result that can detégtasymmetric variable of this heuristic is to choose a variahtefor which unknowns
pairs that are not necessarily adjacent in the variablerimigte remain which minimize$§{(z;, z;) ¢ (AU S) A4 < j}. Moti-
vation for this heuristic comes from literature [32] on camyp

Corollary 2. An ROBDD f over a set of variables . . . T
. . ; . ing signatures for Boolean functions so as to determinetinpu
{z1,...,2,} is Ty-asymmetric in the pailz;,zy) if there

. . . orrespondence. This is the problem of determining whether
exists a nodegy in f labeledz; with successor nodes labele .
25, andz; wherei+1< k< [ andgl,.. o g he variables of one ROBDD can be reordered so that the re-
k - T TR sulting ROBDD is equivalent to another. It has been observed
These non-consecutiVE -asymmetric pairs can be detectedhat if the currently known asymmetry sieves [10], [20] leav
in O(|G|) time. Of course, the firsO(|G]) tactic for en- only a handful of pairs for which a symmetry is unknown, then
riching A and S can only be deployed in conjunctionthese variables are likely to be involved in some symmetry
with Fi ndAsynmet r y; the second tactic is independent ofelationship [32]. Therefore, focusinBenoveAsynmet ry

Corollary 1. An ROBDD f over a set of variables
{z1,...,2,} is Ty1-symmetric in the paifz;, x; 1) iff
1) every ROBDD rooted at a node labeled is T;i-
symmetric in(x;, z;+1) and,
2) every path from the root of to a node labeledc;,
passes through a node labeleg

z;—1,x<—0-"

Fi ndAsymret ry. on the variable with the least unknowns is likely to discover
Ti-symmetries. We call these two heuristiagax and min
C. Symmetry Closure respectively. It should be pointed out that for both theagise

The following lemma can be obtained by recalling that gcs, a variable can be chosen ((n) time by maintaining

function f remains unchanged under the switching of any pa"ilr ﬁounter ft(;r te_ach ‘va‘r|ableiAtha; recprd; th_(la_hnumbetr of
of T,-symmetric variables: unknowns, that isl{ (z;, z;) € (AU S) A4 < j}. The counter

for z; is decremented each time a p@i, z;) is added ta4 or
Lemma 4. If a Boolean functionf over a set of variables S. The cumulative overhead of running the heuristic over the
X ={x1,...,2,} is Ti-symmetric in the pairgz;,z;) and loop body is inO(n?) which is absorbed into the asymptotic
(xj,zr) then f is also T;-symmetric in the paifz;, zx). running time of the algorithm.

This transitivity result provides a way of enriching the set

S, that is, if (z:,a,),(z;,2x) € S then it follows that VI- GENERALIZED ANYTIME SYMMETRY DETECTION
(z;,xr) Is also aTi-symmetric pair, hences can be en-  In this section we show how to extend the anytime algorithm
riched with (x;,z). Further, if (x;,2;) € S,(x;,2x) € A presented in the previous section to also detect the géretal
then it follows that the pai(z;,zs) is Ti-asymmetric, that symmetry types given in Table I. The section presents aserie
is, A can be enriched witi{z;,x)). This follows since if of novel results which detail the structural constraintatth
(xj,zr) is Thi-symmetric then by the lemma it follows thatgeneralized symmetries place on an ROBDD. The force of
(x4, x) is Tyr-symmetric, which is a contradiction. Addingthese results is that they justify the construction of asytnyn
those variable pairs tod and S which can be inferred sieves since an ROBDD cannot possess a symmetry if the
through transitivity is not dissimilar to computing the rira structural constraints that follow from that symmetry da no
sitive closure of a binary relation. This motivates adagtinhold. These results also explain how generalized symmetry
an algorithm such as the Floyd-Warshall all-pairs-shortesletection can be decomposed into a series of passes. In
path algorithm [29], [30] to this task. The complexity ofaddition, the section presents a number of novel trantitivi
this transitive algorithm is inO(n®) when A and S are results of the form, that iff,, " (f) and T,;7"*(f) hold
represented as x n adjacency matrices. Each iteration othen 7"/ (f) holds whereT,,T, and T, denote one of
the main loop of Algorithm 4 incurs an additional call tahe 12 generalized symmetry types. These transitivity results



allow assymetry/symmetry propagation to be inserted betwetime and thus allT; and T,-symmetries can be detected
the passes of any anytime generalized symmetry detectionO(n|G|) time overall. Detectingly and Tjo-Symmetries
algorithm. resides inO(n?|G|) since Proposition 3 implies th&, and
Algorithm 5 takes as input an ROBDP and returns the set T1g-asymmetries can be found by systematically searching
of triples S = {(i,j, k) | T, (f)}. The algorithm is com- through all pairs of variableg:;, z;), checking thayf includes
posed of three distinct procedur&$.ndFast Symret ry(f) a path that neither contains norz;. These propositions assert
returns a pair(4, S) such thatd = {(i,5, k) | =T}, (f) A thatTs, Ty, Ty andTio-symmetries are surprisingly tractable,
k € K} and S = {(i,j,k) | T,”"(f) Nk € K} and therefore suggest that these symmetries are partjcular
where K = {3,4,9,10}. Fi ndSI owAsymmet r y(f) returns interesting for those applications where it is not necgstar
a setA C {(i,jk) | -T,""(f) Nk € K'} where compute all types of generalized symmetry [10]-[12].
K’ = {1,...,12} \ K. In an analogous fashion to before,
Gener al RemobveAsymmet ry (f, 4, C) filters a set of pairs
C to return a subsef’ C C. If the T},-symmetry relationship ; o ] )
between the variables; and z; is presently unknown then Computing the remaining generalized symmetries, namely
(j,k) € C. The returned se€’ C C is precisely those pairs 12> s, s, T7, Ts, T11 and T, requires more effort. The fol-
C'={(,k) eC| T (f) Nk e K'}. lowing four propositions explain how each of these symmetry
’ relations can be computed in a series of passes where each
pass computes all the symmetry types for each variaple

B. Slow Symmetries

Algorithm 5 GeneralizedSymmetricPaing(
(A, S) «— Fi ndFast Symmet ry(f) Proposition 4. An ROBDD f over a set of variables
A «— AU Fi ndS| owAsymmet ry(f) {z1,...,2,} is To-symmetric in the paifz;, z;) andi < j iff
fori=1ton—1do 1) every ROBDD rooted at a node labeled is Tb-

C—A{0k) |5k & (AUS) Ni<j} L
D «— Gener al RemoveAsymmet ry(f,i,C) symmetric in(z;, ;) and,

A— AU{(,1,K), (I,i,k) | (k) € C\ D} 2) every path from the root of to a node labeled; passes
S — SuU{@1,k), (k)| (k) e D} through a node labeled;.
return S

Like before, the proposition asserts that @ll-symmetries
can be found in two stages. The first stage, a lightweight
) preprocessing step, marks a péir;, z;) as T»-asymmetric
A. Fast Symmetries if f contains a path to a node labeled that does not pass
Interestingly, some types of generalized symmetry areeeaghrough a node labeledi. The second stage, which amounts to
to compute than others. In fact and T;-symmetries and exhaustive search, examines each node labelethd checks
Ty and Typ-symmetries can be computed i@i(n|G|) and Wwhether the ROBDD rooted at that node F%-asymmetric
O(n?|G|) respectively, utilizing the following two proposi-in (z;,z;). The first check is one of a number carried out
tions. The proofs for the results reported in this sectidpy the call toGener al RenoveAsymmetry in the main
are similar in spirit to that of Proposition 1 and therefordpop of Algorithm 5. The second check is realized in the
for reasons of continuity, are relegated to an accompanyifiiction Fi ndSI owAsymmet ry which precedes the main
technical report [33]. loop. Thus, paradoxically, the first check is applied chfoge
ically after the second checkener al RenoveAsymet ry
. ; L > and Fi ndSl owAsynmet ry also carry out checks to ver-
{a1,..., 2} is T3-symmetric (respl-symmetric) in the pair i, yhe first and second conditions of both Propositions 6
(@i, z;) andi < j iff and 7. The simple structure of Proposition 5 pernilts
1) if whenever an ROBDIJ occurs inf at a node labeled and 7; symmetries to be detected without a preprocess-
z; thengly,—o (resp.g|s,—1) does not contain a nodeing step; these symmetries are solely detected within the

labeledz; and, CGener al RenoveAsymmet ry procedure.
2) every path from the root of to a node labeled; passes . .
through a node labeled;. Proposition 5. An ROBDD f over a set of variables

- ' {z1,...,2,} is T5s-symmetric (respls-symmetric) in the pair
Proposition 3. An ROBDD f over a set of variables (;, z;) andi < j iff every ROBDD rooted at a node labeled
{z1,...,2n} is To-symmetric (respTo-symmetric) in the ., is T;-symmetric (respls-symmetric) in(z;, ;).
pair (x;,z;) and¢ < j iff

1) if whenever an ROBDDQ occurs inf at a node labeled

Proposition 2. An ROBDD f over a set of variables

Proposition 6. An ROBDD f over a set of variables
2: then every path throughl,.. o (resp. gl... 1) visits {z1,... ,xn}.is T?-_symmetric (resplz-symmetric) in the pair
a nodeh labeledz; such thath|,, o = —h|,,—1 and, (i, 2;) andi < j iff _

2) every path from the root of to a nodeh labeledz; 1) every ROBDD rooted at a node labeled is T7-

which does not visit a node labeled, satisfies the symmetric (respTs-symmetric) in(z;, z;) and,
property thathl, o = —hls. 1. 2) every path from the root of to a nodeh labeledx;

which does not visit a node labeled, satisfies the
The first and second conditions of Proposition 2 can be  property thathl|, . o = —hl,, 1.

checked in two depth-first traversals both requiring.|G)|)




Proposition 7. An ROBDD f over a set of variables Algorithm 6 GeneralRemoveAsymmetrfi(i, C)
{1,...,2,} is T11-symmetric (respTiz-symmetric) in the ~jf c =gv f = true V f = false then
pair (x;,z;) and¢ < j iff return C
1) every ROBDD rooted at a node labeleg is Ti;- ‘ii‘%;l;dt;};(r{)
symmetric (respIi2-symmetric) in(z;, ;) and, ]retum C
2) every path from the root of passes through a node else if j = i then

labeledz;. return Gener al RenobveAsymmet ryVar (f|z,—o, flz;—1,C)
else
The following two lemmata detail structural properties of ¢ «— General RenoveAsymet ry(f|.,—o,4,C)
ROBDDs that hold in the presence ©§, T, T7,Ts, 1711 and return Gener al RenoveAsymet ry (f]z,—1,%,C)

Ti2-symmetries. The absence of these properties imply that

these symmetrie§ cannot_ hold. In the case of Lemma 5’_R@orithm 7 GeneralRemoveAsymmetryVat( g1, C)
O(n|G]) complexity algorithm can be applied to ascertain—

whether every ROBDD rooted at a node labeledcontains 't 9 = true V go = false then

a node labeledr;. This result therefore provides a sieve g5 >

for T5 and Tg-symmetries that can be incorporated into  j «— index(go)

Fi ndSl owAsymmetry. A sieve for T, Ty, 711 and Tio- if g1 = true V g1 = false then

symmetries follows from Lemma 6 since the two cases of "

the lemma can both be checkedGin|G|) time. This is also ebf{_ index(g1)
implemented withinFi ndSI owAsymret ry. if C=0Vj=r=oothen
Lemma 5. If an ROBDD f over a set of variables elsft#;nzfthen
{z1,... ,xn}. is T5-symmetric (respIs-symmetric) in the pair (1, 900, go1, 910, 911) (4, Gola; 05 Golw; 15 g1ler 0, 1]z, —1)
z;, z;) and: < j then every rooted at a node labeled else ifj < r then
(xi,z;) and th ROBDD rooted at de labeled else if h
x; contains a node labeled;. | (1, goo, go1, 910, g11) < (4, golz;—0, gola;—1, g1,91)
else

Lemma 6. If an ROBDD f over a set of variables (I, goo, go1,910,911) < (7, 90, g0, g1z, —0, g1l —1)
{z1,...,2,} is Ty-symmetric (resp.Tsz-symmetric, T}1- if gi0 # go1 then
symmetric andl’j2-symmetric) in the paifz;,z;) andi < j it C ‘;C\‘t{k(]le’r})}
then every ROBDD rooted at a node labeled; satisfies the ~ ¢'.7 2\ 11 9))
property that if goo # g10 then

1) g contains a node labeled; or, O = C\{(,5)}

2) g 0 =g . if go1 7é g11 then

#em0 = Gl C=C\{(1,0)}

The recursive structure ofener al RenoveAsymmetry T 910 # ~go1 then

follows that of RemoveAsymmetry except that the call gf(;fg\lf(fﬁgz,}

Cener al RenoveAsymet ryVar (f|z,—o, flz—1,C) lies C—Cc\{({38)}
atits heartGener al RemoveAsynmet ryVar in turn mim- i goo # —g10 then
ics the structure oRenpveAsymmet ryVar except thatit . © C\ {(tlﬁﬂ)}
performs co-factor checks fafy, Ty, Ts, Ts, Tr, Ts, Ty and ' g(‘jlfgin{(lﬁg)}

Tlg-symmetries. Note that t}'@g, T4, Ty and Tlo-symmetries C « Gener al RenoveAsynmmet r yVar (900,910, C)

are already completely determined ByndFast Symmet ry return Gener al RemoveAsynmet r yVar (goi, gi1, C)

and hence need not be reconsidered. The complexity of a

single call toGener al RenbveAsynmet r yVar is O(|G|2)

gnd since this function can.only_/ be mvpkeQ a totak@ftimes One such extension that involvd§ and T3-symmetries is

in Algorithm 5 when caching is applied, it follows that the : . )
. . . 3 presented in the following lemma:

overall complexity of this procedure ©(|G|”). The prepro-

cessing checks implemented withiin ndSI owAsymmetry  Lemma 7. If a Boolean functionf over a set of variables

for Propositions 2, 4 and 7 all requit(n|G|) time whereas {z1,...,x,} is Ti;-symmetric in the pair(z;,z;) and Ts-

the preprocessing required for Propositions 3 and 6 takgmmetric in the paifz;, 1), then f is T3-symmetric in the

O(n2|G)). Algorithm 5 thus resides i (n2|G|+|G|*) overall. pair (z;, zy).

_ _ Proof. Suppose 7,""(f) and T57"*(f) hold. Thus

C. Generalized Symmetry Propagation floicto;e0 = flovcom,—1, therefore f
To reduce the cost of each iteration of the main loop of AE  f|,, 0,2, 1,2,—0 and likewise fl|,—1.4,0z,—1
gorithm 5, one can apply asymmetry/symmetry propagation fif,, 0,2, —1,z,—1- AlSO flo; 00,0 = flz;—0,2,—1, thus
the spirit of that employed in Algorithm 4. Tsei al.[22] have  f|o, 0,0, 0,050 = f ' :
reported transitivity results for some generalized symiegt =  fl,— 1,2, 04z,—1. Therefore fl.,c 0z, 0z.,—0 =
but to fully exploit asymmetry/symmetry propagation thesf|.,. 0.z, 0,z,—1 aNdfle;—0,0; 1,050 = flo;—1,2,0,2,—0
results need to be extended to &l generalized symmetries.= f 2i—0,0;—1,2,—1. HeENcef

zi—1,2;+0,2,—0

0,20, 1 andf'a:iel,wjeo,wkeo

zi—1,x;<0,x,1 = f x;+—0,21,+0



II: Transitivity Results

Y,z Y,z Y,Z Y,z Y,Z Y,z Y,z Y,z Y,z Y,z Y,z Y,z
| | Tl T? | T2 TS | T3 TQ | T4 Tl 0 | T5 Tl 1 T6 Tl 2
T,y T,z T,z T,z T,z T,z T,z T,z T,z T,z T,z T,z T,z
Tl Tl -i— T7 T T2 -i— T8 ’ T TB ’ T9 ’ T4 ’ Tld T5 ’ Tll’ T6 ’ T12’
Trv || TR ATEG | TR TG | TR T | TR | T T | T T
T,y T,z T,z T,z T,z T,z T,z T,z T,z T,z T,z T,z T,z
T2 T2 -i— T8 T Tl -i— T7 T T4 TlO TB T9 T5 Tll T6 T12
T,y T,z T,z T,z T,z T,z T,z T,z T,z T,z T,z
T8 TS -i— T2 T T T4 TlO TB T9 ' Tl 1’ T5 ' Tl2’ T6 '
T,y T,z T,z T,z T,z T,z T,z T,z T,z
T3 Td T9 Td T9 Td T9 Td T9
T,y T,z T,z T,z T,z T,z T,z T,z T,z
T9 TQ T3 TQ T3 TB T9 TB T9
TZ,y Tz,z TI’I‘O,Z Tz,z Tiac,z Tz,z Tm,z Tz,z Tm,z
0 10 10
T,y T,z T,z T,z T,z T,z T,z T,z T,z
Tld Tld T4 ' Tld T4 ' T4 ’ Tld T4 ’ Tld

T e s B e VS TS TS | TEF TEF
T | T Ty | Ty Ty T T | T T
| T Tyt | 19 Tt TS TE: | TEF 187
7' | Ty” Ty | T” Th” Tr” Th” | 1™ Ty
= flai—0,0,—1 and T3 "% (f) holds. O Proof. Supposely™(f) and T7*(f) hold. By two applica-

tions of Lemma 8 it follows thaf?"*(f) andZ5"Y(f) hold.
HenceT;Y(f) andT?“(f) hold. By Table Il it follows that
T5%(f) holds and by another application of Lemma 8 it
follows that7*(f) holds as required. O

Table Il summarizes a collection of lemmata that state ioapli
tional relationships between various generalized synietetr
For example, if 75" (f) and T,”**(f) hold for some
ROBDD f thenTy3""*(f) also holds. Implicational relation-
ships that have been previously reported [22] are markedWe conjecture that no implicational symmetry relationship
with a {. Proofs for all the other implicational relationshipsold for the combinations of symmetry that lead to a blank
of Table Il can be found in the accompanying technicantry in the table.

report [34]. Many of these results are established with fwoo With the results of Table Il in place, it is straightforward
whose structure mirrors that used to substantiate lemmat@.construct an analogue & nmetryCl osur e(4, S) for
The correctness of the remaining results, flows from mudtipgeneralized symmetries. The complexity of the generalized
applications of the following lemma that states equivagsncclosure algorithm remain®(n?), assuming that an incre-
between the generalized symmetries of the fa@fi’(f) and mental algorithm is applied. Thus the overall running time
T;:’"”(f) for any ROBDD f for variousi, j € {1,...,12}. of generalized symmetry detection with asymmetry/symynetr
propagation is0(n3 + n2|G| + |G|*).

Lemma 8.
1) T7(f) <= T (f) andT7 (f) <= 177 (f) VIl. EXPERIMENTAL RESULTS
2) T,(f) <= T3°(f) andTg *(f) <= TJ"(f) : ) . .
3) TEY(f) = TY*(f) andT2Y(f) < TV"(f) . The anytime glgorlthm and all its reflnemeqts have been
4) THV(f) = TV(f) and 5P (f) <= T%°(f) implemented using the CUD[.).[35] Decision Dla_lgram pack-
age, so as to assess the efficiency of the anytime approach.
Proof. For brevity we only consider the positive cases.  The rationale for this choice of package was that the Extra
. ) = flacryeo = flacoyr = DD library [36], which implements Mishchenko’s algorithm,
flyet,ze0 = fly—o,pe1 <= TV (f) also uses CUDD. The main experiments were performed on
. L) = flacoyeo = flociyer = an UltraSPARC Illi 900MHz based system, equipped with
fly—oe0 = flyc1,0c1 <= T3 (f) 16GB RAM, running the Solaris 9 Operating System, using
T3Y(f) <= flo—o,y—o = flo—o,y—1 <= get rusage to gauge CPU usage in seconds. The CUDD
) fly—o.c—0 = fly—1,oe0 <= TZ*(f) package, the Extra library, and our algorithm were all cdeupi
. I = flecryeo = flacayer <= with the GNU C Compiler version 3.3.0 withC3 enabled.
flyeo,ze1 = flye1ae1 <= T (f) The algorithms were run against a range of MCNC and ISCAS

L)' benchmark circuits of varying size [37], as well as several
The value of the above lemma is that it can be applied fher benchmarks derived from the SAT literature. All tigsn
show, for example, that th&¥ /T¥* entry of Table Il is a '€ given in seconds and averaged over four runs.
consequence of thE>Y /TY** entry. In fact three applications Table Ill presents the results of these tests, the first four

of the above lemma are needed to establish the correctnes§Q¢mns of the table give, respectively, the circuit namenn
the T*% /T entry, as formalised in the following lemma. ber of input variables, number of defined functions (outputs
and the sum of the number of internal ROBDD nodes across

Lemma 9. If a Boolean functionf over a set of variables || gutputs (which does not consider sharing between osjtput
{z1,...,2n} is Ts-symmetric in the pair(z,y) and T7-  Column|S| records the total number of all,-symmetric pairs
symmetric in the paif(y, z), then f is To-symmetric in the found over all the outputs. ColumRead gives the time in
pair (z, z). seconds to read in the benchmark circuit and construct the



Il T1-symmetry Experimental Results with (above) and withoedly) variable reordering applied

Circuit [#In[#0ut] X|G|[| [S|]] Read]] Naive] Moller|Mish-GC|[Mish+GC | Any [ Sat] Adj]| Close
alu2 0] 6 192 4] o.01]] 0.01] 001 0.01 001] o001] 0.01] 001] 001
alu4 14| 8| 1099 6 0.01] 005 001 0.01 001| 001| 001 001 001
C1355 41| 32| 65323 0| 5.62|| 49.95 31.93 0.02 009| 213| 1.67| 168 168
C1908 33| 25| 17682 248 2.10| 5.71] 1.89 0.07 012| 064| 042 026/ 020
C2670 233| 140| 8904| 1547|| 1.10| 64.36 13.50 0.32 467 | 284| 265 262 221
C3540 50| 22| 43334 81| 14.00| 3837/ 0.9 0.94 6.84| 3.45| 289 235 199
C432 36| 7| 1475 0| 016 0.64/ 003 0.02 0.02| 002| 001 001 001
C499 41| 32| 101701 0| 3.00/| 77.09 55.86 0.04 009 | 262| 241 242 244
C5315 178| 123| 9434 521|| 0.72| 569 050 0.28 050 | 0.48| 036/ 034 029
C7552 207| 108| 29142 1879|| 7.36|| 366.18 191.69 0.70 6.34| 357| 321 201 268
C880 60| 26| 8753 262| 044/ 520/ 013 0.22 1.01| 0.24| 0.16/ 0.12 0.10
dalu 75| 16| 1728 982| 0.45/ 1.05 0.10 0.06 008| 013| 0.11| 008 0.07
des 256 245 6063|| 1264 0.35 043 021 0.13 0.16 | 0.16| 0.15 0.12/ 0.10
frg2 143| 139| 2339|| 1353 0.1 025 0.7 0.04 0.08| 008| 008 005 004
i10 257| 224| 52811 3746|| 9.49|| 98.13 4.14 2.09| 427.69| 1.87| 154 152 1.7
k2 256 245 3029 338|| 0.04f 079 003 0.07 0.10| 007| 004/ 002 001
pair 173| 137| 8599|| 1910|| 0.60 271 050 0.18 0.62| 048| 036/ 032 028
rot 135 107| 4132|| 364/ 0.28| 2.60] 0.10 0.11 026 039| 034/ 029 023
4863 153| 104| 75549 547|| 87.58| 14.78) 0.80 0.09 128| 050| 032/ 029/ 0.16
$9234.1 247| 250\ 9376 3454|| 2.16| 6.76] 0.76 0.39 146 | 0.87| 0.74 068 0.42
$38584.1  [1464| 1730| 34833| 15629| 13.10| 18.36 1.72 2.89 411| 483| 326| 296 280
too_large 38 3| 2312] 17| 0.15] 1.15 0.04 0.04 020| 003| 002 001 001
simp12 117| 1] 292811 23]|230.61| >7200] 22.19] 1261]  61.96| 55.55| 22.22| 21.81 21.96
homo8 95 1| 110160| 16| 128.91) >7200| 4.39 418/ 134.31| 17.48| 470 4.74| 450
ca016 107| 1| 90033| 26| 33.45|6444.37/2544.87  19.54/  >7200 | 20.19| 17.01| 16.36| 14.10
urquhart425 | 68 1| 45008| 27|l 23.21//3330.311070.31  4.57| >7200| 6.94| 637 6.31] 6.23
rope.0006 61 1| 11066 13| 5.01| 564.39 216.53 040/ 2817 | 1.28| 1.03 0.99 0.98
ferry10 116 1| 3141 38| 6.18|| 140.32 64.45 0.34|  >7200| 0.44| 042 046/ 0.48
gripperl2 | 129] 1| 17035| 43| 165.65 >7200| >7200 7.05| 5365.41| 35.35| 34.89 34.80 36.32
C1355 41] 32| 110675  Of 10.25]] 111.41] 52.68 0.13 0.33] 6.11] 589 590 5091
C1908 33| 25| 30832 248 0.16| 14.95 4.1 0.13 0.30| 1.01| 1.00[ 098 038
C2670 233| 140|9869047| 1547|| 39.19|| >7200|3854.76 907.71  >7200 |187.10 | 161.23 156.32 124.86
C3540 50|  22|4618194| 81| 21.80| >7200| 122.09| 132.72 5488.75| 71.64| 68.23| 66.08 65.04
C432 36| 7| 32151 0| 020 1436 0.38 0.77| 4523 | 0.68| 046 045 045
C499 41| 32| 110675  O|| 0.14| 94.66| 50.72 0.40 045| 529| 497 496 4.96
C880 60| 26| 600998 262| 8.29|| 70454 10.23|  13.90| 2242.11| 7.75| 6.84| 563/ 520
dalu 75| 16| 5128 982| 0.06| 1.43| 0.38 0.12 0.17| 067 | 064 061 034
des 256 245 15209 1264 0.19| 0.73| 0.47 0.15 0.33| 021| 020/ 017 0.11
frg2 143| 139| 6679|| 1353|| 0.04 047/ 005 0.11 019| 009| 008 007 004
i10 257| 224| 150353| 3746|| 0.61||1203.85 30.26 5.89| >7200| 5.61| 512 486 4.12
pair 173| 137| 118066| 1910/ 0.20| 132.46 4.45 6.62| 3550 237 | 218 216/ 2.08
rot 135/ 107| 13565/ 364/ 0.10 12.72] 0.31 0.32 450| 061| 031 0.30] 022
4863 153| 104| 126988| 547|| 2.63|| 20.60| 1.45 5.30 571| 1.41| 108 101 082
$9234.1 247| 250|4434504 3454| 20.14| >7200|1415.88 1407.20  >7200 |183.84 | 158.36) 145.94 141.26
$38584.1  |1464| 1730 150554| 15629 3.70| 337.59 23.01] 16.70] 132.16| 3.12| 3.04) 3.01 2.80
simp12 117] 1] 758330 23| 76.23| >7200[ 139.45) >7200|  >7200 |105.67 | 61.94] 59.87| 57.59
homo8 95 1| 893312 16|l 56.48| >7200| 466.21] 13579  >7200 | 67.79 | 54.99| 50.89 49.00
ca016 107| 1| 861209 26| 60.10|| >7200| 744.55 305.11  >7200 | 72.68 | 59.96| 50.90 50.80
urquhart425 | 68 1|1736705 27|| 5.96| >7200| 974.83 >7200| >7200 | 83.44 | 81.84| 76.48 72.02
rope.0006 61 1| 759039 13|l 3.14| >7200| 225.23 657.74 ~ >7200 | 35.78| 30.76| 30.64| 30.68
ferry10 116| 1| 539419| 38| 88.08|| >7200|2177.43 1866.62  >7200 | 70.34| 69.84| 54.19 53.42
gripper12 | 129| 1| 667877] 43| 50.95| >7200|2604.07 368.50  >7200 |106.32|102.87| 85.43 84.90




ROBDD. The remaining columns give the runtimes requirethis key difference in the asymptotic complexity explains
to compute allT}-symmetric andl;-asymmetric pairs. The why, although the running time of the anytime algorithms
first of these,Naive, is the naive method which computesre consistently below 200 secs, and certainly never esceed
all co-factor pairs. (The results of this method were used fohours, that these algorithms are not uniformly faster than
verify the correctness of all subsequent methods.) Thengecdhe algorithm of Mishchenko because of the variability f it
column,Moller, applies the sieves of Sections V-A and V-BZBDD operations.
to reduce the number of co-factor calculations. The third an Table V presents a comparison between the generalized
fourth columns Mish-GC and Mish+GC, are Mishchenko’s symmetry algorithm of Zhanget al. [12] and the gener-
implementation of his own algorithm [36] without and withalized anytime approach. Mishchenko’s implementation was
garbage collection enabled. The fifth columfny, is the modified to detectl’, Ty, T» and Tz-symmetries following
unoptimized anytime algorithm presented in Section IV. Thiéae ideas prescribed by Zhamg al. The timings given for
remaining three columnsat Adj and Close are the times the anytime algorithm reflect the time required to compute
with the optimizations of Sections V-A, V-B and V-C cu-all 12 generalized symmetry types. This algorithm applies
mulatively enabled. The garbage generated by Mishchenkasymmetry/symmetry propagation between iterations of the
implementation stems from its use of ZBDDs to represent sefsain loop and uses all sieves described thus far.
Enabling garbage collection has not impact on our algorithm Figure 2 summarizes the outcome of some experiments
The columns labele8at, Adj andCloseof Table Il suggest that investigate the relationship between the variableiceho
that all the optimizations to the basic anytime algorithrheuristics and the proportion of symmetries found earlyhi t
are worthwhile, though not essential. Interestingly, catmm  execution of the algorithm. The graphs display the number
transitive closure is not prohibitively expensive even wheof symmetries found against various timeouts for hie and
implemented using the sub-optimal Floyd-Warshall algmnit max heuristics using the original algorithm as a control. Apart
This is because this algorithm can be implemented effisienffom the circuits hanoi4 homer08 and rope 0006 (graphs
and straightforwardly with three nested loops. This sigii 9, 10 and 11) thenin heuristic increases the proportion of
of this optimization suggests that it should be applied isymmetries found early in the execution of the algorithm.
conjunction with the naive method [20]. The rows of the ¢ablin the case ofdp02s02(graph 5) andgripperl2 (graph 8),
above the double lines record the outcomes of the experimethite difference betweemin and both the control andhax is
when circuits are constructed using dynamic variable ander stark. This suggests that thein heuristic should always be
The so-called automatic variable ordering option providgd applied since it never gives a significant slowdown when the
CUDD was applied using the default settings which periodidgorithm is run to completion and is beneficial in the case of
cally activates the sifting algorithm of Rudell [21]. Thea® early termination. For five of the circuits (graphs 6 to 13 th
beneath the double lines repeat the experiments with ‘ariahumber of symmetries grows consistently with time. However
reordering disabled. This leads to much larger ROBDDs affiok other circuits, growth is either more sporadic or biased
therefore constitutes a form of strength test for all algpons. towards the latter passes of the symmetry detection akgorit
Those benchmarks not repeated in the bottom section of #her these circuits, only a fraction of symmetry pairs could
table correspond to those circuits which are the same sibe, recovered if these algorithms were terminated prenigture
with and without variable reordering. This is why it is important that anytime generality should no
Table 11l can only be meaningfully interpreted in conjuncbe achieved at the expense of efficiency.
tion with asymptotic complexity results. Complexity resul  Finally, one may wonder how the performance of the
such as the assertion that the basic anytime algorithme®sidlassical and generalized anytime algorithms are affebted
in O(/G|?) assuming: < |G, are ultimately statements abouthe underlying architecture. Table IV thus summarises the
scalability; such results predict how the running time of afesults of some timing experiments performed with Intele2or
algorithm will grow with the size of the input ROBDD. TheseDuo 2.33GHZ PC (using just one core), equipped with 2GB
statements have particular weight when combined with tk¢ RAM, running MacOSX. The Intel is faster than the
experimental results of Table Il that gauge the asymptotigitraSPARC, but the memory limit of 2GB prevents some
constants. For instance, if the basic anytime terminatéswi circuits (including all those for the larger SAT benchmarks
an acceptable time for very large ROBDDs then (no matt@bm being constructed. Thdish andZhang columns detail
whether the ROBDD has been created with or without siftinghe timings for the algorithms of Mishchenko and Zhang where
and irrespective of the number of symmetries inferred), thgirbage collection is disenabled. As before, the runnimgsi
algorithm will terminate within an acceptable time for steal of the ZBDDs algorithms is more variable than those of the
ROBDDs. This is because the total number of atomic opeinytime algorithms. It should be noted the relative timin§s
ations isO(|G|). Interestingly, the algorithm of Mishchenkothe algorithms may change even between Intel machines, due
is O(|GI?) in the number of set operations, where ead different memory speeds and caching behaviour.
set operation will have variable complexity depending, for
instance, on the number of represented symmetry pairs.-More
over, when sets are realised as ZBDDs, the cost of each set
operation will also vary due to memoization (caching) effec This paper presents a class of novel anytime symmetry
and the overheads induced by memory management. Tdetection algorithms. The tractability of these algorithstem
variability is evident in the columnilish-GC andMish+GC. from their use of a single static adjacency matrix to represe

VIIl. DISCUSSION



IV: Generalized Symmetry Experimental Results

with variable reordering without variable reordering
Circuit S| || Naive | Zhang-GC | Anytime Naive | Zhang-GC | Anytime
alu2 29 0.01 0.01 0.01 0.01 0.01 0.01
alu4 35 0.05 0.01 0.01 0.07 0.01 0.01
C1908 2160 9.00 0.50 1.85 24.24 1.34 3.29
C2670 5805 || 106.96 1.33 2.96 >7200 1106.96 102.69
C3540 1892 || 72.74 5.47 5.43 >7200 162.91 186.32
C432 212 1.03 0.04 0.12 29.37 95.24 2.93
C499 256 || 136.53 5.52 16.50 || 169.79 1.45 16.93
C5315 12515 || 13.13 2.25 1.90 - - -
C7552 13010 || 801.86 12.72 22.49 - - -
C880 1759 9.67 0.62 1.13 || 1309.88 42.39 44.52
dalu 5010 1.65 0.19 0.22 2.49 1.18 1.30
des 8917 0.64 1.69 0.43 1.43 4.80 0.70
frg2 11556 0.40 0.41 0.19 1.00 0.98 0.30
i10 40511 || 174.88 27.72 19.81 || 1802.24 63.73 70.29
k2 4750 1.26 0.34 0.14 1.38 0.32 0.15
pair 15949 4.56 1.53 121 219.76 64.27 9.10
rot 5948 4.38 0.78 1.05 25.67 10.66 2.57
s635 18451 0.18 0.19 0.05 0.18 0.18 0.03
s$838.1 18588 0.42 0.20 0.05 0.38 0.15 0.06
s1196 879 0.25 0.05 0.04 0.42 0.17 0.08
51269 912 1.13 0.24 0.24 1.67 0.41 0.32
51423 20947 6.88 1.19 1.10 30.01 2.90 1.81
s3271 3577 0.23 0.27 0.08 2.46 1.15 0.42
54863 3825 | 25.25 14.20 4.36 33.10 15.20 5.42
s9234.1 22410| 13.53 3.78 1.12 >7200 >7200 287.62
s$38584.1 136537| 30.44 246.37 2.59 501.34 576.39 10.30
too_large 502 2.03 0.21 0.15 1.87 0.39 0.15
simp12 135 || >7200 70.33 202.89 >7200 >7200 304.21
hom08 108 || >7200 71.44 113.58 >7200 482.30 281.57
ca0l6 147 || >7200 198.45 10.78 >7200 305.11 72.68
urquhart425 184 || >7200 >7200 67.70 >7200 >7200 83.44
rope.0006 76 || 781.21 17.20 14.93 >7200 657.74 35.78
ferry10 174 || 210.82 3050.82 3.91 >7200 3146.64 365.93
gripperl2 220 || >7200 59.98 247.64 >7200 673.09 587.28

pairs of symmetric variables. It is important to apprectatg have often been modest [38], the weak coupling between
there is no obvious way to re-engineer Mishchenko’s alborit the iterations of the main loop of the symmetry detection
to use a static adjacency matrix. This is because Mishchenkalgorithms — the property that yields to anytime execution
algorithm is a bottom-up, divide-and-conquer algorithratth— also leads to weakly coupled parallel execution.

derives the solution to a problem by obtaining, and combin-

ing, the solutions to several sub-problems. Mishchenkq [17 ACKNOWLEDGMENTS

p 1590] points out that caching of the answers to these subywe thank Arnaud Gotlieb, Peter Schachte and Har-
problems is required to reduce the computational complexifid Sgndergaard for discussions on ROBDDs, Jin Zhang for
from exponential to polynomial yet this requires multipkta c|arifying details of Mishchenko’s algorithm, and the agen

structures to be maintained. By contrast, the anytime &mro mous reviewers for their insightful comments and ideas.
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