
Bit-Precise Reasoning with Affine Functions

Neil Kettle and Andy King∗

Portcullis Computer Security Limited, Pinner, HA5 2EX, UK

Abstract
The class of affine Boolean functions is rich enough to express constant bits and de-

pendencies between different bits of different words. For example, the function (x0) ∧
(¬y1) ∧ (x4 ⇐⇒ y7) ∧ (x5 ⇐⇒ ¬y9) is affine and expresses the invariant that the low
bit (bit 0) of the variable x is true, that bit 1 of y is false, that the bits 4 and 7 of x and y
coincide whereas bits 5 and 9 of x and y differ. This class of Boolean function is amenable
to bit-precise reasoning since it satisfies strong chain properties which bound the number
of times a system of semantic fixpoint equations need to be reapplied when reasoning
about loops. This paper address the key problem of abstracting an arbitrary Boolean
function to either a general affine function or a so-called affine function of width 2, when
the function is represented as an ROBDD. Novel algorithms are presented for this task:
one that manipulates Boolean vectors and another which is inspired by anti-unification.
The speed and precision of both algorithms are compared on benchmark circuits, to draw
conclusions on the tractability of affine abstraction.

1 Introduction

In the context of bounded model checking, it is now commonplace to reason about the se-
mantics of basic-blocks with equations over bit-vectors. At this level of abstraction, the
wrap-around nature of finite integer arithmetic can be modeled, and even pointers can be
supported [6, section 2.3]. An alternative to exploring loops to a fixed depth, is to apply
abstract interpretation techniques and compute bit-level summaries that enable all paths
through the program to be systematically considered. Bit-value inference is an exemplar of
this thread of work [5, 18], in which forward and backward data-flow analyses are deployed
to discover constant and redundant bits within program variables. These analyses refine con-
stant propagation analysis and live variables analysis [14] to the bit-level, by describing the
state of individual bits at a given program point using ternary logic: 0, 1 or 1

2 (for unknown or
irrelevant bits). The state of a variable at a program point is then represented as a bit-vector
~b = 〈b0, . . . , b31〉 where bi ∈ {0, 1, 1

2}, and by extension, the state of set of n variables at a
point is described by a concatenated sequence ~b1 · · ·~bn. Although useful in their own right,
such bit-vectors can be combined with ranges [10] in a mutually beneficial way. For instance,
if it is the known that a (whole) variable takes a value in [0, 17] and has a bit-level descrip-
tion of 〈0, 1

2 , . . . , 1
2〉, then the bit-vector can be refined to 〈0, 1

2 , 1
2 , 1

2 , 1
2 , 0, . . . , 0〉. Moreover,

the interval can be pruned to [0, 16] since the vector specifies that the variable is a multiple
of 2. Such a combined analysis can be used to reason about the bit-width of operands (by
discovering constant and unused bits) and thereby exploit sub-word parallelism [15].

∗Andy King is on secondment from the University of Kent, Canterbury, CT2 7NF, UK

1

1.1 Two classes of affine Boolean function

Part of the attraction of reasoning about bits using ternary bit-vectors is that they in-
duce a strong bound on the number of times that a bit-vector can be weakened. For in-
stance, the 8-bit vector 〈0, 1, 0, 0, 1, 0, 1, 1〉 can be weakened in the sequence (ascending chain)
〈0, 1, 0, 1

2 , 1, 0, 1, 1〉, 〈0, 1
2 , 0, 1

2 , 1, 0, 1, 1〉,. . . , 〈1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2〉. The length of the longest
ascending chain for an 8-bit ternary vector is 8 and, in general, is n for an n-bit vector. The
significance of this is that it enforces a strong bound on the number of times that the forward
and backward fixpoint equations can be reapplied when performing the analysis: the number
of iterations of the analysis is linear in the number of program variables (assuming words have
fixed size). One natural question is how this abstract domain for bit-level analysis can be
enriched, without compromising this complexity bound. This paper proposes two sub-classes
of Boolean function for this task: the domain of affine Boolean functions, and the sub-domain
of affine functions of width two [8, section 4.3]. The latter domain consists of (implicitly
conjoined) systems of equations of the syntactic form: xi, ¬xi, xi ⇐⇒ yj , xi ⊕ yj where ⊕
denotes exclusive-or and xi and yj the values of bit i and j of the variables x and y respectively.
Thus, if the ternary bit-vector 〈0, 1

2 , 1
2 , 1

2 , 1, 0, 1
2 , 1〉 describes the state of an 8-bit variable x,

then the state could also be represented as the formula ¬x0∧x4∧¬x5∧x7. Moreover, the two
variable formulae xi ⇐⇒ yj and xi ⊕ yj can additionally express equivalences and disequal-
ities between pairs of bits, possibly in different variables. This class of Boolean formulae is
reminiscent of the class of weakly relational domains, such as the Octagon domain [13], which
expresses systems of two variable numeric constraints of the form ±x ± y ≤ c where c ∈ Q.
As with Octagons, we shall see that this sub-domain of affine formulae is computationally
attractive for the purposes of analysis.

The most general class of affine formulae are those that can be represented as a conjunction
of equations of the form xi ⊕ yj ⊕ . . .⊕ zk ⇐⇒ c where c ∈ {0, 1}. Since (xi ⇐⇒ yj) holds
iff xi ⊕ yj ⇐⇒ 0 holds, it follows that the class includes all affine formulae of width 2, as
well as including additional formulae such as x3 ⊕ (y5 ⇐⇒ z7). The number of satisfying
assignments to any affine formula is always a power of 2 [19] and since the minimal and
maximal number of assignments for Boolean functions over n propositional variables is 0 and
2n respectively, it follows that the length of the longest chain of affine formulae is merely n.
Thus relaxing ternary bit-vectors to affine formulae, whether width 2 or not, does not increase
the number of iterations required to solve fixpoint equations.

1.2 Abstracting ROBDDs to affine functions

Appendix C of [4] provides transfer functions for ternary bit-vectors for both forwards and
backwards analysis, for operations such as shifting, bit operations, arithmetic operations, etc.
Bit-blasting [6] provides an alternative to specifying a transfer function for each concrete
operation. Instead, the semantics of an operation, or even a sequence of operations, can be
expressed relationally as a Boolean function, say f , that encodes the relationship between
a vector of input bits, say ~x, and a vector of output bits, say ~x′. If an input state on ~x is
described by a function fi, then the output state on ~x′ can be derived by computing fi∧f , and
then projecting fi ∧ f onto ~x′. Since ROBDDs support projection [3], they provide a natural
way to implement this tactic and thereby construct a bit-precise forward analysis. However,
the class of arbitrary Boolean functions contains exponentially long ascending chains (consider
a sequence of functions where each function is derived from its predecessor by adding a single

2

assignment). Therefore the (recursive) fixpoint equations that characterise a loop may need
to be re-evaluated an exponentially large number of times. This computational problem can
be finessed by relaxing an ROBDD that cuts a loop (see [2] for a discussion of loop cutting) to
an ROBDD that represents an affine formula. More precisely, the problem is to compute the
best affine abstraction of a function f represented as an ROBDD that is itself defined over
a set of variables X. This amounts to computing an ROBDD that represents the function
g = ∧{a ∈ AffX | f |= a} where AffX denotes the set of all affine Boolean functions that can
be defined over X. The function g is affine since the conjunction of two affine formulae is
itself affine. The problem of computing the best affine abstraction of width 2 is formulated by
merely replacing the class AffX with Aff2X , where the latter denotes the set of affine formulae
of width 2 that can be defined over X. This paper focusses on the problem of computing these
abstractions for functions represented as ROBDDs, as this is a necessary step for preserving
a strong bound on the number iterations of a bit-precise analysis.

2 Preliminaries

2.1 Boolean Functions

A Boolean function is a mapping f : Bool n → Bool where Bool = {0, 1} that is conven-
tionally written as a propositional formula defined over a totally ordered set of variables
X = {x1, . . . , xn}. For instance, x1 ∨ x2 represents the dyadic function {〈0, 0〉 7→ 0, 〈0, 1〉 7→
1, 〈1, 0〉 7→ 1, 〈1, 1〉 7→ 1}. The set of propositional formulae over X is denoted Bool X and
henceforth functions and formulae will be used interchangeably. We define the set of sat-
isfying assignments of a function f as the mapping modelX(f) : Bool X → ℘(Bool n) such
that modelX(f) = {〈b1, . . . , bn〉 | f(b1, . . . , bn) = 1} where ℘ denotes the power-set operator.
For example, if X = {x1, x2, x3} then modelX(x1 ∧ (x2 → x3)) = {〈1, 0, 0〉, 〈1, 0, 1〉, 〈1, 1, 1〉}.
One Boolean function f1 entails another f2, denoted f1 |= f2 iff modelX(f1) ⊆ modelX(f2).
The structure 〈Bool X , |=,∨,∧, 0, 1〉 is a finite lattice where 0 and 1 abbreviate the Boolean
functions λ~b.0 and λ~b.1 respectively and ~b ∈ Bool n. A chain of Boolean functions C is a
set C ⊆ Bool X such that either f |= f ′ or f ′ |= f for all f, f ′ ∈ C. The Shannon co-
factor of a Boolean function f w.r.t. a variable xi and a Boolean constant b is defined
by f|xi←b = f(x1, . . . , xi−1, b, xi+1, . . . , xn). Finally, we denote existential quantification
w.r.t. a variable xi by ∃xi(f) which can be computed using Schröder elimination, that is,
by ∃xi(f) = f|xi←0 ∨ f|xi←1.

2.2 Binary Decision Diagrams

A Binary Decision Diagram (BDD) [3] is a rooted directed acyclic graph where each internal
node is labelled with a variable xi. Each internal node has one successor node connected via
an edge labelled 0, and another successor connected via an edge labelled 1. An external (leaf)
node is represented by one of two nodes labelled with the Boolean constants 0 or 1. The
Boolean function represented by a BDD can be evaluated for a given variable assignment by
traversing the graph from the root, taking the 1 edge at a node when the variable is assigned
to 1 and the 0 edge when the variable is assigned to 0. The external node reached in this
traversal indicates the value of the Boolean function for the assignment. Observe that each
sub-BDD of a BDD also itself represents a Boolean function.

3

1: procedure affine2(input: an ROBDD f over x1, . . . , xn)
2: begin
3: i := index(f)
4: if f|xi←1 = 1 ∧ f|xi←0 = 0 then return 〈i, 1, 0〉 :: ε
5: else if f|xi←1 = 0 ∧ f|xi←0 = 1 then return 〈i, 0, 1〉 :: ε
6: else if f|xi←0 = 1 then return ε
7: else if f|xi←1 = 1 then return ε
8: else if f|xi←0 = 0 then return 〈i, 1, 0〉 :: affine2(f|xi←1)
9: else if f|xi←1 = 0 then return 〈i, 0, 1〉 :: affine2(f|xi←0)
10: else
11: begin
12: l1 := 〈i, 0, 1〉 :: affine2(f|xi←0)
13: l2 := 〈i, 1, 0〉 :: affine2(f|xi←1)
14: return antiunify(l1, l2)
15: end
16: end

Figure 1: Affine abstraction of width 2 of an ROBDD

An ROBDD is a BDD that is restricted, as follows, to induce a canonical representation.
Firstly, the label of a node xi is less than the label xj of any internal node reachable via its
successors, that is, i < j. Secondly, there exists no sub-ROBDD that is rooted at a node
labeled with xi that represents a function f such that f|xi←0 = f|xi←1. Thirdly, there are no
two nodes have that identical successor nodes and are labeled with the same variable.

3 Abstracting an ROBDD with an affine function of width 2

Aff2X has been previously studied [8] because it represents the bijective sub-class of AffX . A
function f is bijective iff whenever f possesses the satisfying assignments ~x, ~y, ~z then it also
satisfied by (~x∧~y)∨ (~x∧~z)∨ (~y∧~z). More pragmatically, these functions represent the affine
sub-class that can expressed as conjunctions of two variable constraints [8, lemma 4.9]. This
is pertinent to analysis because such functions can be represented a list of tuples. Moreover,
if the lists l1 and l2 represent two affine formulae f1 and f2 then (rather surprisingly) the
affine abstraction of width 2 of f1 ∨ f2 can be found by applying anti-unification to l1 and l2.

3.1 Primer on anti-unification

Anti-unification is better known in machine learning [16] than program analysis, and thus to
make the paper self-contained, we recall that anti-unification of two terms t1 and t2, denoted
antiunify(t1, t2), computes a term t that is the most specific generalisation of t1 and t2.
For instance, antiunify(f(a, b, b), f(a, c, c)) = f(a,X, X) (rather than f(a,X, Y)). The term
f(a,X, X) (and renamings such as f(a, Y, Y) and f(a, Z, Z)) are the most specific terms that
can be instantiated to obtain f(a, b, b) and f(a, c, c). More formally, if t = antiunify(t1, t2),
then there exists substitutions θ1 and θ2 such that θ1(t) = t1 and θ2(t) = t2 (t generalises t1
and t1). Moreover, if t′ is a term such that θ′1(t

′) = t1 and θ′2(t
′) = t2 then ϑ(t) = t′ for some

substitution ϑ (t is the most specific generalisation of t1 and t2).

4

3.2 Anti-unification and affine abstraction for width 2

The relevance of anti-unification becomes more clear when the relationship between affine
functions and lists of triples is spelt out. To illustrate, consider the function (x1 ⇐⇒
x2) ∧ ¬x3 over the (ordered) variables x1, x2, x3. Observe that this affine function of width
2 can be represented as a list term, namely l = 〈1, A, B〉 :: 〈2, A, B〉 :: 〈3, 0, 1〉, where A
and B are free variables. The first position in a triple denotes the variable index. The
second and third positions indicate the polarity of a variable in any satisfying assignment,
and express two variable affine equations using the free variables. For instance, 〈3, 0, 1〉
indicates that ¬x3 holds: the positive position is 0 and the negative position is 1, indicating
that x3 is 0 in all satisfying assignments in the function represented by l. Taken together, the
triples 〈1, A, B〉 and 〈2, A, B〉 indicate the truth values of x1 and x2 coincide in all satisfying
assignments, hence (x1 ⇐⇒ x2) holds. Furthermore, the lists 〈1, A, B〉 :: 〈2, 1, 0〉 :: 〈3, B, A〉
and 〈1, A, B〉 :: 〈2, A, B〉 :: 〈4, B, A〉 encode (x1 ⊕ x3) ∧ x2 and (x1 ⇐⇒ x2) ∧ (x2 ⊕ x4)
respectively. The interpretation of the empty list ε is the vacuous affine function true. More
generally, the following function specifies how a list l can be interpreted as an affine formula:

decode(l) =


true if l = ε
xi ∧ decode(l)′ if l = 〈i, 1, 0〉 :: l′

¬xi ∧ decode(l′) if l = 〈i, 0, 1〉 :: l′

decode(l[A 7→ 0, B 7→ 1]) ∨ decode(l[A 7→ 1, B 7→ 0]) if l = 〈i, A,B〉 :: l′

Now consider the two affine formulae f1 = x2 ∧ x4 ∧ ¬x5 and f2 = ¬x2 ∧ x3 ∧ ¬x4 ∧ x5

that are represented by l1 = 〈2, 1, 0〉 :: 〈4, 1, 0〉 :: 〈5, 0, 1〉 and l2 = 〈2, 0, 1〉 :: 〈3, 1, 0〉 ::
〈4, 0, 1〉 :: 〈5, 1, 0〉 respectively, that is, decode(l1) = f1 and decode(l2) = f2. The attraction
of the encoding is that l = antiunify(l1, l2) yields an affine abstraction of f1 ∨ f2. Specifically
l = 〈2, A, B〉 :: 〈4, A, B〉 :: 〈5, B, A〉 and decode(l) = (x2 ⇐⇒ x4) ∧ (x4 ⊕ x5).

3.3 An divide-and-conquer abstraction algorithm based on anti-unification

This trick suggests a divide-and-conquer approach for computing the affine abstraction of
width 2 for an ROBDD. To abstract a sub-ROBDD f that is labeled by xi, compute the
abstraction of the sub-ROBDDs for the co-factors f|xi←0 and f|xi←1, where the abstractions
as represented themselves as lists l1 and l2. Then extend l1 and l2 to represent the affine
formulae (¬xi) ∧ f|xi←0 and (xi) ∧ f|xi←1 to give l′1 and l′2. Next, apply anti-unification to l′1
and l′2 to obtain l which can then be reinterpreted as the affine abstraction of f .

The algorithm is represented in Figure 1 applies this technique to compute a list of triples
that represents the affine abstraction of width 2 of an ROBDD. The operation index(f) returns
the index of the variable that labels the root of the ROBDD f . Figure 2 illustrates a run of the
algorithm for an ROBDD that represents f = (x1∧(x2∨x3))∧(x2 ⇐⇒ x4)∧(x2 ⇐⇒ ¬x5).
The result of the algorithm is the list 〈1, 1, 0〉 :: 〈2, A, B〉 :: 〈4, A, B〉 :: 〈5, B, A〉 that encodes
g = x1∧(x2 ⇐⇒ x4)∧(x4⊕x5). Observe f |= g but g is additionally satisfied by 〈1, 0, 0, 0, 1〉.

To reason about complexity, observe that the length of any list will not exceed n where
n is the number of variables in the ROBDD. Then, if antiunify is implemented using an
AVL tree [16], each call to antiunify resides in O(n log n). ROBDD memoisation [3] ensures
that the number of times anti-unification is invoked does not exceed the number of nodes
in the ROBDD, denoted |f |. Hence the overall complexity of the abstraction algorithm is
O(|f |n log n). The polynomial complexity stems from the fact that the intermediate affine ab-
stractions, namely those for f|xi←0, f|xi←1, (¬xi)∧f|xi←0 and (xi)∧f|xi←1, are not themselves

5

f

〈1,1,0〉::〈2,A,B〉::〈4,A,B〉::〈5,B,A〉
��GFED@ABCx1

1

〈2,A,B〉::〈4,A,B〉::〈5,B,A〉
〈1,1,0〉::〈2,A,B〉::〈4,A,B〉::〈5,B,A〉

}}{{
{{

{{
{

0

((PPPPPPPPPPPPP

GFED@ABCx21

〈4,1,0〉::〈5,0,1〉

〈2,1,0〉::〈4,1,0〉::〈5,0,1〉

yyssssssssssssssssssssssssssssss 0

〈3,1,0〉::〈4,0,1〉::〈5,1,0〉

〈2,0,1〉::〈3,1,0〉::〈4,0,1〉::〈5,1,0〉

##H
HHHHHHHHHHHHHH 0

GFED@ABCx3
1〈4,0,1〉::〈5,1,0〉

}}{{
{{

{{
{ 0

 @
@@

@@
@

GFED@ABCx4
0

~~~~
~~

~~
1 〈5,0,1〉

!!B
BB

BB
BB

GFED@ABCx4
0〈5,1,0〉

}}||
||

||
| 1

!!B
BB

BB
BB

0

0 GFED@ABCx5
1

}}||
||

||
| 0

  @
@@

@@
@

GFED@ABCx5
1

~~~~
~~

~~
0

!!B
BB

BB
BB

0

0 1 1 0

Figure 2: Computing an abstraction for f = (x1 ∧ (x2 ∨ x3))∧ (x2 ⇐⇒ x4)∧ (x4 ⇐⇒ ¬x5)

represented as ROBDDs. Such an approach would compromise the polynomial complexity
because even a single logical operation is quadratic in the size of its input ROBDDs. (Note
that for brevity the abstraction algorithm ignores the post-processing step of converting the
list back into an ROBDD. However, this step is straightforward and, in fact, resides in O(n).)

4 Abstracting an ROBDD with a (general) affine function

As long as ago as Schaefer [19], it was observed that affine Boolean functions could be put into
a triangular form by applying Gaussian elimination. Moreover, the (general) affine abstraction
of a Boolean function can be derived by triangularising its set of satisfying assignments. This
tactic is then lifted to ROBDDs to compute an (unrestricted) affine abstraction.

4.1 Computing the generators of a set of vectors

Algorithm 3 fleshes out the idea of Schaefer [19] and generates a set of Boolean vectors S′ in
a triangular form from S. S′ is triangular in the sense that if ~x1, ~x2 ∈ S′ then leading(~x1) 6=
leading(~x2), where leading(~x) returns -1 if ~x = ~0 and the position of the first non-zero element
of ~x otherwise. When S is the set of satisfying assignments of a function f of n variables,
then S′ is set of assignments whose affine combination spans the affine abstraction of f . Put
another way, if S′ = {~x1, . . . , ~xk} and y1, . . . yk ∈ Bool such that (y1 ⊕ . . . ⊕ yk) ⇐⇒ 1
then (y1 ∧ ~x1)⊕ . . .⊕ (yk ∧ ~xk) is a satisfying assignment of the affine abstraction of f where
y ∧ 〈x1, . . . , xm〉 = 〈y ∧ x1, . . . , y ∧ xm〉. Since the number of vectors in S′ cannot exceed n,
this gives a compact representation of an affine abstraction as a so-called set of generators.
The algorithm resides in O(n3) just like the classical form of Gaussian elimination.

6

1: procedure triangular(input: S ⊆ Booln)
2: begin
3: t := ∅
4: for all (~x ∈ S)
5: begin
6: i := leading(~x)
7: while (i ≥ 0 ∧ i ∈ dom(t))
8: begin
9: ~x := ~x⊕ t(i)
10: i := leading(~x)
11: end
12: t := t[i 7→ ~x]
13: end
14: return {t(i) | i ∈ dom(t)}
15: end

Figure 3: Triangularisation of a set of Boolean vectors

1: procedure triangular(input: an ROBDD f over the variables x1, . . . , xn)
2: begin
3: return triangular(f , 1, n)
4: end
5:
6: procedure triangular(input: an ROBDD f , integers i, k)
7: begin
8: if f = true then
9: begin
10: S := {~0k−i+1}
11: for all (i ≤ ` ≤ k) S := S ∪ {~0`−i · 1 ·~0k−`}
12: return S
13: end
14: else if f = false then return ∅
15: else
16: begin
17: j := index(f)
18: f0 := f|xj←0

19: f1 := f|xj←1

20: S := {~0j−i}
21: for all (i ≤ ` ≤ j − 1) S := S ∪ {~0`−i · 1 ·~0j−1−`}
22: S0 := {~x · 0 · ~y | ~x ∈ S ∧ ~y ∈ triangular(f0, j + 1, k)}
23: S1 := {~x · 1 · ~y | ~x ∈ S ∧ ~y ∈ triangular(f1, j + 1, k)}
24: return triangular(S0 ∪ S1)
25: end
26: end

Figure 4: Triangularisation of a set of vectors represented by an ROBDD

7

4.2 Computing the generators of an ROBDD

Algorithm 4 develops this idea to compute a set of generators that describe the affine ab-
straction of an ROBDD. In the presentation of the algorithm, ~0n denotes the zero vector of
length n so that, for instance, ~02 = 〈0, 0〉 and ~00 = ε where ε indicates the empty vector.
The intuition behind the algorithm is that a sub-ROBDD f which is labeled by xi, can be
abstracted by computing generator sets S1 and S2 for its co-factors f|xi←0 and f|xi←1. Then
sets S′0 = {0 · ~x | ~x ∈ S0} and S′1 = {1 · ~x | ~x ∈ S1} are computed where · denotes vector
concatenation. Next S′0 ∪ S′1 is triangularised to ensure that the number of generators does
not exceed the number of variables in the ROBDD. The complexity in the algorithm stems
from the corner cases that relate, among other things, to the fact that the labels that arise
down a branch are not necessarily consecutive (though they are always increasing). With
memoisation, the overall complexity of the algorithm is O(|f |n3).

4.3 Reinterpreting the generators of an ROBDD

Although a set of generators can indeed represent the affine abstraction of an ROBDD, it is
not immediately obvious how such a set can be applied to construct the ROBDD which is
the affine abstraction. In fact, rather conveniently, the triangularisation algorithm of figure 3
can be reapplied in a post-processing step that translates the generators into an ROBDD.
This stems from the way Gaussian elimination can be used to invert a matrix. To illustrate
the post-processing algorithm of figure 5, let f be an ROBDD that represents the function
(x1 ∧ x4 ∧ ¬x5 ∧ (x2 ⇐⇒ x3)) ∨ (¬x1 ∧ ¬x4 ∧ ((x2 ⇐⇒ x3) ⇐⇒ ¬x5))). Then the sat-
isfying assignments of f correspond to the following set of vectors: 〈0, 0, 0, 0, 0〉, 〈0, 0, 1, 0, 1〉,
〈0, 1, 0, 0, 1〉, 〈0, 1, 1, 0, 0〉, 〈1, 0, 0, 1, 0〉, 〈1, 1, 1, 1, 0〉. At line 3 of the post-processing algo-
rithm, the call triangular(f) will return the set {~x1, ~x2, ~x3, ~x4} where ~x1 = 〈1, 0, 0, 1, 0〉,
~x2 = 〈0, 1, 1, 0, 0〉, ~x3 = 〈0, 0, 1, 0, 1〉 and ~x4 = 〈0, 0, 0, 0, 0〉. These are the generators of
f . The loop that starts at line 5 will then construct the set of vectors S = {~y1, . . . ~y5} where

~y1 = 〈1, 0, 0, 0, 1, 0, 0, 0, 0〉
~y2 = 〈0, 1, 0, 0, 0, 1, 0, 0, 0〉
~y3 = 〈0, 1, 1, 0, 0, 0, 1, 0, 0〉
~y4 = 〈1, 0, 0, 0, 0, 0, 0, 1, 0〉
~y5 = 〈0, 0, 1, 0, 0, 0, 0, 0, 1〉

~z1 = 〈1, 0, 0, 0, 1, 0, 0, 0, 0〉
~z2 = 〈0, 1, 0, 0, 0, 1, 0, 0, 0〉
~z3 = 〈0, 0, 1, 0, 0, 1, 1, 0, 0〉
~z4 = 〈0, 0, 0, 0, 1, 0, 0, 1, 0〉
~z5 = 〈0, 0, 0, 0, 0, 1, 1, 0, 1〉

These vectors correspond to a set of simultaneous equations that, when solved, yield the
affine equations that define the affine abstraction of f . The call to triangular(S) to line 12
produces the set of vectors {~z1, . . . ~z5}, stated above, that gives a solved form to these equa-
tions. The first three of these vectors will be disregarded at line 14 since leading(~z1) = 1,
leading(~z2) = 2 and leading(~z3) = 3. However, the remaining two vectors of the solved form
can be directly interpreted as affine equations. Indeed, the loop commencing at line 15 will
generate two affine equations h1 = (x1 ⊕ x4) ⇐⇒ 0 and h1 = (x2 ⊕ x3 ⊕ x5) ⇐⇒ 0,
from which the ROBDD g = h1 ∧ h2 is constructed. The satisfying assignments of g cor-
respond to the following set of vectors: 〈0, 0, 0, 0, 0〉, 〈0, 0, 1, 0, 1〉, 〈0, 1, 0, 0, 1〉, 〈0, 1, 1, 0, 0〉,
〈1, 0, 0, 1, 0〉, 〈1, 0, 1, 1, 1〉, 〈1, 1, 0, 1, 1〉 and 〈1, 1, 1, 1, 0〉. Thus g possesses two satisfying as-
signments, namely 〈1, 0, 1, 1, 1〉 and 〈1, 1, 0, 1, 1〉, that the original ROBDD does not.

8

1: procedure affine(input: an ROBDD f over x1, . . . , xn)
2: begin
3: {~x1, . . . , ~xi} := triangular(f)
4: S := ∅
5: for all (1 ≤ k ≤ n)
6: begin
7: ~y := ε
8: for all (1 ≤ ` ≤ n) ~y := ~y · πk(~x`)
9: S := S ∪ {~y ·~0k−1 · 1 ·~0n−k}
10: end
11: g := 1
12: for all (~z ∈ triangular(S))
13: begin
14: if leading(~z) > i then
15: begin
16: h := 0
17: for all (i < ` ≤ i + n) if π`(~z) = true then h := h⊕ x`−i

18: end
19: g := g ∧ (h ⇐⇒ 0)
20: end
21: return g
22: end

Figure 5: Affine abstraction of an ROBDD

5 Experimental Results

The abstraction algorithms have differing complexities, reflecting the fact that algorithm 5
will generate an ROBDD possessing no more (and possibly fewer) satisfying assignments than
that produced by algorithm 1. Since these operations represent just one component of an
analysis (albeit a non-trivial one) it is important that these operations scale to ROBDDs
with large numbers of nodes. This is because expressing the semantics of an operation in a
relational fashion will inevitably require large numbers of propositional variables: typically
32 for each integer variable.

Table 1 presents the results of some timing and precision experiments for some standard
benchmark circuits (although these circuits do not arise in analysis, the functions are large,
structured, and permit the experiments to be reproduced). The first four columns of the
table give, respectively, the circuit name, number of input variables, number of defined func-
tions (outputs) and the number of internal ROBDD nodes across all outputs (disregarding
sharing between outputs). The remaining four columns are split into two pairs, the first of
these pairs of columns records the total number of individual formulae as discovered by algo-
rithm 1 and the time (in seconds) required. The second pair of columns replicates the results
for algorithm 5. The experiments were performed on an Intel P3 1.73GHZ PC, equipped
with 2GB of RAM, running Linux using the CUDD package [22]. However, even with 2GB,
algorithm 5 failed to complete for s9234.1 and C3540 benchmarks, due to lack of memory.

9

Circuit # var # func Σ|G| Σ|E| Time (s) Σ|A| Time (s)
alu4 14 8 1099 0 0.01 93 0.02
apex1 45 45 3000 115 0.01 636 0.37
apex2 39 3 1771 3 0.01 104 0.24
apex3 54 50 1661 217 0.01 399 0.68
dalu 75 16 5128 0 0.01 211 0.32
des 256 245 15209 61 0.01 2530 0.58
frg1 28 3 200 1 0.01 32 0.02
frg2 143 139 6679 218 0.01 1596 0.37
k2 256 245 3029 115 0.01 695 0.42
mm4a 19 16 529 28 0.01 111 0.01
mm9a 39 36 40878 45 0.01 486 4.38
mm9b 38 35 520690 43 0.04 701 36.69
pair 173 137 118066 90 0.20 2504 24.60
rot 135 107 13565 97 0.01 1160 3.57
too large 38 3 2312 3 0.01 92 0.28
s4863 153 104 126988 179 0.01 651 6.36
s9234.1 247 250 4434504 122 0.61 - -
C1908 33 25 30832 0 0.01 749 8.56
C3540 50 22 4618194 4 0.81 - -
C432 36 7 32151 0 0.01 224 3.19
C499 41 32 110675 0 0.02 1312 48.01
C880 60 26 600998 33 0.06 392 332.36

Table 1: Experimental Results

6 Discussion

It should be noted that bit-blasting also provides a way to realise a backward analysis for
discovering irrelevant bits. Suppose again that an ROBDD f encodes the relationship between
the input bits ~x and the output bits ~x′. Suppose also that Y ′ ⊆ ~x′ is a set of output
variables that are known to be irrelevant. This information can propagated backwards by
projecting Y ′ out of f to obtain g. If y ∈ ~x then y is irrelevant if g|y←0 = g|y←1. The
set Y = {y ∈ ~x | g|y←0 = g|y←1} then represents the input bits that are irrelevant. This
technique can be refined because if the input state over ~x is known to be fo, then Y can be
computed by Y = {y ∈ ~x | gy|y←0 = gy|y←1} where gy = ∃y(fo) ∧ ∃Y ′(f ′). For instance, if
f = (u′ ⇐⇒ u) ∧ (v′ ⇐⇒ u ∧ v), ~x = 〈u, v〉, ~x′ = 〈u′, v′〉 and neither u′ nor v′ are known
to be irrelevant, then the input variable v can still be detected as being irrelevant if it is
additionally known that fo = (¬u). Thus, as suggested by Budiu and Goldstein [4], backward
analysis should ideally be applied in conjunction with (after) forward analysis.

Although ROBDDs are the natural workhorse for equivalence checking, SAT techniques
are potentially more robust and flexible [9]. The above analysis can be reformulated using
SAT because xi ∈ Y if g(~x0) ⊕ g(~x1) is unsatisfiable where ~xb = ~x[xi 7→ b]. Moreover,
if xj ∈ Y ′ this test can be relaxed by checking whether g(~x0) ⊕ g(~x2) is unsatisfiable where
~x2 = ~x1[xj 7→ x′j] and x′j is a fresh variable. This motivates reformulating the forward analysis
using SAT, and certainly simple equivalences are detectable using cutpoint techniques [9].

10

7 Related Work

Interestingly, the literature already suggests an approach for approximating an ROBDD with
an affine function, albeit a very restricted one. Bagnara and Schachte propose an O(|f |n2)
algorithm [1] for finding all pairs of propositional variables x and y such that f |= (x ⇐⇒ y)
where n and |f | are the number of variables and nodes in the ROBDD f . This information is
then used to remove all equivalences from the ROBDD so that they can be stored separately,
so as to achieve a more memory-dense representation.

The abstraction algorithms presented in this paper share an important property with the
ROBDD widening of Kettle, King and Strzemecki [12]. A widening [7] is an approximation
that is applied to curtail the growth of an abstraction. In the context of an ROBDD [12], the
idea is to systematically add models so as to construct an ROBDD that can be represented
more compactly. Unlike earlier techniques [17, 21] that are informed only by the syntactic
structure of the ROBDD, the widening, and affine approximation algorithms presented in this
paper, are insensitive to the variable ordering.

Affine formulae also arise in knowledge compilation where the idea is to abstract a knowl-
edge base to either a core or an envelope [20]. These are more tractable knowledge bases
that contain, respectively, fewer and more solutions. Zanuttini [23] suggests using (lower-
and upper-) affine functions for the core and envelope, that are represented as sets of binary
vectors, and mentions that such sets can be minimised by applying Gaussian elimination.
Very recently, Henshall et al. [11] have developed an elegant algorithm for computing the
affine envelope of an ROBDD, that uses ROBDDs for the intermediate results. On random
formulae, the envelope of a 24 variable ROBDD can be computed in approximately 15 secs
on a Solaris 9 machine, equipped with two 2.8GHz Intel Xeon CPUs and 4GB of memory.

8 Conclusions

The paper has investigated two classes of Boolean function that can only admit chains who
length does not exceed the number of underlying variables. Novel algorithms have been
presented for abstracting ROBDDs to formulae in these classes: one algorithm inspired by
anti-unification and the other by Gaussian elimination.

Acknowledgements This work was funded, in part, by EPSRC grant EP/F012896 and a
Royal Society Industrial Fellowship that has enabled Andy King to visit Portcullis Computer
Security. We thank Paul Docherty for suggesting obfuscation and Laurent Mauborgne for
spotting the connection between affine functions of width 2 and weakly relational domains.

References

[1] R. Bagnara and P. Schachte. Factorizing Equivalent Variable Pairs in ROBDD-Based Implemen-
tations of Pos. In Algebraic Methodology and Software Technology, volume 1548 of LNCS, pages
471–485. Springer-Verlag, 1999.

[2] F. Bourdoncle. Efficient Chaotic Iteration Strategies with Widenings. In International Conference
on Formal Methods in Programming and their Applications, number 735 in LNCS, pages 128–141.
Springer-Verlag, 1993.

[3] R. E. Bryant. Symbolic Boolean Manipulation with Ordered Binary Decision Diagrams. ACM
Computing Surveys, 24(3):293–318, 1992.

11

[4] M. Budiu and S. C. Goldstein. Bitvalue Inference: Detecting and Exploiting Narrow Bitwidth
Computations. Technical Report CMU-CS-00-141, Carnegie Mellon University, PA 15213, 2000.

[5] M. Budiu, M. Sakr, K. Walker, and S. C. Goldstein. Bitvalue Inference: Detecting and Ex-
ploiting Narrow Bitwidth Computations. In Sixth International Euro-Par Conference on Parallel
Processing, volume 1900 of LNCS, pages 969–979. Springer-Verlag, 2000.

[6] E. M. Clarke, D. Kroening, N. Sharygina, and K. Yorav. Predicate Abstraction of ANSI-C
Programs Using SAT. Formal Methods in System Design, 25(2–3):105–127, 2004.

[7] P. Cousot and R. Cousot. Comparing the Galois Connection and Widening/Narrowing Ap-
proaches to Abstract Interpretation. In Programming Language Implementation and Logic Pro-
gramming, volume 631 of LNCS, pages 269–295. Springer-Verlag, 1992.

[8] N. Creignou, S. Khanna, and M. Sudan. Complexity Classifications of Boolean Constraint Satis-
faction Problems. Monographs On Discrete Mathematics And Applications. SIAM, 2001. ISBN
0-89871-479-6.

[9] E. I. Goldberg, M. R. Prasad, and R. K. Brayton. Using SAT for Combinational Equivalence
Checking. In Conference on Design, Automation and Test in Europe, pages 141–121. ACM, 2001.

[10] W. Harrison III. Compiler Analysis of the Value Ranges for Variables. IEEE Transactions on
Software Engineering, 3(3):243–250, 1977.

[11] K. Henshall, P. Schachte, H. Søndergaard, and L. Whiting. Binary Decision Diagrams for Affine
Approximation, April 2008. http://arxiv.org/abs/0804.0066.

[12] N. Kettle, A. King, and T. Strzemecki. Widening ROBDDs with Prime Implicants. In Tools and
Algorithms for the Construction and Analysis of Systems, volume 3920 of LNCS, pages 105–119.
Springer-Verlag, 2006.

[13] A. Miné. The Octagon Abstract Domain. Higher-Order and Symbolic Computation, 19(1):31–100,
2006.

[14] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer-Verlag, 1999.

[15] A. Peleg, S. Wilkie, and U. Weiser. Intel MMX for multimedia PCs. Communications of the
ACM, 40(1):24–38, 1997.

[16] G. Plotkin. A Note on Inductive Generalisation. In Machine Intelligence, volume 5, pages 153–
163. Edinburgh University Press, 1970.

[17] K. Ravi, K. L. McMillan, T. R. Shiple, and F. Somenzi. Approximation and Decomposition of
Binary Decision Diagrams. In Design Automation Conference, pages 445–450. IEEE, 1998.

[18] R. Razdan. PRISC: Programmable Reduced Instruction Set Computers. PhD thesis, Harvard
University, Cambridge, MA, USA, May 1994.

[19] T. J. Schaefer. The Complexity of Satisfiability Problems. In ACM Symposium on Theory of
Computing, pages 216–226. ACM Press, 1978.

[20] B. Selman and H. Kautz. Knowledge Compilation and Theory Approximation. Journal of the
ACM, 43(2):193–224, 1996.

[21] T. R. Shiple. Formal Analysis of Synchronous Circuits. PhD thesis, University of California at
Berkeley, Electronics Research Laboratory, 1996.

[22] F. Somenzi. CUDD Package, Release 2.4.1. http://vlsi.colorado.edu/∼fabio/CUDD/.

[23] B. Zanuttini. Approximating Propositional Knowledge with Affine Formulas. In European Con-
ference on Artificial Intelligence, pages 287–291. IOS Press, 1992.

12

