
Inferring Congruence Equations using SAT

Andy King1 and Harald Søndergaard2

1 Portcullis Computer Security Limited, Pinner, HA5 2EX, UK? ? ?

2 The University of Melbourne, Victoria 3010, Australia

Abstract. This paper proposes a new approach for deriving invariants
that are systems of congruence equations where the modulo is a power
of 2. The technique is an amalgam of SAT-solving, where a propositional
formula is used to encode the semantics of a basic block, and abstraction,
where the solutions to the formula are systematically combined and sum-
marised as a system of congruence equations. The resulting technique is
more precise than existing congruence analyses since a single optimal
transfer function is derived for a basic block as a whole.

1 Introduction

Applications in compilation, optimisation and verification have motivated anal-
yses that infer linear equality relationships [7, 9, 14] or linear congruence rela-
tionships [1, 6, 15] that hold between the variables of a program. For each point
in a program, the former analyses discover systems of affine constraints of the
form

∑n
i=1 cixi = d where c1, . . . , cn, d ∈ Z and x1, . . . , xn are the program vari-

ables. The latter infer systems of congruence constraints of the form (
∑n

i=1 cixi)
mod m = d where m ∈ Z is some modulus. These analyses accurately trace re-
lationships between variables when the assignments that arise in a program can
be modeled with a linear transformation. But this precludes meaningful analysis
of programs that use bitwise operators; whether written in Java, C, or assembly
language. The extreme approach of treating all operands of such operators as
sequences of named bits, to track all bit interrelations, does not appear attrac-
tive, owing to the large number of Boolean variables involved. However, we show
that a mixture of congruence analysis and Boolean reasoning does appear to be
both feasible and able to generate bit-level invariants of great precision.

We draw inspiration from the domain of congruent equations modulo 2w [15]
and the affinity between this domain and the finite-nature of the underlying com-
puter arithmetic, to propose an extreme-precision analysis which produces tight
invariants for programs with non-linear, including bitwise, operations. The idea
is to express the relationship between the bits in input variables and the bits of
output variables for each basic block. This technique is not new within itself [8]
and programs are now routinely reduced to very large systems of propositional
constraints in bounded model checking [3, 20]. Our main novel contribution is
in the use of a SAT solver to incrementally compute a summary (affine relax-
ation) of the output variables, given a summary for the input variables. This new

? ? ? Andy King is on secondment from the University of Kent, CT2 7NF, UK

approach is capable of discovering invariants even for programs that apply bit-
twiddling; programs that have thus far thwarted automatic analysis. Summaries
that are systems of congruence equations modulo 2w naturally fit into this mix of
model checking and abstract interpretation because (technically) their ascending
chain property constrains the number of times the SAT-solver can be reapplied
and (philosophically) the propositional encoding also makes assumptions about
the finite, modulo-nature of computer arithmetic. As in conventional abstract
interpretation, the summaries enable all paths through the program to be con-
sidered systematically, without enforcing a bound on depth to which loops are
explored. The approach to analysis is attractive because, quite apart from pro-
viding a bridging result between SAT solving and analysis, it can compute an
optimal transfer function for a whole basic block, even when the block contains
non-linear assignments. This is the key to the improved precision.

The paper is structured as follows: Section 2 illustrates the key ideas of
the analysis using a worked example, demonstrating how a SAT-solver can be
interleaved with a relaxation technique to compute a summary. This is the pri-
mary contribution of the paper. Section 3 shows how the lattice-theoretic join of
two congruence systems can be summarised merely by syntactically rearranging
matrices and computing a triangular form. This is another contribution of the
paper. Section 4 discusses the relationship with the wider literature and Section 5
concludes.

2 Outline of the Method

In 1960 Peter Wegner [19] reported a fast bit counting algorithm. Expressed in
the language C, the method counts the number of 1-bits in a word x, leaving the
result in a variable c, as follows: y = x; for (c = 0; y; c++) y &= y - 1;
Since the method is rather devious (and the explanation pre-dates the invariant
assertion principle), one may want to derive an invariant that aids understanding
of the code. This is challenging because the bit-twiddling cannot be modeled with
a conventional affine assignment [15], that is, y is not updated with a value that
is a linear combination of the values of the program variables. Furthermore,
modeling the update as an assignment to an arbitrary value (a so-called non-
deterministic assignment [15]) is too crude to derive a useful loop invariant.

One might think that these problems are insurmountable but we show that
an invariant can be derived by modeling non-linear assignments as exact op-
erations on sequences of bits and then computing optimal congruence abstrac-
tions for a composition of bit operations. The last point warrants elaboration:
numeric analyses are usually presented in terms of programs which have al-
ready been abstracted through the use of assignments that are either affine or
non-deterministic. This is adequate when working at the granularity of whole
numbers but the best congruent abstraction of a bit-level operation, let alone a
composition of them, is somewhat less obvious. We systematise the computation
of an optimal abstraction and integrate this into the analysis itself.

In the rest of this section we sketch the approach:

2

1. A local, bit-precise transfer function is established for each basic block.
2. These Boolean functions are then used to build a set of recursive dataflow

equations, expressing the program’s overall runtime behaviour.
3. In the context of a finite set of w-bit variables, a closed form of the dataflow

equations can be derived using Kleene iteration. In practice, however, this
iteration may need to be interleaved with steps to relax constraints, and we
propose a suitable relaxation to congruence equations.

2.1 Representing bit-level semantics without abstraction

It is possible to express the semantics of the basic blocks of a program, even to
the bit-level, using Boolean constraints that relate the bits of its inputs to those
of its outputs. But the problem is how to do so, retain tractability, and derive
loop invariants, that is, not just explore loops to a fixed depth [8].

Let us draw Wegner’s code as a flow diagram:

0
�� �� -y := x 1

�� �� -c := 0

�
?
2

�� �� -

� -

assume y 6= 0

5
�� ��assume y = 0

3
�� �� -y := y&(y − 1) 4

�� ��
c := c + 1 �

The program’s basic blocks are the initial code ‘y := x; c := 0’, the loop body
‘assume y 6= 0; y := y&(y − 1); c := c + 1’ and the loop exit ‘assume y = 0’. The
exact semantics of these blocks can be described relationally, as systems of propo-
sitional constraints. The idea is to represent the input and output relationships
across a basic block using two systems of propositional variables x0, . . . , xw−1

and x′
0, . . . , x

′
w−1 (abbreviated to x and x′) that encode the input and output

state of each integer variable x. We assume a twos complement integer repre-
sentation and let w denote the number of bits that make up an integer. The
constraints generated for the example are:

[[y := x; c := 0]]
= (

∧w−1
i=0 y′i ↔ xi) ∧ (

∧w−1
i=0 ¬c′i) ∧ (

∧w−1
i=0 x′

i ↔ xi)

[[assume y 6= 0; y := y&(y − 1); c := c + 1]]
= (

∨w−1
i=0 yi) ∧ (

∧w−1
i=0 y′i ↔ (yi ∧

∨i−1
j=0 yj))

∧ (
∧w−1

i=0 c′i ↔ (ci ⊕
∧i−1

j=0 cj)) ∧ (
∧w−1

i=0 x′
i ↔ xi)

[[assume y = 0]]
= (

∧w−1
i=0 ¬yi) ∧ (

∧w−1
i=0 x′

i ↔ xi) ∧ (
∧w−1

i=0 y′i ↔ yi) ∧ (
∧w−1

i=0 c′i ↔ ci)

where ⊕ denotes exclusive-or. Elsewhere [11] we explain how these constraints
can be generated automatically from the program. Suffice it to say that the
constraint for an assignment x := y + z is derived by considering a cascade of
full adders using intermediate carry bits b,

(
w−1∧
i=0

x′
i ↔ yi⊕zi⊕bi)∧¬b0∧(

w−1∧
i=1

bi ↔ (yi−1∧zi−1)∨(yi−1∧bi−1)∨(zi−1∧bi−1))

3

together with constraints to express that variables other than x do not change.
The variables b are existentially quantified, and the formula can be simplified
using standard Boolean quantifier elimination.

Compound expressions are handled by introducing temporary variables s and
t to hold intermediate results and then applying renaming. For example,

[[y := y & (y − 1)]] = ρs′,t([[s := y − 1]] ∧ [[y := y & t]])

The renaming step ρs′,t replaces the output variables s′ of the first statement
with the input variables t of the second. Again, the compound formula can be
simplified by eliminating the remaining intermediate variables s, t, t′.

2.2 Setting up the dataflow equations

The relational semantics for the basic blocks allows us to derive the states that
are reachable at program points 0, 2 and 5. They are obtained as the least
(strongest) solution to the following recursive equations:

f0 = 1

f2 = ρv′,v(πv′(f0 ∧ [[y := x; c := 0]]))∨
ρv′,v(πv′(f2 ∧ [[assume y 6= 0; y := y&(y − 1); c := c + 1]]))

f5 = ρv′,v(πv′(f2 ∧ [[assume y = 0]]))

where v and v′ are the input and output variables, that is, v = c · x · y and
v′ = c′ · x′ · y′. The Boolean functions f0, f2 and f5 represent sets of reachable
states, for example, a state σ = {c0 7→ 0, . . . , cw−1 7→ 0, x0 7→ 1, . . . , xw−1 7→ 0,
y0 7→ 1, . . . , yw−1 7→ 0} is considered to be reachable at program point 2 iff σ
satisfies f2. The projection operation πv′(f) = f ′ computes the Boolean function
f ′ by eliminating, by existential quantification, any propositional variable y from
f that does not occur in the system v′. For instance, π〈x1,x2〉(f) = ∃y(f) = x1 ↔
x2 when f = (x1 ↔ y) ∧ (y ↔ x2). Projection is used to derive a function that
only expresses relations between the output variables v′. The renaming operation
ρv′,v(f) = f ′ constructs a function f ′ by replacing each output variable y′ in
f with its counterpart input variable y, for example, ρv′,v(c′0 ∧ (x′

1 ⊕ y′1)) =
c0 ∧ (x1 ⊕ y1). Iteration can be used to compute f2 from the predetermined
f0 = 1 and once f2 is known, f5 can be derived. For f2 the iterates start:

f0
2 = 0

f1
2 = f0

2 ∨ (
∧w−1

i=0 xi ↔ yi) ∧ (
∧w−1

i=0 ¬ci)
f2
2 = f1

2 ∨ (
∨w−1

i=0 xi) ∧ (
∧w−1

i=0 yi ↔ (xi ∧
∨i−1

j=0 xj)) ∧ c0 ∧ (
∧w−1

i=1 ¬ci)
f3
2 = f2

2 ∨ . . .

This sequence will eventually stabilise because a bounded number (23w) of
Boolean functions are definable over v. However, the c variables will enumerate
all 2w bit patterns and therefore at least 2w iterates will be computed. This
will take an impractically long time, even for w = 16. There is also an issue

4

of space. A Boolean function can be represented as an ROBDD but the size of
an ROBDD can be exponentially large in the number of variables (even with
dynamic variable reordering [2]), and this is a pressing issue when w proposi-
tional variables are needed to represent each integer variable. Tractability can be
recovered by approximating [17] or widening [10] an ROBDD when it becomes
intolerably large. This would replace an ROBDD with one that could be stored
more compactly and yet represented a larger set of states. The problem with
this approach is that the ROBDD widenings that have been proposed thus far
do not preserve sufficient information to infer useful loop invariants.

2.3 Abstracting bit-level inputs and outputs with congruences

Considerations of tractability dictate that we look for principled ways of over-
approximating solutions to systems of equations of the form

f =
n∨

m=1

ρy′,y(πy′(fm ∧ f ′
m)) (1)

without giving up too much bit-level information. We suggest that this can be
achieved by restricting f , as well as each fm, to a class of functions that can
be expressed as conjunctions of congruence equations modulo m, where m is a
power of 2. Each function fm summarises the inputs to one of n basic blocks
and the function f summarises all (the join of) the outputs of the n blocks.
No constraint is placed on the generality of any of the f ′

m formulae. This means
that no abstraction needs to be applied to a function that describes the relational
semantics of a basic block—this description is kept bit-precise.

How to solve systems of the form (1) under the restrictions just mentioned?
The rest of this section explains the idea, based on the Wegner example. Let
x ≡2w y abbreviate x = y+k2w for some integer multiplier k. Observe that each
of the equations t ≡2w t′+t′′, t ≡2w ny, t ≡2w n and the disequation t 6≡2w n can
be expressed as propositional constraints when the t variables are w-bit, y is 1-
bit and n is an integer. This is a consequence of the modulus being a power of 2.
For instance, t ≡2w ny and t 6≡2w ny can be expressed as

∧w−1
i=0 ti ↔ (ni∧y) and∨w−1

i=0 ti ⊕ (ni ∧ y) where n ≡2w

∑w−1
i=0 2ini and t ≡2w

∑w−1
i=0 2iti. Moreover, an

equation
∑k

i=1 niyi ≡2w n can be reduced by
∑j

i=1 niyi ≡2w t,
∑k

i=j+1 niyi ≡2w

t′, t + t′ ≡2w t′′ and t′′ ≡2w n using fresh w-bit variables t, t′, and t′′, and hence
also reduced to a propositional system. Any disequation

∑k
i=1 miyi 6≡2w n can

similarly be described propositionally. Henceforth let [[
∑k

i=1 niyi ≡2w n]] and
[[
∑k

i=1 niyi 6≡2w n]] denote such propositional encodings.
To illustrate the value of these encodings, let w = 8 and consider comput-

ing f2
2 = f1

2 ∨ ρy′,y(πy′(f1
2 ∧ g)) where f1

2 = ρy′,y(πy′(1 ∧ [[y := x; c := 0]])) and
g = [[assume y 6= 0; y := y&(y − 1); c := c + 1]]. The encodings are used to direct
the generation of truth assignments for the function f1

2 ∧ g. Truth assignments
are generated so as to incrementally derive the most precise congruence system
describing both f1

2 and ρy′,y(πy′(f1
2 ∧ g)). This system is used as the iterate,

5

rather than the function f1
2 itself. Since the function f0

2 = 0 can be represented
as a congruence system, namely 0 ≡256 1, this construction ensures that all
iterates are congruences. The number of iterates is bounded: the length of an
increasing chain of congruences is at most 192, that is, the product of the power
w = 8 and the maximum number, 24 (3w), of variables in each system [15].

The function f1
2 falls into the class of formulae that can be represented con-

gruently. This is because the satisfying assignments of f1
2 coincide with those

of the formula (
∧7

i=0[[ci ≡256 0]]) ∧ (
∧7

i=0[[xi ≡256 yi]]) on c, x and y. Hence
computing ρy′,y(πy′(f1

2 ∧ g)) is equivalent to computing ρy′,y(πy′(g′)) where
g′ = (

∧7
i=0[[ci ≡256 0]]) ∧ (

∧7
i=0[[xi ≡256 yi]]) ∧ g. This is convenient, because it

permits the encodings to be demonstrated on a representative, non-trivial ex-
ample, namely the derivation of f2

2 . To see how the congruence system for f2
2 is

incrementally constructed, observe that any model of the Boolean function

g′ ∧ ((
7∨

i=0

[[c′i 6≡256 0]]) ∨ (
7∨

i=0

[[x′
i 6≡256 y′i]])) (2)

defines a run of the block with an entry state that is described by f1
2 but whose

exit state is not characterised by f1
2 . For example, the truth assignment{

c0 7→ 0, c1 7→ 0, . . . , c7 7→ 0, x0 7→ 0, . . . , x6 7→ 0, x7 7→ 1, y0 7→ 0, . . . , y7 7→ 1,
c′0 7→ 1, c′1 7→ 0, . . . , c′7 7→ 0, x′

0 7→ 0, . . . , x′
6 7→ 0, x′

7 7→ 1, y′0 7→ 0, . . . , y′7 7→ 0

}
satisfies (2) and demonstrates that when c, x, and y assume values of 0, 128 and
128 on entry to the block, they can take values of 1, 128 and 0 on exit from the
block (assuming an unsigned representation). By construction, the output state
is not summarised by f1

2 and therefore f1
2 needs to be enlarged to accommodate

this state. Since the output state can be represented in congruence form as

c0 ≡256 1 ∧ (
7∧

i=1

ci ≡256 0) ∧ (
6∧

i=0

xi ≡256 0) ∧ x7 ≡256 1 ∧ (
7∧

i=0

yi ≡256 0) (3)

this system and that for f1
2 can be joined to obtain the summary

(
7∧

i=1

ci ≡256 0) ∧ (
6∧

i=0

xi ≡256 yi) ∧ x7 ≡256 c0 + y7 (4)

A model for the formula (2) can be found using standard techniques [16], trans-
lating the formula into an equi-satisfiable conjunctive normal form (CNF) repre-
sentation, and presenting the CNF formula to any SAT-solver. The join can be
computed by translating the two congruence systems to their sets of generators,
taking the union of the two sets, then converting the union to a new congruence
system [1, 6, 15]. Alternatively, the join can be obtained by relaxing a system
of congruences constructed syntactically from the two input systems (see Sec-
tion 3). Either way, whether the join describes all possible output states can be
determined by solving the Boolean formula

6

g′ ∧ ((
7∨

i=1

[[ci 6≡256 0]]) ∨ (
6∨

i=0

[[xi 6≡256 yi]]) ∨ [[x7 6≡256 c0 + y7]]) (5)

This formula is satisfied, for example, by a truth assignment {. . . , c′0 7→ 1, c′1 7→
0, . . . c′7 7→ 0, x′

0 7→ 0, . . . x′
5 7→ 0, x′

6 7→ 1, x′
7 7→ 0, y′0 7→ 0, . . . y′7 7→ 0} from which

the following congruence system can be derived:

c0 ≡256 1 ∧ (
7∧

i=1

ci ≡256 0) ∧ (
7∧

i=0,i 6=6

xi ≡256 0) ∧ x6 ≡256 1 ∧ (
7∧

i=0

yi ≡256 0) (6)

Note that the assignments to the input variables, as well as any temporary
variables introduced in CNF conversion [16], are inconsequential for constructing
the congruence system. Disregarding these assignments amounts to projecting
onto the output variables. Notice too that the system is expressed in terms of
unprimed variables, even though it encodes an output state. Constructing the
congruence system thus involves renaming as well as projection, though both
operations are performed on truth assignments, at which level they collapse to
computationally trivial operations. Joining the previous summary (4) with the
new system (6) gives the new summary

(
7∧

i=1

ci ≡256 0) ∧ (
5∧

i=1

xi ≡256 yi) ∧ x6 + x7 ≡256 c0 + y6 + y7 (7)

Continuing this way, we obtain a sequence of Boolean formulae h0, h1, h2, . . .,
the first two of which are (2) and (5), and where, more generally, hj is

g′ ∧ ((
7∨

i=1

[[ci 6≡256 0]]) ∨ (
7−j∨
i=0

[[xi 6≡256 yi]]) ∨ [[
∑7

i=7−j+1xi 6≡256 c0 +
∑7

i=7−j+1yi]])

Of these, h1, . . . , h6 are satisfiable, but h7 is not, so the system

(
7∧

i=1

ci ≡256 0) ∧
7∑

i=0

xi ≡256 c0 +
7∑

i=0

yi (8)

summarises all reachable output states when the input states are described by
f1
2 . The next iterate f2

2 is then assigned to this system which is the most precise
congruence system that describes the set of output states given an input state
drawn from f1

2 .
The method is not sensitive to how the relational semantics is presented. This

contrasts with previous analyses which critically depend on how the statements
of a program are translated into, say, affine assignments. This is particularly
pertinent when deriving invariants for assembler or obfuscated code [18].

Of course, thus far, only f2
2 has been derived. By repeating the above process

with an updated input state we obtain the sequence of iterates:

f3
2 = (

∧7
i=2 ci ≡256 0) ∧

∑7
i=0 xi ≡256 c0 + 2c1 +

∑7
i=0 yi

f4
2 = (

∧7
i=3 ci ≡256 0) ∧

∑7
i=0 xi ≡256 c0 + 2c1 + 4c2 +

∑7
i=0 yi

f6
2 = f5

2 = (
∧7

i=4 ci ≡256 0) ∧
∑7

i=0 xi ≡256 c0 + 2c1 + 4c2 + 8c3 +
∑7

i=0 yi

7

Interestingly, although the derivation of f2
2 requires 8 calls to a SAT-solver and

7 join computations, the iterates f3
2 , f2 and f5

2 each require just two calls to a
solver and one join. To check stability, that is, deduce f6

2 = f5
2 , requires one

call to a solver, hence 15 invocations are required in total, the largest of which
involves 4507 variables and 11648 clauses (though more compact CNF conversion
is possible [16]). Nevertheless, the longest time that it takes to solve any instance
is 0.61 ms (wall-time) using SAT4J version 1.5 [12] on a 2.4 GHz MacBook Pro.
Even without deriving f5 =

∑7
i=0 xi ≡256 c0 +2c1 +4c2 +8c3∧ (

∧7
i=4 ci ≡256 0),

it is now evident that Wegner’s bit-twiddling algorithm assigns to the variable c
the number of bits which are set in the variable x. As far as we aware, no other
analysis is capable of deriving such an invariant. Note that the invariant includes
coefficients of 4 and 8, and thus precision would be degraded if a modulo of 2
was employed rather than the word-level modulo of 2w.

3 Joining Congruence Equations

Section 2.1 outlined the translation of basic blocks into Boolean formulae. That
component preserves all information within a basic block, which is key to rea-
soning about non-linear operations such as bit-twiddling. We now describe the
complementary component which produces the join of two congruence systems.
It discards information, which is key to retaining tractability. The join ensures
that the summaries reside in a finite ascending chain so they cannot be weakened
forever; the maximal chain length is w2n [15], as wn (propositional) variables
are needed to represent the state of n (integer) variables of width w.

Recent work has exploited how congruence systems can be represented by
sets of generators that span the solution space of the congruence system [15].
This representation is useful because it reduces the join operation to set union.
However, our refined form of analysis relies on a translation mechanism from
an equation

∑k
i=1 niyi ≡2w n to a formula [[

∑k
i=1 niyi ≡2w n]] that becomes

more convoluted when the generator representation is adopted. Thus it is con-
venient to compute the join whilst representing the input and output systems
as a conjunction of equations. This can be achieved by reformulating the join
of two systems as a projection operation which can, in turn, be computed by
calculating a triangular form. This section explains these steps.

Basics To state the algorithmic results of this section, it is necessary to recall
some mathematical concepts and notation. The set of congruence classes modulo
m is defined Zm = {[n] | n ∈ Z} where [n] = {n′ ∈ Z | n ≡m n′} and ≡m denotes
equivalence modulo m. Henceforth, we blur the distinction between a class [n]
and its representative element n. The 2-fold Cartesian product Z2

m is defined
Z2

m = Zm × Zm and the k-fold product Zk
m is likewise defined. If S1, S2 ⊆ Zk

m

then their (Minkowski) sum is S1 + S2 = {x ∈ Zk
m | xi ∈ Si ∧ x ≡m x1 + x2}.

If λ ∈ Z and S ⊆ Zk
m, then λS = {x ∈ Zk

m | x′ ∈ S ∧ x ≡m λx′}. Moreover,
the linear closure of S is linear(S) = {

∑`
i=1 λixi | λi ∈ Z∧x1, . . . ,x` ∈ S}. The

8

1: procedure triangular(in: S, out: t)
2: t := λ`.⊥
3: let {a1, . . . as} = S
4: for i := 1 to s do
5: ` := leading(ai)
6: while (` > 0 ∧ ` ∈ dom(t))
7: a′ := t(`)
8: p := power(π`(ai))
9: p′ := power(π`(a

′))
10: if p ≥ p′ then

11: ai := (π`(a
′)/2p′

)ai − 2p−p′
a′

12: else
13: t := t[` 7→ ai]

14: ai := (π`(ai)/2p)a′ − 2p′−pai

15: endif
16: ` := leading(ai)
17: endwhile
18: if ` > 0 then t := t[` 7→ ai]
19: endfor
20: endprocedure

Fig. 1. The triangularisation method of Müller-Olm and Seidl [15]

modules of Zk
m are those subsets of Zk

m that are closed under linear combination,
that is, Modulek

m = {M ⊆ Zk
m | linear(M) = M}. The affine subsets of Zk

m are
translated modules, that is, Affinek

m = {{x} + M | x ∈ Zk
m ∧ M ∈ Modulek

m}.
The affine closure of S is the smallest affine space that encloses S and is thus
defined affine(S) =

⋂
{S′ ∈ Affinek

m | S ⊆ S′}.

Example 1. Observe that ∅ and {0} are closed under linear combination, whence
∅ ∈ Modulek

m and {0} ∈ Modulek
m. As ∅ ∈ Modulek

m, we have ∅ ∈ Affinek
m.

Moreover, since {0} ∈ Modulek
m, it follows that {x} ∈ Affinek

m for all x ∈ Zk
m.

Triangularisation While congruence equations appear as good companions
for a bit-level relational semantics, Gaussian elimination cannot be immediately
applied to compute a triangular form for such equations because of the need to
deal with zero divisors [15]. Müller-Olm and Seidl have thus devised a triangu-
larisation algorithm that, given an input system Ax ≡2w b, computes output
system A′x ≡2w b′ where A′ = [ai,j] and ai,j = 0 whenever i > j. Figure 1 gives
the algorithm and Example 2 illustrates what the algorithm will compute for an
example. (This example will, in turn, support Example 4 which demonstrates
how join can be straightforwardly realised.) In the description of the algorithm,
leading(a) returns -1 if a = 0 and otherwise the position of the first non-zero
element of the vector a; π`(a) extracts the `’th element from a; and power(n)
returns the largest integer p such that 2p divides n.

9

Example 2. The input and output to triangularisation procedure are Ax ≡2 b
and A′x ≡2 b′ respectively:

A =



1 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0
0 0 1 0 0 1 0 0 1 0 0
0 0 0 1 0 0 1 0 0 1 0
0 0 0 0 1 0 0 1 0 0 1


b =



1
0
0
0
0
0
0
0
0


A′=



1 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 1
0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 1 0


b′=



1
1
0
1
0
0
0
0
1


By reasoning about upper triangular form, one can argue that any subset of Zk

m

that is closed under affine combination, can be represented congruently:

Proposition 1. S ∈ Affinek
m iff there exists a congruence system Ax ≡m b such

that S = {x ∈ Zk
m | Ax ≡m b}.

Projection Quite apart from establishing this result, upper triangular form
provides a way of computing arbitrary projections. Projection onto the i’th el-
ement of a k-ary vector is defined πi(〈x1, . . . , xk〉) = xi. Single element projec-
tions can be composed so that if 1 ≤ i1 < ... < ij ≤ k then the j-ary vector
〈πi1(x), . . . , πij (x)〉 is also a projection in that it also discards information per-
taining to certain dimensions. Projection of an affine space is also affine:

Proposition 2. Let S ∈ Affinek
m and 1 ≤ i1 < ... < ij ≤ k. Then T ∈ Affinej

m

where T = {〈πi1(x), . . . , πij (x)〉 | x ∈ S}.

If A = [ai,j] is in upper triangular form, the projection of Ax ≡m b onto a suffix
y = 〈xi, . . . , xk〉 of x is found very easily. Suppose row j is the top-most row of
A in which 〈aj,1, . . . , aj,i−1〉 = 0. Then the projection onto y is aj,i · · · aj,k

...
...

as,i · · · as,k

y ≡m

πj(b)
...

πs(b)


Example 3. Projecting Ax ≡2 b of Example 2, or equivalently the system A(t)x ≡2

b(t), onto yi = 〈xi, . . . , x11〉 for i = 7, 9 and 10 yields:1 0 0 0 0
0 1 1 0 0
0 0 1 1 0

y7 ≡2

0
0
1

 [
1 1 0

]
y9 ≡2

[
1
] [

0 0
]
y10 ≡2

[
0
]

(or 1)

Given a congruence system Ax ≡m b, it is possible to project onto any subset
of x merely by reordering the rows of A in synchronicity with the elements of b,
prior to computing the triangular form.

10

Join We finally show how the join can be reduced to computing a projection (a
relaxation) which, in turn, amounts to deriving an upper triangular form.

Proposition 3. Let Si = {x ∈ Zk
m | Aix ≡m bi} and

A =


1 1 0 0 0

−b1 0 A1 0 0
0−b2 0 A2 0
0 0−I −I I

 S =

x ∈ Zk
m

∣∣∣∣∣∣∣∣∣∣
∃σi ∈ Zm.∃xi ∈ Zk

m.A


σ1

σ2

x1

x2

x

≡m


1
0
0
0




Then S = affine(S1 ∪ S2) if S1 6= ∅ and S2 6= ∅.

If a system Aix ≡2w bi has a solution set Si, then the join of A1x ≡2w b1 and
A2x ≡2w b2 is a system whose solutions coincide with affine(S1 ∪ S2). Proposi-
tion 3 states that such a system can be obtained by rearranging A1 and A2 to
form a new matrix A and then eliminating variables.

Example 4. Consider the join of A1x ≡2 b1 and A2x ≡2 b2 where x = 〈x, y, z〉

A1 =
[
1 0 0
0 1 0

]
b1 =

[
0
1

]
A2 =

1 0 0
0 1 0
0 0 1

 b2 =

1
0
1


As well as minimising the size of coefficients and thereby making the presentation
of large matrices manageable, a by-product of 2w = 2 is that −I ≡2 I and
bi ≡2 −bi. Using this, the combined system of Proposition 3 is formed—it
is given below, on the left. On the right is the triangular system derived in
Example 2, and we conclude that the join is x + y ≡2 1.



1 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0
0 0 1 0 0 1 0 0 1 0 0
0 0 0 1 0 0 1 0 0 1 0
0 0 0 0 1 0 0 1 0 0 1





σ1

σ2

x1

y1

z1

x2

y2

z2

x
y
z


≡2



1
0
0
0
0
0
0
0
0





1 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 1
0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 1 0





σ1

σ2

x1

y1

z1

x2

y2

z2

x
y
z


≡2



1
1
0
1
0
0
0
0
1



4 Discussion

Work on deriving systems of equalities [9] and inequalities [4] between program
variables dates back to the very early days of abstract interpretation. Congruence

11

domains were pioneered by Granger [5, 6] who proposed, among other things,
using sets of generators for representing congruence equations and showed that
congruence equations satisfied the ascending chain condition.

Recently there has been a resurgence of interest in inferring both linear [7, 14]
and congruence relationships [1, 15], mainly from the perspective of improving
efficiency, for instance, by applying randomisation [7], or fusing the domain op-
erations with the fixed-point calculations [14], or refining the conversion between
equations and generators [1], or bounding the size of the coefficients in the rep-
resentation [1, 15]. An interesting twist to linear equalities was given by Leroux
[13] who has applied the disjunctive closure of this domain in model checking.

Our work revisits congruence analysis, not to enhance efficiency, but to im-
prove precision. Precision is refined by capturing the semantics of a basic block
accurately as a system of propositional constraints. These are combined with
formulae that express congruence equations that hold upon entry to the block.
The constraints that hold at the end of the block are then abstracted as a
system of optimal congruence equations. This avoids the need to construct spe-
cialised transfer functions for affine assignment, nondeterministic assignment,
etc. Instead all primitives, linear and non-linear, can be handled uniformly by
translating them into systems of propositional constraints using transformations
devised for bounded model checking [3, 8, 20].

An issue for future work is extending the intra-procedural analysis to inter-
procedural analysis and systematic benchmarking. In its present form, the anal-
yser consists of a Prolog and a Java component that are linked with temporary
files. The Prolog component translates basic blocks, congruence equalities and
congruence disequalities into propositional formulae and then applies CNF con-
version [16] to construct a DIMACS file for SAT4J. The Java component imple-
ments triangularisation and join. The fixed-point is under manual control since
it is both useful and pleasing to watch as the summaries converge onto a loop
invariant. However, the Prolog component needs to be extended to translate
other operations into formulae in order to deploy the analysis on other code and
particularly programs that apply bit-level programming tricks [18].

5 Conclusion

This paper shows how congruence equations, with a modulo that is a power of
two, fit elegantly with SAT solving and a relational bit-level encoding of the
behaviour of the program, to derive invariants for programs that contain non-
linear operations such as bit twiddling. The work calls for further research into
methods in which SAT solvers are applied repeatedly to infer abstractions drawn
from abstract domains that satisfy the ascending chain condition.

Acknowledgments This work was funded by EPSRC projects EP/C015517,
EP/E033105 and EP/F012896. We thank Paul Docherty for motivating discus-
sions on reverse engineering, Neil Kettle and Axel Simon for their comments on
SAT-solving and Gift Nuka for his help with Floyd-style assertions.

12

References

1. R. Bagnara, K. Dobson, P. M. Hill, M. Mundell, and E. Zaffanella. Grids: A
domain for analyzing the distribution of numerical values. In G. Puebla, editor,
International Symposium on Logic-based Program Synthesis and Transformation,
volume 4407 of LNCS, pages 219–235, 2006.

2. R. E. Bryant. On the complexity of VLSI implementations and graph representa-
tions of Boolean functions with application to integer multiplication. IEEE Trans-
actions on Computers, 40(2):205–213, 1991.

3. E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs. In
K. Jensen and A. Podelski, editors, Tools and Algorithms for the Construction and
Analysis of Systems, volume 2988 of LNCS, pages 168–176. Springer-Verlag, 2004.

4. P. Cousot and N. Halbwachs. Automatic discovery of linear constraints among
variables of a program. In Symposium on Principles of Programming Languages,
pages 84–97. ACM, 1978.

5. P. Granger. Static analysis of arithmetical congruences. International Journal of
Computer Mathematics, 30:165–190, 1989.

6. P. Granger. Static analyses of linear congruence equalities among variables of a
program. In Joint International Conference on Theory and Practice of Software
Development, volume 493 of LNCS, pages 167–192. Springer-Verlag, 1991.

7. S. Gulwani and G. C. Necula. Discovering affine equalities using random interpre-
tation. In Principles of Programming Languages, pages 74–84. ACM, 2003.

8. D. Jackson and M. Vaziri. Finding bugs with a constraint solver. In International
Symposium on Software Testing and Analysis, pages 14–25. ACM, 2000.

9. M. Karr. Affine relationships among variables of a program. Acta Informatica,
6:133–151, 1976.

10. N. Kettle, A. King, and T. Strzemecki. Widening ROBDDs with prime implicants.
In Tools and Algorithms for the Construction and Analysis of Systems, volume
3920 of LNCS, pages 105–119. Springer-Verlag, 2006.

11. A. King and H. Søndergaard. Inferring congruence equations using SAT. Technical
Report 1-08, Computing Laboratory, University of Kent, CT2 7NF, 2008.

12. D. Le Berre. A satisfiability library for Java. http://www.sat4j.org.
13. J. Leroux. Disjunctive invariants for numerical systems. In F. Wang, editor,

International Symposium on Automated Technology for Verification and Analysis,
volume 3299 of LNCS, pages 99–107. Springer-Verlag, 2004.

14. M. Müller-Olm and H. Seidl. A note on Karr’s algorithm. In International Col-
loquim on Automata, Languages and Programming, volume 3142 of LNCS, pages
1016–1028. Springer-Verlag, 2004.

15. M. Müller-Olm and H. Seidl. Analysis of modular arithmetic. ACM Transactions
on Programming Languages and Systems, 29(5), Aug. 2007. Article 29.

16. D. A. Plaisted and S. Greenbaum. A structure-preserving clause form translation.
Journal of Symbolic Compututation, 2(3):293–304, 1986.

17. K. Ravi, K. L. McMillan, T. R. Shiple, and F. Somenzi. Approximation and
decomposition of binary decision diagrams. In Design Automation Conference,
pages 445–450. IEEE Press, 1998.

18. H. S. Warren Jr. Hacker’s Delight. Addison Wesley, 2003.
19. P. Wegner. A technique for counting ones in a binary computer. Communications

of the ACM, 3(5):322–322, 1960.
20. Y. Xie and A. Aiken. SATURN: A scalable framework for error detection using

Boolean satisfiability. ACM Transactions on Programming Languages and Systems,
29(3), 2007. Article 16.

13

