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Abstract

Automata based regular expression matching can often require large amounts of 
memory  for  its  state  transition  tables,  particularly  when  matching  multiple 
complex regular expressions with the same automata. For systems with limited 
memory resources it is common to try to compress the state transition tables.  One 
technique  called  row  displacement  with  state  marking does  this  by  identifying 
default values for the next state and then packing the remaining information into a 
one dimensional  array.   Although this  compression technique works well  when 
matching multiple strings, it is not as effective when matching multiple complex 
regular expressions.
This paper describes a technique called next state prediction.  This performs lossy 
compression of the current state and input values and uses these to select a likely 
next state from a prediction table.  This is used in conjunction with a standard row 
displacement with state marking algorithm and leads to an overall reduction in the 
memory required for the various tables.
The algorithms have been tested with a number of different design parameters, 
and compared with a 'baseline version' where this technique is not used.  When 
testing  this  system with  a  set  of  regular  expressions  from the  Snort  intrusion 
detection system, the memory required was around 46% of that required for the 
baseline version.  The design has been modelled in VHDL for use within an FPGA 
and tested via simulation and operates at a search rate of 2.0 Gbps irrespective of 
the regular expressions being searched for or the input data being scanned.

1. Introduction
Previous  work  by  the  author  [1]  has  looked  at  the  implementation  of  regular  expression 
matching within Field Programmable Gate Arrays (FPGAs).  This used standard techniques 
[2]  for  taking  a  Regular  Expression  (RE)  and  creating  a  Deterministic  Finite  Automaton 
(DFA) for its implementation.  In addition to this, a further stage was added to group together 
sets of characters that cause the same transitions within the automaton and to compress the 
input data so as to form a set identifier.  The automaton is then modified so as to label edges 
with one or more of these set identifiers.
The current  paper  continues  this  previous  work,  implementing some of  the  areas  left  for 
further study in the previous paper.  In performing this further work, it was discovered that 
* Email: G.E.W.Tripp@kent.ac.uk
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some automata designed to match multiple regular expressions required larger than expected 
amounts of memory.  The automata were implemented as before using row displacement with 
state marking [3],  but this was found not to give the expected amount of compression.  A 
further stage has been taken in this current work that looks at the use of next state prediction 
as a way of improving memory efficiency.
The next section gives a brief overview of previous work, section three gives details of the 
baseline design for matching multiple regular expressions and outlines how the use of Kleene-
star operators causes a major increase in resource requirements.  The following section looks 
at an algorithm for creating a next state prediction to use in conjunction with the existing 
design.  Section five gives details of a hardware design to implement the next state prediction 
system and the results of the resource requirements for a sample set of regular expressions for 
both the old and new designs.  The final section gives conclusions and ideas for further work.

2. Background
The aim of this work is to produce designs for regular expression matching systems that can 
be implemented efficiently in hardware, for example within a Field Programmable Gate Array 
(FPGA).   These  will  typically  aim to  operate  at  a  deterministic  search  rate,  for  example 
consuming input data at the rate of one input word per hardware clock cycle.

2.1 Overview of implementation techniques
Two main approaches are taken in the literature: to convert the RE into a Non deterministic 
Finite Automata (NFA) and to implement that in hardware, or to take this a stage further 
whereby the NFA is further converted into a DFA and to implement that in hardware.  In 
terms of processing the REs, this is typically done using standard techniques [2] that have 
been used for many years.

Hardware base NFA implementation

A popular technique in the literature is to use a direct implementation of a NFA in hardware. 
This has the advantage of not becoming overly complex when used for RE matching, however 
we do have the problem that we can typically have more than one state active at once.  This 
makes a software implementation quite complex, as each cycle we need to determine which 
states (plural) will become active next.  A technique for implementing this in hardware was 
described by Sidhu and Prasanna [4], whereby each 'state' is implemented as a 1-bit flip flop 
and logic is  then used to implement the 'edges'  between states.   This  type of  system will 
operate in parallel and can run quite fast, although the clock speed may need to be reduced for 
some complex automata.  A lot of work has built on and improved on the original design, 
including techniques to optimise the character decoding [5] and schemes to extend this to 
operate with multi-byte input data [6] [7]. One disadvantage of this technique is however that 
it  produces a  hardware design that  is  specific  to  the  set  of  REs being matched and thus 
requires it to be implemented in field programmable devices if the matching requirements for 
a system can change and will require at least partial reconfiguration at run time if we wish to 
change the rules 'on the fly'.

Hardware based DFA Implementation

A benefit  of  DFA implementation is that  this has only one active state,  and this can,  for 
example, be held as a state variable.  A disadvantage however is that the DFAs generated for 
REs can be quite complex.  DFAs are commonly used within hardware designs, with small 
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examples often being synthesized into a collection of flip-flops and logic gates.  Larger DFAs 
can be implemented as a traditional state variable and a state transition table, as we might in 
software.  A problem however, is that the tables can be quite large and may not be practical to 
implement within the relatively small amounts of memory found with FPGAs.
With table based DFA implementation, quite a lot of work has gone into ways of compressing 
the  state  transition  tables  –  as  these  are  generally  quite  redundant.   One  method  of 
compressing the state transition tables is to use 'row displacement with state marking' [3] - 
which  is  described  below.   This  technique  was  used  by  Sugawara  et.al  for  a  high  speed 
hardware based string matching system [8]  which implemented Aho-Corasick multi string 
matching [9].  Another compression method by Brodie et.al used run length encoding as the 
way in which the state transition tables were compressed [10].
The hardware implementations of DFAs are generally not as efficient in resource usage as the 
implementations of NFAs, but they do however have the advantage that they can be table 
based and thus can enable simple run-time reconfiguration without changes to the hardware 
design.

Row Displacement with state marking

This is one of a number of techniques that was used originally to compress the size of tables 
used for parsers or lexical analysers within compilers.  It operates on the basis that state 
transition tables typically have a lot of redundancy – with one or more main routes through 
the tables to match various strings or patterns and then large numbers of error cases that 
take us to the idle state or to a state that represents a match of a suffix of the data already 
matched. As a trivial example, we can look at an automata that matches the string “abcba”, 
the state transition table for which is shown as the left most array in Table 1. 

Next State
(state transition table)

Current 
state

Input

a b c z†

0 - IDLE 1 0 0 0

1 (a) 1 2 0 0

2 (ab) 1 0 3 0

3 (abc) 1 4 0 0

4 (abcb) 5 0 0 0

5 (abcba) 1 2 0 0

Next State 
(default)

Input

a b c z
1 0 0 0

Next State
(difference)

Current 
state

Input

a b c z
0 - IDLE

1 (a) 2

2 (ab) 3

3 (abc) 4

4 (abcb) 5

5 (abcba) 2

Table 1: Original, Default and Difference Arrays

From this table, we can see that the most common (default) value for each column is the value 
at the top – i.e. the next state for the current input in the idle state.  We can split this state 
transition table into two parts: a default table and a difference table, as also shown in Table 1.
The  default  table  is  a  single  dimensional  table  and  will  typically  be  quite  small.   The 
difference  table  is  still  of  the  same  size  as  before,  but  is  now  sparse,  and  we  can  take 

† Note: the character z is used in this paper to represent any character not in the 'alphabet' of characters being search 
for in the string or regular expression.
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advantage of this when its being stored.  The difference table can be divided into its separate 
rows and these are then packed into a one dimensional table, in a way such that there are no 
collisions between entries – each entry is then  tagged with the current state that the entry 
belongs to.  The creation of this packed array is shown in Table 2.

Current 
state

Base 
address

0 - IDLE 0 0

1 (a) 2 1 0

2 (ab) 3 2 0

3 (abc) 4 3 2

4 (abcb) 5 4 0

5 (abcba) 2 5 3

↓ ↓ ↓ ↓ ↓ ↓ ↓

Packed Array
Tag 4 1 2 3 5 -1 -1

Next state 5 2 3 4 2 0 0

Table 2: Building the packed array

To find the next state, we look in the packed array starting at the base address for the current 
state plus an offset for the current input value.  If  the 'tag'  value we find is equal to the 
current state, then we have found a valid entry and we can take the next state value from the 
table.  If there is no valid entry in the packed array, then we take the entry from the default 
array instead.  In practice, we don't need a separate table to look up the base address for the 
current  state  as  this  can be  pre-calculated  and incorporated into  the  default  and packed 
arrays along with the next state values.

2.1 Previous work

Previous  work  by  the  author  [1]  looked  at  how  we  could  build  a  table  based  DFA 
implementation and used 'row displacement with state marking' as the way in which to reduce 
the amount of memory required for its implementation.  An input compression system was 
also used to reduce input redundancy and hence the overall automata size.  This compressed 
all input values that have the same effect on the automata into the same 'token' value for 
input into a modified automata.  The initial version as published only matched a single RE per 
automata (or  engine), although it was noted that this could be extended to match multiple 
REs. When extending this system later to match multiple REs, it was noticed that the memory 
requirements increased far  more than expected.   This current paper looks at some of  the 
reasons why this happens and a mechanism that helps to address this.

3. A baseline multiple-RE matching engine
As an initial stage, a modified version of the previous design was produced that was capable of 
matching multiple REs.  In terms of hardware, this was a trivial change that just added extra 
output 'match' bits.  This modified version is shown in a simplified form in Figure 1 - this is 
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based on the design mentioned above, which itself was developed from the design described by 
Sugawara et.al in [8].  Some minor changes needed to be made to the software to support 
having multiple  REs within the same matching engine which included retaining separate 
terminal  states  for  each  RE  and  ensuring  that  these  do  not  get  merged  during  state 
minimization.

For this baseline design, each engine is capable of matching up to N regular expressions 
and is implemented using a S bit state variable, a packed array with a  P bit address 
input, and an I bit data input that is compressed in range to be of width J . 
The operation of each of the three tables in this design are as follows:

● The input compression table compresses the input data in a way that input values that 
have the same effect on the matching automata are compressed to the same output 
value.

● The default array takes the compressed input and gives a default value for the next 
state (and other values) of the automata based on the next state given by the current 
input in the automaton's IDLE state.

● The packed array holds information for all of the cases where the next state given by 
the default array is not correct for a particular combination of input and current state.

The packed array is usually relatively sparse and this is compacted using row displacement 
with state marking [3]. Data is retrieved from this array using a form of indexing using the 
compressed input as an offset† from the start of the information for the current state.  The 
start address of the information for a particular state is calculated in advance and stored in 
the packed and default arrays along with the next state information.  More information on the 
implementation of this algorithm are given in [1].
The baseline design needs three blocks of memory as follows:

† The indexing is actually performed using bitwise exclusive-or in place of add, for reasons of hardware performance.
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input compression table, of size = J .2 I bits;

default array, of size = S PN .2 J bits;

packed array, of size = 2S PN  .2 P bits.

Thus, the total amount of memory M required is:

M = J .2 IS PN .2 J2S PN  .2 P

Actual implementations may however vary so as to optimize the use of individual memory 
components within an FPGA – as with the design previously reported, the input compression 
and default arrays can be combined into a single table of size:  S PN  J  .2 I  which 
gives no increase in memory used if J=I .
As  an  example,  Table  3 shows the  state  transition  table  for  matching  the  following Perl 
Compatible  Regular  Expression  (PCRE)  [11]:  “/[vV]a[rR]iable/”.   The  first  line  forms  the 
content for the default array, and the other 7 highlighted entries form the data that needs to 
be compressed into the packed array.  As can be seen, there is very little data here that is 
required to perform this matching operation.

Next State
Input

Current 
State

0
{ a }

1
{ b }

2
{ e }

3
{ i }

4
{ l }

5
{ r, R }

6
{ v, V }

7
{ z }

0 [idle] 0 0 0 0 0 0 1 0

1 2 0 0 0 0 0 1 0
2 0 0 0 0 0 3 1 0
3 0 0 0 4 0 0 1 0
4 5 0 0 0 0 0 1 0
5 0 6 0 0 0 0 1 0
6 0 0 0 0 7 0 1 0
7 0 0 8 0 0 0 1 0
8 0 0 0 0 0 0 1 0

Table 3: State Transition Table for matching: "/[vV]a[rR]iable/".

3.1  Limitations
In  testing  this  system  with  sample  patterns  from  the  Snort  intrusion  detection  [12] 
community rule set, it was found that less REs could be matched within a single matching 
engine than was initially expected, and because of this the REs and their state transition 
tables were examined carefully to see why this was.
One property of the REs that appeared to require particularly large amounts of resources in 
this  implementation  was  the  use  of  the  Kleene-star  operators.   These  allow us  to  match 
multiple instances of a pattern and are often used in the snort rule REs for absorbing white 
space or matching alphanumeric strings.  A problem we have in intrusion detection is that we 
need to match any instance of our regular expression, irrespective of its context – i.e. we don't 
want the matching system to be fooled by any previous data.  A problem we have here though 
is the this 'wild-card' style matching may also match data that could be a prefix of the RE 
itself.
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Take the following (more complex) PCRE as an example:
“/var=[a-z]+;/”

Here we are looking for a lower case text string being assigned to the variable 'var', with a 
semicolon used to define the end of the pattern.  So the following input data, for example, 
would give us a match:

var=abx; → matches: “var=abx;”
The following, rather more complex, input data examples would however also give a match:

var=var=xyz; → matches: “var=xyz;”
var=xvar=var; → matches: “var=var;”

The first assignment in each of the above will not match, as they are not terminated by a 
semicolon,  whereas  the  second  ones  will.   A  problem  however,  is  that  the  automaton 
performing the matching needs to be looking for a second instance of the string 'var' whilst it 
is looking for a possible right hand side to the expression.  The second '=' character is the 
deciding point that determines that the pattern isn't matching as expected and will cause the 
match to drop back to the suffix 'var='.  The resulting automaton table for this match is shown 
in Table 4.

Next State

Input

Current 
State

0
{ v }

1 
{ ; }

2
{ r }

3
{ = }

4
{ z }

5
{ a }

6
{ b-q, s-u, w-z }

0 [idle] 1 0 0 0 0 0 0

1 1 0 0 0 0 2 0

2 1 0 3 0 0 0 0

3 1 0 0 4 0 0 0

4 5 0 6 0 0 6 6

5 5 8 6 0 0 7 6

6 5 8 6 0 0 6 6

7 5 8 9 0 0 6 6

8 1 0 0 0 0 0 0

9 5 8 6 4 0 6 6

Table 4: State Transition Table for matching: "/var=[a-z]+;/".

We can see in this case that the data in the state transition table is more complex than we had 
in the example shown in Table 3.  With the first example, we had a single route through the 
automaton table, with various error paths to follow on mismatch, which in that example were 
not state dependent.  With the RE automaton above, we can see that whilst trying to match 
the '[a-z]+' part of the expression (in states: 4, 5, 6, 7 & 9), the automaton behaves in a very 
different way.  This leads to the state transition table having far less redundancy than the one 
used in our first example – and thus making it more complex to compress.
In the example shown in Table 4, the next state values that differ to the default next state for 
that input character in state 0 are highlighted.  This affects 28 out of the possible 70 table 
entries.  In cases where multiple complex REs are being matched, then this effect becomes 
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even more pronounced as we are effectively trying to remember sequences of input data that 
can occur within multiple wild card matches in multiple REs.  The existing design does of 
course operate correctly, but all of our highlighted entries in the state transition table end up 
needing to be represented within the packed array as differences from the default values.

3.2  Identifying redundancy
Not withstanding the problems noted above with the standard row displacement with state 
marking  approaches,  we  can  see  visually from  Table  4 that  there  is  still  quite  a  lot  of 
redundancy in the state transition table that we may be able to exploit.  We can see this easier 
if we rearrange the order of rows and columns in this table as shown in Table 5.

Next State
Input

Current 
State

0 
{ v }

5 
{ a }

2 
{ r }

6
{ b-q, s-u, w-z }

1
{ ; }

3
{ = }

4
{ z }

0 [idle] 1 0 0 0 0 0 0

1 1 2 0 0 0 0 0

2 1 0 3 0 0 0 0

3 1 0 0 0 0 4 0

8 1 0 0 0 0 0 0

4 5 6 6 6 0 0 0

5 5 7 6 6 8 0 0

6 5 6 6 6 8 0 0

7 5 6 9 6 8 0 0

9 5 6 6 6 8 4 0

Table 5: Re-ordered State Transition Table for matching:  "/var=[a-z]+;/".

We can  see  in  Table  5 that  the  next  state  behaviour  can  be  split  up  into  a  number  of 
rectangular regions, according to groups of both input and current state.  Within each of these 
regions, the next state values are most commonly the same, and again the differences are 
highlighted for clarity.  This time however, after comparing each entry with a default next 
state for its region, there are only 7 values (out of 70) that differ from the region default, as 
opposed to 28 out of 70 differing from the input default for  the  previous  table.     It should be 
remembered however that this is only a simple example and we need an algorithm that can 
automatically  identify  how to  perform  this  optimisation  in  such  a  way  that  it  can  be 
implemented in a practical system.

3.3  A more intelligent 'default' table
In practice,  we can have what  ever  content we wish  in  our  default  array –  the  common 
examples are to use: the next state for when that input occurs in the IDLE state; the most 
common next state for that input; or just have a default of the IDLE state and have no 'default 
table' at all.  Any differences between the value we have in the default array and the correct 
next state will always be held in the packed array.  Given this is the case, we can think about 
being more clever about what is actually held in any default array.
By definition, the content of the state transition table is dependent on both the current state 
and input.  However, what we can do in our new version is to make a prediction about what 
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the next state will be.  We were effectively doing this already, by using the input value, albeit 
rather  ineffectively.   It  doesn't  actually  matter  whether  we  are  correct  in  our  prediction, 
however the more accurate the prediction the less  information we will  need to store as a 
correction in our packed array and hence the less memory we will need to implement this.
Looking at the different states and input values, we can see that these regions of the table 
have a high probability of having  the same outcome.  This time we look at both input and 
current state, and use this to determine which region of the table we are in.  We cannot use all 
information  from  both  input  and  current  state,  as  this  would  require  a  complete  state 
transition table.  What we can do instead is to compress both the current state and input 
values in a way so as to select a particular 2D table region and then to specify the default for 
each region.

4. Next state prediction
We can replace the original default array by three tables that allow us to generate a next state 
'prediction'.  As shown in Figure 2, compression tables are used for both the current state and 
input values so as to give indices into a 2D prediction table that gives the prediction for that 
region.

The compression we use here for the current state and input are both lossy, and our next state 
prediction can therefore not be accurate because of this.  So long as we do not lose too much 
information,  then this  doesn't  matter  as  we are  using the  packed  array to  patch up any 
differences between our prediction and reality.  The difficult problem is working out how to 
compress the input and current state so as to create a good prediction.  The more we compress 
the input and current state values, the smaller we can make the prediction table, but the less 
accurate  the  prediction  will  be  –  and  hence  the  larger  the  memory  requirements  for  the 
packed array that holds the corrections.

4.1 Calculating Distance
We can look at the next state in one of the two dimensions of the state transition table and see 
how this index can be compressed.  Taking the current state first, we have an input of width

S bits and we wish to compress this to a width of T bits.  We therefore have a maximum 
of 2 S state vectors (a list of next states for each input value) which we wish to compress into 
a maximum of  2 T predictor state vectors.  We first define the distance between two state 
vectors:  this  being  the  number  of  elements  in  one  state  vector  that  are  different  to  the 
corresponding element in that position in the other state vector. It does not matter here what 
the values are or how different the values are.  We start now by defining a maximum distance

d between state vectors and work our way through the state vectors forming sets of state 
vectors that are all within distance d of each other.  The number of sets created S d will 
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depend on the value of d and we can iteratively increase the value of d until we satisfy:
S d≤2 T .

From Table 4 we can see that with value of: d=2 we have the following state vector sets:
{0, 1, 2, 3, 8}, {4, 5, 6, 7, 9}

For each of the sets, we generate a new predicted state vector that has elements consisting of 
the most common element values for that position from each of that set's state vectors.  We 
now have a set of predictor state vectors.  For each real state vector we create a mapping 
between that state vector and the predictor state vector that has the least distance.  This 
information is then used to create the compression table that takes the S bit current state 
and outputs the T bit compressed current state.  For our previous example, with T=1 , we 
have the state compression table and predicted state vectors as shown in Table 6.

Current 
State

Compressed 
Current State

0 0

1 0

Compressed 
Current State

Predicted Next State
Input

0 
{ v }

1 
{ ; }

2
{ r }

3
{ = }

4
{ z }

5
{ a }

6
{ b-q,  s-u, w-z }

2 0 0 1 0 0 0 0 0 0

3 0 1 5 8 6 0 0 6 6

4 1

5 1

6 1

7 1

8 0

9 1

Table 6: State compression and state predictor vectors for matching:  "/var=[a-z]+;/".

The same procedure is then repeated on the table of predicted state vectors, this time in the 
other dimension so as to create shorter predicted state vectors by merging together next state 
values on the basis of distance given the different input values.  From this we create the 
required input compression table and the prediction table.   We use our previous example 
again,  this  time  using K=2 for  the  input  compression,  giving  us  the  state  and  input 
compression tables and next state prediction table as shown in Table 7.  
The replacement of the default table by the three new tables is likely to increase the overall 
amount of memory, with these tables requiring the following amount of memory:

T .2 SK .2 JS PN  .2 T K  bits

The closer the values of T and K to S and J respectively, the more accurate will be 
the prediction, and hence the smaller the size of the packed array – and unfortunately, the 
larger the size of  the predictor  and compression tables.   Empirical  studies show that  the 
values of T =K=4 appear to be quite effective for the case where I= J=S =P=8 .
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Current 
State

Compressed 
Current State

Input Compressed 
Input

Predicted Next State

Compressed Input

0 0 0 { v } 0 { v }

1 0 1 { ; }  1 { ; } Compressed 
state

0
{ v }

1
{ ; }

2
{ a-u, w-z }

3
{ z, = }

2 0 2 { r }
{r

2 { a-u, w-z } 0 1 0 0 0

3 0 3 { = } 3 { z  , = } 1 5 8 6 0

4 1 4 { z } 3 { z  , = }

5 1 5 { a } 2 { a-u, w-z }

6 1 6 { b-q, s-u, w-z } 2 { a-u, w-z }

7 1

8 0

9 1

Table 7: State and Input Compression and predictor tables for matching:  "/var=[a-z]+;/".

5. Hardware design
The hardware design ends up being slightly different to the theoretical architecture, because 
of the various look-ahead functions that we need to keep the automata cycle down to one 
hardware clock cycle.  In particular, the generation of the compressed state value can be done 
in parallel with the creation of the next state, in the same way that we generate the base 
address  value.  We  will  know  these  values  at  rule  processing  time  and  do  not  need  to 
regenerate them again at run time.  The hardware design we end up with is shown in Figure
3.  Note that for clarity, this schematic is simplified to avoid showing the data paths and 
signals used for boot loading.
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The overall  memory requirements M ' for this hardware design,  taking into account the 
extra memory required for the look ahead operations is as follows:

M '= JK .2 ISPN T .2KT2SPNT  .2P

The input is compressed twice: first the disjoint input set compression is used  to give 'Equiv' 
as the input to the packed array address calculation, then this value is compressed again to 
give 'Comp', the lossy compressed value as one of the inputs to the predictor table.  In practice, 
both compressed values can be calculated at compile time for all possible input values and 
stored in a single input compression table with two outputs.  The two dimensional indexing 
into the predictor table is performed by simply concatenating the compressed next state and 
compressed input buses.  

5.1 Determining the number of engines
To see how effective this scheme is, we take a set of 319 regular expressions from the Snort 
intrusion detection [12] community rule set and see how many matching engines are required 
in each case for their implementation.  The software used for this takes an iterative approach 
with increasing the number of REs allocated to each engine to see how many will fit and each 
time  checking  whether  the  design  could  be  implemented  in  accordance  with  the  various 
maximum bus width parameters.

Original published version

Here we are able to implement only 304 of the 319 REs, with the other 15 being too large to 
fit.  This version uses parameters: I= J=S =P=8 & N =1  and would require a total of 
304 engines.  The raw memory requirement per engine here is 12.5 K bits – giving us of course 
12.5 K bits/RE.

Baseline Multi-RE Engine

Here we are still able to implement only 304 REs, with the other 15 being too large to fit in the 
given design size.  The design uses parameters: I= J=S =P=8 & N =7 and requires a 
total of 194 engines for the REs implemented.  This requires more memory, for the multiple 
match outputs – and has a raw memory requirement of 15.5 K bits/engine – giving us 9.9 K 
bits/RE.

Next State Prediction Engine

Here  we  can  implement  all  319  REs.   The  design  uses  parameters: I= J=S =P=8 , 
K=T =4 & N =9 and requires a total of 75 engines.  These engines are larger as they 

include the input and state compression tables and have a raw size of 19.5 K bits/engine – 
thus giving us 4.6 K bits/RE.   Each of  these engines would require 2 BRAMs (albeit  not 
completely  used)  in  a  Xilinx  Virtex4  FPGA [13],  giving  a  total  of  152  BRAMs –  or  0.47 
BRAM/RE.

5.2 Hardware design results
A  VHDL  model  has  been  produced  and  tested  by  simulation  with  a  number  of  regular 
expressions and some artificial input data.  This design has been synthesized and built for a 
Xilinx XC4VLX25-12sf363 [13] FPGA.
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This gives the following resource requirements per engine:
LUTs: 75
BRAMs: 2

The design was constrained with a cycle time specified as 4.0 ns and this successfully builds 
with a clock to set-up time just below this.  This gives an overall search rate of 2.0 Gbps, 
independent of the regular expressions being searched for and the data being searched.  The 
engine produced can search for a maximum of 9 regular expressions, although this will depend 
on the complexity of the Regular Expressions.  In the tests in the previous section, the average 
number of REs per engine was 4.3, with quite a wide variation between engines.

6. Conclusions
This  paper  looks  at  problems  of  state  transition  table  size  when  implementing  Regular 
Expression matching deterministic finite automata within Field Programmable Gate Arrays. 
Row displacement with state marking works very well as a method to reduce DFA memory use 
for implementing systems using Aho-Corasick multi string matching, but is less successful 
when  applied  to  systems  that  implement  multiple  Regular  Expression  matching.   This 
appears to be related particularly with Kleene Star operations that potentially can be used to 
absorb unlimited amounts of data within part of a match.  This causes the automata to change 
what might be referred to as its normal default behaviour.
The technique used here is to group different states and input values together by the use of 
lossy compression and to use these to select a prediction of what the next state is likely to be. 
This prediction is more effective than just using the input value to select a default next state 
and results in sparser difference arrays and hence less memory for the packed array.  For the 
example  designs  and  test  data,  the  prediction  system  used  around  46%  of  the  memory 
requirements per Regular Expression as that required for our baseline version  where this was 
not used.

6.1 Further Work
The next stage planned for this work is to see how variations in the design parameters affect 
the overall memory utilisation.  A particular area of  interest is  the trade off  between the 
amount of memory used for the prediction tables as compared with that for the packed array. 
Taking this work a step further, it will also be interesting to see how this scheme scales to 
larger word sizes, and whether this introduces any new issues that need to be addressed.
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