

PERMIS: A Modular Authorization Infrastructure

David Chadwick, Gansen Zhao, Sassa Otenko, Romain Laborde, Linying Su, Tuan Anh Nguyen

University of Kent

Abstract

Authorization infrastructures manage privileges and render access control decisions,
allowing applications to adjust their behavior according to the privileges allocated to
users. This paper describes the PERMIS role based authorization infrastructure along
with its conceptual authorization, access control, and trust models. PERMIS has the
novel concept of a credential validation service, which verifies a user’s credentials prior
to access control decision making and enables the distributed management of
credentials. PERMIS also supports delegation of authority, thus credentials can be
delegated between users, further decentralizing credential management. Finally,
PERMIS supports history based decision making which can be used to enforce such
things as separation of duties and cumulative use of resources. Details of the design and
the implementation of PERMIS are presented along with details of its integration with
Globus Toolkit, Shibboleth and GridShib. A comparison of PERMIS with other
authorization and access control implementations is given, along with suggestions
where future research and development is still needed.

Keywords: PDP, authorization infrastructure, access control decisions, grid security

1. Introduction

Policy based authorization infrastructures contain
a number of advantages over access control lists
and hard coded systems. They are more flexible
and scalable, and are application independent.
They provide facilities to manage user privileges,
render access control decisions, and process the
related information. Different types of policies
may be supported, such as Credential Issuing
Policies, Access Control Policies, Delegation
Policies, and Credential Validation Policies.
These policies contain the rules and criteria that
specify how user privileges (or credentials,
which are digitally signed assertions made by
some authority about a user’s privileges) are
managed and access control decisions are made.
In the context of distributed grid systems
spanning multiple domains, policy based
authorization systems bring a number of specific
advantages such as: they can control the issuing
of credentials in one domain and allow the
autonomous delegation of privileges between
users. They can then separately control the

validation of these credentials in the resource
domain, and allow each resource owner to
independently say who he trusts to issue which
credentials to whom, and which access rights
these valid credentials should have. This is an
important feature that most grid systems today do
not have.

The authorization infrastructure that we have
built is called PERMIS [1]. This paper describes
the various components of the PERMIS
authorization infrastructure, the conceptual
models that lie behind them, and the standards
that we have used. We conclude by comparing
our work to that of others and describing some of
the future work that still needs to be done. The
rest of this paper is structured as follows. Section
2 provides the conceptual models of our
authorization infrastructure. Section 3 describes
the design and implementation of PERMIS.
Section 4 presents PERMIS’s integration with
Globus Toolkit, Shibboleth and GridShib.
Section 5 compares PERMIS to other related
research. Section 6 concludes and indicates our
plans for the future.

2. Conceptual Models

2.1 The Access Control and Authorization Models

The authorization model paradigm that we have
adopted is the well known “Subject – Action –
Target” paradigm combined with an
enhancement of the ISO Attribute Based Access
Control (ABAC) model [25]. Because grids are
distributed systems we cannot assume that all the
attributes claimed by a user are rightfully his.
Consequently we have enhanced ABAC so that
subject attributes are presented as digitally
signed credentials issued to the subject by one or
more trusted (in the eyes of the resource owner)
attribute authorities (AAs). A Credential
Validation Service is introduced to validate these
credentials and determine which of the attributes
can rightfully be claimed by the subject. Each
resource owner specifies the credential validation
policies for gaining access to his resources.

ABAC is a generalization of the well known
role based access control (RBAC) model [18], in
which a role is not restricted to an organizational
role, but can be any attribute of the subject, such
as a professional qualification or their current
level of authentication (LoA) [23]. In the
following discussion we will refer to roles, on the
assumption that we mean any attribute that can
assigned to a subject. Each subject represents a
real world principal, which is the action
performer. Subjects are often referred to as users,
but they are not limited to human beings. Action
is the operation that is requested to be performed
on the target. It can be either a simple operation,
or a bundle of complex operations that is
provided as an integrated set. Target is the object
of the action, over which the action is to be
performed. A target represents one or more
critical resources that need to be protected from
unauthorized access.

PERMIS uses the RBAC (or ABAC) model,
in which roles are used to model organization
roles, user groups, or any attribute of the user.
Subjects are assigned attributes, or role
memberships. A subject can be the member of
zero, one or multiple roles at the same time.
Conversely, a role can have zero, one or more
subject occupants at the same time. In RBAC a
role is associated with a set of privileges, where

each privilege is the right to perform a particular
action on a particular target. The PERMIS model
is more flexible and allows sets of privileges to
be assigned to sets of roles, rather than to single
roles, since the latter is too restrictive in practice.
For example if project managers have some
organizational based privileges, project members
have some project specific privileges, and project
managers have some higher level project specific
privileges, then without the ability to assign the
latter to a combination of roles (project member
and project manager), a new set of roles have to
be specially created for each project manager.
Thus each subject is authorised to perform the
actions corresponding to his role memberships.
Changing the privileges allocated to a set of roles
will affect all subjects who are members of the
role set (or who have been assigned the set of
attributes).

PERMIS supports hierarchical RBAC in
which roles (or attributes) may be organized in a
partial hierarchy, with some being superior to
others. A superior role inherits all the privileges
allocated to its subordinate roles. For example, if
the role Staff is subordinate to Manager, then the
Manager role will inherit the privileges allocated
to the Staff role. A member of the Manager role
can perform operations explicitly authorized to
Managers as well as operations authorised to
Staff. The inheritance of privileges from
subordinate roles is recursive, thus a role ro will
inherit privileges from all its direct subordinate
roles rs, and indirect subordinate roles which are
direct or indirect subordinate roles of rs. Role
hierarchies need not apply only to organizational
roles, but can apply to any attribute, such as level
of authentication (LoA), where there is a natural
precedence in the attribute values, in which a
higher value implies the privileges of the lower
values. In the LoA case, a user who has been
authenticated to LoA value 4 (the highest) can be
assumed to inherit the privileges assigned to the
lower levels of authentication.

Figure 1 shows our high level conceptual
model for an authorization infrastructure. Step 0
is the initialization step for the infrastructure,
when the policies are created and stored in the
various components. Each subject may possess a
set of credentials from many different Attribute

Authorities (AAs), that may be pre-issued, long
lived and stored in a repository or short lived and

issued on demand, according to their Credential
Issuing Policies. The Subject Source of Authority
(SOA) dictates which of these credentials can
leave the subject domain for each target domain.
When a subject issues an application request
(step 1), the application independent policy
decision point (PDP) informs the application’s
policy enforcement point (PEP) which
credentials to include with the user’s request
(steps 3-4). These are then collected from the
Credential Issuing Service (CIS) or Attribute
Repository by the PEP (steps 5-6). The user’s
request is transferred to the target site (step 7)
where the target SOA has already initialized the
Credential Validation Policy that says which
credentials from which issuing AAs are trusted
by the target site, and the Access Control policy
that says which privileges are given to which
attributes. The user’s credentials are first
validated (step 8). This may require the CVS to
pull additional credentials from an AA’s
repository or issuing service (step 10). The valid
attributes are returned to the PEP (step 9),
combined with any environmental information,
such as current date and time (step 11), and then
passed to the PDP for an access control decision
(step 12). If the decision is granted the user’s
request is allowed by the PEP (step 14),
otherwise it is rejected. In either case, the PDP
may also return a set of obligations, which are
actions that the PEP must enforce along with the

access control decision (step 13). An obligations
service is the functional component that is
responsible for enacting these obligations. In
more sophisticated systems there may be a chain
of PDPs that are called by a master PDP, with
each PDP in the chain holding a different policy
possibly written by a different SOA and possibly
written in a different policy language. In this case
the master PDP needs to hold a policy combining
policy written by the target SOA, which
determines the ultimate response to give to the
PEP based on the set of granted, denied or don’t
know responses returned by the chain of PDPs.
Application PEPs however should be shielded
from needing to know about this more
sophisticated functionality.

2.2 The Trust and Delegation Models

Credentials are the format used to securely
transfer a subject’s attributes/roles from the
Attribute Authority to the recipient. They are
also known as attribute assertions [20]. PERMIS
only trusts valid credentials. A valid credential is
one that has been issued by a trusted AA or his
delegate in accordance with the current
authorization policies (Issuing, Validation and
Delegation policies).

It is important to recognize the difference
between an authentic credential and a valid
credential. An authentic credential is one that has
been received exactly as it was originally issued
by the AA. It has not been tampered with or
modified. Its digital signature, if present, is intact
and validates as trustworthy by the underlying
PKI, meaning that the AA’s signing key has not
been compromised, i.e. his public key (certificate)
is still valid. A valid credential on the other hand
is an authentic credential that has been issued
according to the prevailing authorization policies.
Credential authenticity is a concern of the
authentication system whilst credential validity is
a concern of the authorization system. In order to
clarify the difference, an example is the paper
money issued by the makers of the game
Monopoly. This money is authentic, since it has
been issued by the makers of Monopoly. The
money is also valid for buying houses on Mayfair
in the game of Monopoly. However, the money is
not valid if taken to the local supermarket

Figure 1: High Level Conceptual Model of
an Authorization Infrastructure

because their policy does not recognize the
makers of Monopoly as a trusted AA for issuing
money. Nevertheless, the money still remains
authentic. This is a real problem in the context of
grids today. VOMS servers [6] issue credentials
and sign them with public key certificates issued
by trusted grid CAs, therefore the credentials they
issue are authentic. However without a proper
functioning authorization system, a grid resource
cannot tell the difference between a VOMS
credential issued by a VOMS server managed by
a trustworthy organization and one that has been
quickly set up by a student who has a valid grid
public key certificate, since both sets of VOMS
issued credentials are authentic.

Recognition of trusted AAs is part of
PERMIS’s Credential Validation Policy. The
Credential Validation Service (CVS) is the
component that checks that each credential issuer
is mentioned in this policy directly, or that the
credential issuer has been delegated a privilege
by a trusted AA either directly or indirectly (i.e. a
recursive chain of trusted issuers is dynamically
established controlled by the Delegation Policies
of the Target SOA and the intermediate AAs in
the chain). The PERMIS Credential Validation
Policy contains rules that govern which attributes
different AAs are trusted to issue, along with a
Delegation Policy for each AA. These rules
separate AAs into different groups and assign
them different rights to issue different attributes
to different sets of subjects. Further each AA will
have its own Credential Issuing Policy and
Delegation Policy. PERMIS assumes that if a
credential has been issued and signed by a
trusted AA, then it must be conformant to the
AA’s Issuing Policy, so this need not be checked
any further. However, if the credential was
subsequently delegated this may or may not have
conformed to the original AA’s Delegation
Policy. Therefore when the CVS validates a
delegated credential it needs to check that it
conforms to the AA’s delegation policy as well
as the Target SOA’s delegation policy. This can
only be done if the AA makes its delegation
policy available to the CVS, which typically
means that it must insert its policy into each
issued credential. Current international standards
for the format of credentials only have limited

support for this feature at the moment. For
example, X.509 attribute certificates [3] may
contain a path length constraint which can be set
by an AA to limit the length of the delegation
chain, and a name constraints that limits who the
delegates can be. As international standards add
more delegation policy fields to their credential
formats, then the PERMIS CVS will be able to
validate that more of the AA’s delegation policy
has been adhered to.

The current PERMIS delegation model
constrains delegations to a tree rather than a
directed graph, since this simplifies the process
of credential validation and credential
revocation. A delegate can be given a privilege to
either delegate to others or assert or both. Each
AA may further constrain delegations by validity
times and delegation chain lengths. PERMIS also
ensures that all delegated credentials conform to
the following delegation paradigms:
i) an issuer cannot delegate more privileges

than he possesses, to ensure constrained
propagation of privileges from issuers to
subjects, and

ii) an issuer cannot delegate a privilege to
himself or to a superior in the delegation
chain, since the recipient already holds
this privilege. The only reason an issuer
may want to do this, would be to
circumvent the control that he is allowed
to delegate but not assert a privilege, and
by delegating to himself or to a superior
he would be allowed to remove this
control.

The net result of this trust model is that
PERMIS can support multiple AAs issuing
different sets of attributes to the same or different
groups of users, in which each AA can have
different delegation policies, yet the target SOA
can specify an overall Credential Validation
Policy that constrains which of these (delegated)
credentials are trusted to be used to access the
resources under his control. Originally the model
assumed that each subject would be known by
the same globally unique name (typically an
X.500 distinguished name) at each AA. We now
know this isn’t always the case, and so this may
be addressed by providing a name mapping
function that can map between the different

names of a subject in different issuing domains.
This is the approach that is currently being
adopted in projects such as GridShib [10] and
Shintau [26].

2.3 The Coordinated Decision Making Model

Sometimes coordination is needed between
access control decisions. For example, in order to
support mutually exclusive tasks (Separation of
Duties), the PDP needs to know if the same user
is trying to perform a second task in a set of
mutually exclusive ones. Alternatively, if
multiple resources are available but their use is to
be restricted, for example, a maximum of 30GB
of storage can be used throughout a grid, then
each PDP needs to know what the other PDPs
have already granted the user access to. One
model is to use a stateful PDP, which retains
information about previous access control
decisions, in so called retained ADI [25]. This
allows coordination between successive access
control decisions in the same PDP. Extending
this model and communicating the retained ADI
between a set of stateful PDPs would allow
coordinated access control decisions to be made
by multiple distributed PDPs. However, most
PDPs that have been built today are not stateful,
nor do they have the ability to communicate with
each other. Consequently an alternative model is
to store the retained ADI in a central secure
database that is accessible (indirectly) by all the
PDPs, and that can be updated (indirectly) by
them. In this model the retained ADI is modeled
as attributes of a Coordination object, and a
Policy Information Point (PIP) retrieves this
information on behalf of the PDPs. Obligations
in the policy say how this information should be
updated, and the Obligations service performs
the updates on behalf of the PDPs. A fuller
description of this model and its implementation
in PERMIS can be found in [29]. Modifying
PERMIS to hold retained ADI and support
Separation of Duties policies is described in [28].

3. PERMIS: A Modular Authorization
Infrastructure

The PERMIS authorization infrastructure is
shown in Figure 2. The PERMIS authorization
infrastructure provides facilities for policy

management, credential management, credential
validation and access control decision making. It
is necessary for applications to intercept users’
requests, ask PERMIS to validate the user’s

credentials and make an access control decision,
and then enforce the access control decisions and
obligations that are returned by PERMIS.

3.1 Policy Management

PERMIS Policies are rules and criteria that the
decision making process uses to render decisions.
It mainly contains two categories of rules, trust
related rules (Credential Validation Policy) and
privilege related rules (Access Control Policy).
Trust related rules specify the system’s trust in
the distributed Attribute Authorities, and which
attributes they are allowed to assign to whom.
Only credentials issued by trusted AAs within
their authority will be accepted. Privilege related
rules specify the domains of targets, the actions
supported by the targets, the role hierarchies, the
privileges assigned to each role and the
conditions under which these privileges may be
used, for example, the times of day or the
maximum amount of a resource that may be
requested. In terms of the RBAC model, the trust
related rules control the user-role assignments,
whilst the privilege related rules control the role-
privilege assignments.

PERMIS provides a policy management tool,
the Policy Editor [13] (see Figure 3), which users
can use to compose and edit PERMIS policies.
The GUI interface of the Policy Editor

Figure 2: Architecture of the PERMIS
Authorization Infrastructure

comprises: the subject policy window (Where
Users Are From), the trusted AA policy window
(User Account Administators), the user-role
assignment policy window (Account
Administrator Privileges), the role hierarchy
policy window (User’s Roles), the target
resource policy window (My Protected
Resources), the action policy window
(Resources’ Functions) and the role-privilege

assignment policy window (Users’ Privileges).
These windows provide forms for users to fill in,
then the tool generates the corresponding
PERMIS policy in XML. Policies can be saved
as pure XML in text files, or the XML can be
embedded as a policy attribute in an X.509
Attribute Certificate (AC) [3], digitally signed
with the policy author’s private key (held in a
PKCS#12 file) then stored in either a local file,
LDAP directory or WebDAV [27] repository.
Various helpers in the Policy Editor are capable
of retrieving subject and AA names from LDAP
directories, and setting times and dates in the
correct format. Authors can use the Policy Editor
to browse the LDAP directories and WebDAV
repositories to select existing policies to update
them.

3.2 Credential Management

The Credential Management system is
responsible for issuing and revoking subject
credentials. The Attribute Certificate Manager
(ACM) tool is used by administrators to allocate
attributes to users in the form of X.509 ACs.
These bind the issued attributes with the

subject’s and issuer’s identities in a tamper-proof
manner. The ACM has a GUI interface that
guides the manager through the process of AC
creation, modification and revocation. The
manager can search for a user in an attached
LDAP directory or WebDAV repository, or enter
the DN of the user directly. There is then a
picking list of attribute types (e.g. role, affiliation
etc.), to which the manager can add his own
value (e.g. project manager). There is a pop up
calendar allowing the manager to select the dates
between which the AC is valid, plus the option of
adding appropriate times of day to these. Finally
the manager can add a few standard selected
extensions to the AC, to say whether the holder
is allowed to further delegate or not, and if so,
how long the delegation chain can be ("basic
attribute constraints" extension [3]), or if the
holder may assert the attributes or only delegate
them to others ("no assertion" extension [4]).
Finally, the manager must add his digital
signature to the AC, so the GUI prompts him for
the PKCS#12 file holding his private key and his
password to unlock it. Once the AC is signed, the
manager has the option of storing it in an LDAP
directory, WebDAV repository or local filestore.
Besides creating ACs, the ACM allows the
manager to edit existing ACs and to revoke
existing ACs by deleting them from their storage
location. Note that at present revocation lists
have not been implemented, because short
validity times or deletion from storage have been
sufficient to satisfy our current user
requirements.

The Delegation Issuing Service (DIS) is a
web service that dynamically issues X.509 ACs
on demand when requested to by the delegator. It
may be called directly by an application’s PEP
after a user has invoked the application, to issue
short lived ACs to the application for the
duration of the user’s task. Alternatively there is
a http interface that lets users invoke it via their
web browers to dynamically delegate their
existing longer lived credentials to other users, so
as to enable them to act on their behalf. This is
especially powerful, as it empowers users to
delegate (a subset of) their privileges to other
users without any administrative involvement.
Because the DIS is controlled by its own

Figure 3. The PERMIS Policy Editor

PERMIS policy, written by the Subject SOA, an
organization can tightly control who is allowed
to delegate what to whom, and then leave its
subjects to delegate as they see fit. The DIS
stores all delegated credentials in a locally
configured LDAP server or WebDAV repository,
so that they can be retrieved on demand by the
authorization system (in steps 6b and 8b). The
DIS has a number of advantages over the ACM,
such as: users do not need to have X.509 public
key certificates as all issued credentials are
signed by the DIS, delegation chains are kept to a
maximum length of 2, and revoking a user’s
credential does not automatically revoke any
credentials he may have already delegated. More
details of the DIS can be found in [2].

3.3 Authorization Decision Engine

The PERMIS Authorization Decision Engine is
responsible for credential validation and access
control decision making. Credential validation is
the process that enforces the trust and delegation
model of PERMIS as described in Section 2.2,
and ensures that only valid roles/attributes are
attributed to users. Access control decision
making is the process that ensures only users
with the required attributes gain access to the
protected resources. Together they enforce the
enhanced ABAC model described in Section 2.1.
The CVS extracts the subset of valid attributes
from the set of available credentials, according to
the Target SOA’s Credential Validation Policy.
The PDP makes access control decisions based
on the Target SOA’s access control policy and
the valid attributes passed from the CVS. The
PERMIS authorization decision engine is
superior to conventional PDPs since it has the
ability to validate credentials and delegation
chains, which is not a common capability of
conventional PDPs e.g. Sun’s XACML PDP
[15]. Furthermore it supports history based
decision making and multi-session separation of
duties [28]. Figure 4 depicts the overall
architecture of the PERMIS Authorization
Decision Engine. It comprises five main
components: the PDP, the CVS, the Credential
Retriever, the Credential Decoder, and the Policy
Parser.

3.4 The PDP

The PDP component is responsible for making
access control decisions based on the valid
attributes of the user and the Target SOA’s
access control policy, which is a subset of the
PERMIS policy.

At initialization time the Target SOA’s
PERMIS policy is read in (step 0 in Figure 2)
and parsed by the Policy Parser so that both the
PDP and CVS are ready to operate. Both plain
XML policies and digitally signed and protected
policies can be read in. The former are stored as
text files in the local filestore whilst the latter are
stored as X.509 policy ACs in either the local
filestore, or the Target SOA’s entry in an LDAP
directory or WebDAV repository. X.509 ACs are
tamper resistant and integrity protected, whereas
text files have to be protected by the operating
system.

Each time the user makes a request to the
application to perform a task (step 1 or 7 in
Figure 2), the PEP passes this request to the
PERMIS PDP (step 3 or 11) along with user’s
valid attributes and any required environmental
attributes such as the time of day. The PEP needs
to know which environmental attributes are
needed by the access control policy, and since
the PEP is application specific software, it is
more likely that the access control policies will
be restricted to constraints based on the

 Figure 4: The PERMIS Authorization Decision
Engine

environmental attributes that the PEP is capable
of passing to the PDP.

3.5 The CVS

As described in Section 2.2, all credentials
allocated to subjects will be validated by the
CVS according to the Target SOA’s credential
validation policy, which is a subset of the
PERMIS policy. Figure 5 illustrates the detailed
architecture of the CVS, along with the internal
data flows and sequence of events.

Figure 5: Data Flow Diagram for Credential Validation

Service Architecture

First of all the service is initialised by giving it
the credential validation policy. The policy
parsing module described in Section 3.4 is
responsible for this. When the user activates the
application, the target PEP requests the valid
attributes of the subject (step 1 in Fig 4, step 8a
in Fig 2). Between the request for attributes and
returning them (in step 6 or 9 respectively) the
following events may occur a number of times
i.e. the CVS is capable of recursively calling
itself as it determines the path in a delegation tree
from a given credential to a trusted AA specified
in the policy.

The Credential Validation Policy Enforcer
requests credentials from the Credential
Retriever (step 2). PERMIS can operate in either
credential pull mode or credential push mode. In
credential push mode the application passes the
user’s credentials along with his request to the
target PEP (Step 7 in Fig 2) and the PEP passes
them to the CVS. In credential pull mode, the
credentials are dynamically pulled from one or

more remote credential providers (these could be
AA servers, LDAP or WebDAV repositories
etc.) by the CVS (step 8b in Fig 2, step 2 in Fig
4). The actual attribute request protocol (e.g.
SAML or LDAP) is handled by the appropriate
Credential Retriever module, whilst the
credential format is handled by the appropriate
Credential Decoder module. When operating in
credential push mode, the PEP stores the already
obtained credentials in a local Credential
Provider repository and pushes the repository to
the CVS, so that the CVS can operate in logically
the same way for both push and pull modes.
After credential retrieval, the credentials are
passed to the Credential Decoding module (step
3 Fig 4). From here they undergo the first stage
of validation – credential authentication (step 4).
Because only the Credential Decoder is aware of
the actual format of the credentials, it has to be
responsible for authenticating the credentials
using an appropriate Credential Authenticator
module. Consequently, both the Credential
Decoder and Credential Authenticator modules
are encoding specific modules. For example, if
the credentials are digitally signed X.509 ACs,
the Credential Authenticator uses the configured
X.509 PKI to validate the signatures. If the
credentials are XML signed SAML attribute
assertions, then the Credential Authenticator uses
the public key in the SAML assertion to validate
the signature. The Credential Decoder
subsequently discards all unauthentic credentials
– these are ones whose digital signatures are
invalid. Authentic credentials are decoded and
transformed into an implementation specific
local format that the Policy Enforcer is able to
handle (step 5).

The task of the Policy Enforcer is to decide if
each authentic credential is valid (i.e. trusted) or
not. It does this by referring to the Credential
Validation Policy to see if the credential has been
issued by a trusted AA or not. If it has, it is valid.
If it has not and it is a delegated credential, the
Policy Enforcer has to work its way up the
delegation tree from the current credential to its
issuer and from there to its issuer, recursively,
until a trusted AA is located, or no further issuers
can be found (in which case the credential is not
trusted and is discarded). Consequently steps 2-5

Credential Validation Service

Policy
Admin
Point

Credential
Provider

Credential
Validation Policy

Enforcer

Credential
Decoder

Credential
Retriever

Credential
Authenticator

0. Initialize with a policy

1. Request attributes

2. Request credentials

3. Return credentials

4. Authenticate
credentials

5. Return authentic
transcoded credentials

6. Return attributes

are recursively repeated until closure is reached
(which, in the case of a loop in the credential
chain, will be if the same credential is
encountered again). Remember that in the
general case there are multiple trusted credential
issuers, who each may have their own Delegation
Policies, and these must be enforced by the
Policy Enforcer as much as is possible from what
has been provided in the issued credentials.

The CVS can be customized by PERMIS
implementers, by implementing their own
credential retrieval and decoding services and
plugging them into PERMIS. This enables
implementers to adopt credential formats and
retrieval protocols that are not yet implemented
by PERMIS, such as local proprietary formats.
PERMIS can theoretically be customized to
support any application specific credential
validation requirements.

4. Integrating PERMIS

4.1 Integration with GT4

Globus Toolkit (GT) is an implementation of
Grid software, which has a number of tools that
make development and deployment of Grid
Services easier [9]. One of the key features of
this toolkit is secure communications. However,
Globus Toolkit has limited authorization
capabilities based on simple access control lists
and grid mapfiles. To improve its authorization
capabilities a Security Assertions Markup
Language (SAML) authorization callout has been
added. SAML [20] is a standard designed by the
Organization for the Advancement of Structured
Information Standards (OASIS) to provide a
universal mechanism for conveying security
related information between the various parts of
an access control system. The Open Grid Forum
(OGF) has produced a profile of SAML for use
in Grid authorization [19]. Consequently it is
now possible to deploy an external authorization
service that GT will contact to make
authorization decisions on its behalf. A
standalone PERMIS Authorization Service has
been developed to provide this type of
authorization decision to GT3 and GT4 through
the SAML callout [8].

PERMIS has also been integrated with GT4

via its Java call outs to custom Policy Information
Points (PIPs) and PDPs. In this case the PERMIS
CVS is configured as a custom PIP and the
PERMIS PDP is configured as a custom PDP.
Information between the two modules is carried
in the format of an XACML request context [14].

4.2 Integration with Shibboleth

Shibboleth [21] is a cross-institutional
authentication and authorization architecture for
single sign on and access control of web
resources. Shibboleth defines a protocol for
carrying authentication information and user
attributes from the user’s home site to the
resource site. The resource site can then use the
user attributes to make an access control decision
about the user’s request. A user only needs to be
authenticated once by the home site in order to
visit other Shibboleth protected resource sites in
the federation, as the resulting authentication
token is recognized by any member of the
federation. In addition to this, protection of the
user’s privacy can be achieved, since the user is
able to restrict what attributes will be released to
the resource providers from his/her home site.
However Shibboleth’s built in access control
decision making based on the user’s attributes is
simplistic in its functionality, and the
management of the access controls is performed
together with web server administration at the
resource site. Furthermore, distributed
management of credentials and dynamic
delegation of authority are not supported. To
rectify these deficiencies, a Shibboleth-Apache
Authorization Module (SAAM) has been
developed which integrates PERMIS with
Shibboleth. SAAM plugs into Apache and
replaces the Shibboleth authorization
functionality with calls to the PERMIS
authorization decision engine. A full description
is provided in [5]

PERMIS extends the access control model
used in Shibboleth by introducing hierarchies of
roles, distributed management of attributes, and
policy controlled decisions based on dynamically
evaluated conditions. PERMIS supports the
existing semantics of Shibboleth attributes, but
also allows X.509 ACs to be used instead, where
more secure credentials are needed.

4.3 Integration with GridShib

GridShib [10] provides interoperability between
Globus Toolkit [9] and Shibboleth [21]. The
GridShib Policy Information Point (PIP) (see
Figure 6) retrieves a user’s attributes from the
Shibboleth Identity Provider (IdP). The
Distinguished Name Binder component is
responsible for mapping the user’s DN, obtained
by the GridShib PIP from the proxy certificate,
into the user’s Shibboleth identity. The retrieved
attributes are parsed and passed to the GT4 PEP
which then feeds them to the PDP for an
authorization decision. GridShib integrates
Shibboleth’s attribute management functionality
with GT4’s authorization decision making for
Grid jobs. However, like GT4, GridShib provides
only limited PDP functionality, which is based
on access control lists and is not capable of
coping with dynamically changing conditions,
which a policy based engine is.

Figure 6: GridShibPERMIS Integration Scheme

GridShibPERMIS provides a GridShibPERMIS
Context Handler that can be integrated with GT4
as a Java callable PDP. The Context Handler is
invoked by GT4 when an authorization decision
is to be made. The Context Handler is fed with
the user’s attributes that have been retrieved from
the Shibboleth IdP. They are parsed and stored in
a local Credential Provider Repository, ready to
be accessed by the PERMIS CVS as described in
Section 3.5. The Context Handler calls the CVS,
which ensures that the attributes are valid
according to the Target SOA’s policy; then calls
the PDP, which renders an access control
decision, and finally it returns the result to GT4.

5. Related Work

Manandhar et at. [12] present an application

infrastructure in which a data portal allows users
to discover and access data over Grid systems.
They propose an authorization framework that
allows the data portal to act as a proxy and
exercise the user’s privileges. When a user
authenticates to the data portal, a credential is
generated stating that the data portal is
authorized to exercise the user’s privileges for a
specific period. The credential is then used by the
data portal to retrieve the user’s authorization
tokens from various providers. When requesting
a service from a service provider, the data portal
presents both the credential and the authorization
tokens. The authorization decision is then made
by the service provider. The proposed
infrastructure mainly focuses on the interaction
between different systems in the Grid
environment, with no in depth discussion about
the access control model or the trust model.
Credential verification is also missing from the
discussion.

XACML [14] defines a standard for
expressing access control policies, authorization
requests, and authorization responses in XML
format. The policy language allows users to
define application specific data types, functions,
and combining logic algorithms, for the purpose
of constructing complex policies. Sun’s open
source XACML implementation [15] is a java
implementation of the XACML 2.0 standard and
provides most of the features in the standard. The
XACML policy language is richer than that of
PERMIS’s PDP policy, but XACML has not yet
addressed the issue of credential validation and is
only now working on dynamic delegation of
authority [22].

The Community Authorization Service (CAS)
[11] was developed by the Globus team to
improve the manageability of user authorization.
CAS allows a resource owner to grant access to a
portion of his/her resource to a VO (or
community – hence the name CAS), and then let
the community determine who can use this
allocation. The resource owner thus partially
delegates the allocation of authorization rights to
the community. This is achieved by having a
CAS server, which acts as a trusted intermediary
between VO users and resources. Users first
contact the CAS asking for permission to use a

Grid resource. The CAS consults its policy
(which specifies who has permission to do what
on which resources) and if granted, returns a
digitally self-signed capability to the user
optionally containing policy details about what
the user is allowed to do (as an opaque string).
The user then contacts the resource and presents
this capability. The resource checks that the
capability is signed by a known and trusted CAS
and if so maps the CAS’s distinguished name into
a local user account name via the Grid mapfile.
Consequently the Grid mapfile now only needs to
contain the name of the trusted CAS servers and
not all the VO users. This substantially reduces
the work of the resource administrator. Further,
determining who should be granted capabilities
by the CAS server is the task of other managers
in the VO community, so this again relieves the
burden on resource managers. For finer grained
access control, the resource can additionally call a
further routine, passing to it the opaque policy
string from the capability, and using the returned
value to refine the access rights of the user.
Unfortunately this part of the CAS
implementation (policy definition and evaluation
routine) were never fully explored and developed
by the Globus team. This is precisely the
functionality that PERMIS has addressed.

The main purpose of SPKI [16] is to provide
public key infrastructures based on digital
certificates without depending upon global
naming authorities. SPKI binds local names and
authorizations to public keys (or the hash values
of public keys). Names are allocated locally by
certificate issuers, and are only of meaning to
them. SPKI allows authorizations to be bound
directly to public keys, removing the process of
mapping from authorization to names and then to
public keys. SPKI supports dynamic delegation
of authorizations between key holders, and
allocation of authorizations to groups. Though
SPKI can convey authorization information, it
does not cover authorization decision making or
access control policy issues. One can thus
regards SPKI as an alternative format to X.509
ACs or SAML attribute assertions for carrying
credentials, and PERMIS could easily be
enhanced to support this format of credential if it
were required.

The EU DataGrid and DataTAG projects have
developed the Virtual Organisation Membership
Service (VOMS) [6] as a way of delegating the
authorization of users to managers in the VO.
VOMS is a credential push system in which the
VOMS server digitally signs a short lived X.509
role AC for the VO user to embed in his proxy
certificate and present to the resource. The AC
contains role and group membership details, and
the Local Centre Authorization Service (LCAS)
[7] makes its authorization decision based upon
the user’s AC and the job specification, which is
written in job description language (JDL) format.
This design is similar in concept to the CAS, but
differs in message format and syntax. However
what neither VOMS nor CAS nor LCAS provide
is the ability for the resource administrator to set
the policy for access to his/her resource and then
let the authorization infrastructure enforce this
policy on his/her behalf. This is what systems
such as PERMIS and Keynote [17] provide. It
will therefore be relatively easy to replace LCAS
with the PERMIS decision engine, so that VOMS
allocated role ACs can be pushed to the resource
site for PERMIS to make the policy controlled
authorization decisions. This is the subject of the
current VPMan project [24].

KeyNote [17] is a trust management system
that provides a general-purpose mechanism for
defining security policies and credentials, and
rendering authorization decisions based on them.
KeyNote provides a language for defining both
policies and assertions, where policies state the
rules for security control, and assertions contain
predicates that specify the granted privileges of
users. KeyNote has been implemented and
released as an open source toolkit. But KeyNote
is not without its limitations. Keynotes policies
and credentials are in their own proprietary
format. KeyNote credentials have no time limit,
and Keynote has no concept of revocation of
credentials. Further, policies define the roots of
trust, but the policies themselves are not signed
and therefore have to be stored securely and are
only locally trusted.

6. Conclusions

This paper briefly presents our work on
designing and building a modular policy based

authorization infrastructure. We have explained
the conceptual models that underpin PERMIS
and summarized the design and the
implementation of the various functional
components that comprise the PERMIS
authorization infrastructure. These provide
support for policy management, attribute
management, and authorization decision making.
We have provided details about our new
conceptual component, the credential validation
service. Finally, we have presented a comparison
of related work, pointing out their relative
advantages and disadvantages as compared to
PERMIS.

6.1 Future Work

Obligations are actions that are required to be
fulfilled along with the enforcement of access
control decisions. Whilst PERMIS already
supports obligations in its policies and will return
them along with its access control decisions, the
major area for research and development is
building a general purpose application
independent Obligations Service to form part of
the authorization infrastructure.

Constructing a master PDP that can
coordinate the calling of multiple subordinate
PDPs and can combine their varying decisions
into one overall decision for the PEP, is another
area for research and development.

Finally, defining a standard mechanism for
aggregating attributes from multiple authorities,
where the user is known by different names at
the different authorities, is another challenging
avenue of research which we are currently
undertaking in the Shintau project [26].

Acknowlegements

We would like to thank the UK JISC for funding
part of this work under the DyCOM, DyVOSE,
SIPS and GridAPI projects, and the EC for
funding part of this work under the TrustCoM
project (FP6 project number 001945).

References
1. D.W.Chadwick, A. Otenko “The PERMIS X.509 Role
Based Privilege Management Infrastructure”. Future
Generation Computer Systems, 936 (2002) 1–13,
December 2002. Elsevier Science BV.

2. D.W.Chadwick. “Delegation Issuing Service”. NIST 4th
Annual PKI Workshop, Gaithersberg, USA, April 19-21
2005
3. ISO 9594-8/ITU-T Rec. X.509 (2001) “The Directory:
Public-key and attribute certificate frameworks”
4. ISO 9594-8/ITU-T Rec. X.509 (2005) “The Directory:
Public-key and attribute certificate frameworks”
5. Wensheng Xu, David Chadwick, Sassa Otenko.
“Development of a Flexible PERMIS Authorization
Module for Shibboleth and Apache Server”. Proceedings
of 2nd EuroPKI Workshop, University of Kent, July 2005
6. R. Alfieri et al. “VOMS: an Authorization System for
Virtual Organizations”, 1st European Across Grids
Conference, Santiago de Compostela, February 13-14,
2003
7. Martijn Steenbakkers “Guide to LCAS v.1.1.16”, Sept
2003. Available from
http://www.dutchgrid.nl/DataGrid/wp4/lcas/edg-lcas-1.1
8. David Chadwick, Sassa Otenko, and Von Welch. “Using
SAML to Link the GLOBUS Toolkit to the PERMIS
Authorization Infrastructure”. In Proceedings of Eighth
Annual IFIP TC-6 TC-11 Conference on Communications
and Multimedia Security, Windermere, UK, September
2004.
9. I. Foster. “Globus Toolkit Version 4: Software for
Service-Oriented Systems”. IFIP International Conference
on Network and Parallel Computing, Springer-Verlag
LNCS 3779, pp 2-13, 2005.
10. Barton, T., Basney, J., Freeman, T., Scavo, T.,
Siebenlist, F., Welch, V., Ananthakrishnan, R., Baker, B.,
and Keahey, K. “Identity Federation and Attribute-based
Authorization through the Globus Toolkit, Shibboleth,
Gridshib, and MyProxy”, 5th Annual PKI R&D Workshop.
April 2006.
11. Ian Foster, Carl Kesselman, Laura Pearlman, Steven
Tuecke, and Von Welch. “The Community Authorization
Service: Status and Future”. In Proceedings of Computing
in High Energy Physics 03 (CHEP '03), 2003.
12. Ananta Manandhar, Glen Drinkwater, Richard Tyer,
Kerstin Kleese. “GRID Authorization Framework for
CCLRC Data Portal”, Second Earth Science Portal
Workshop: Web Portal Framework
Design/Implementation, September 2003.
13. Sacha Brostoff, M. Angela Sasse, David Chadwick,
James Cunningham, Uche Mbanaso, Sassa Otenko. ““R-
What?” Development of a Role-Based Access Control
(RBAC) Policy-Writing Tool for e-Scientists” Software:
Practice and Experience
Volume 35, Issue 9, Date: 25 July 2005, Pages: 835-856
14. OASIS. “XACML 2.0 Core: eXtensible Access Control
Markup Language (XACML) Version 2.0”, Oct, 2005.
15. Sun’s XACML Implementation available on
http://sunxacml.sourceforge.net/.
16. C. Ellison, B. Frantz, B. Lampson, R. Rivest, B.
Thomsa, and T. Ylonen. “SPKI Certificate Theory”. RFC
2693, September 1999.
17. M. Blaze, J. Feigenbaum, J. Ioannidis, and A.
Keromytis. “The KeyNote Trust Management System
Version 2”. RFC 2704, Sept. 1999.

18. David F. Ferraiolo and Ravi Sandhu and Serban
Gavrila and D. Richard Kuhn and Ramaswamy
Chandramouli. “Proposed NIST standard for role-based
access control”. ACM Transactions on Information and
System Security Volume 4, Issue 3. August 2001.
19. Von Welch, Rachana Ananthakrishnan, Frank
Siebenlist, David Chadwick, Sam Meder, Laura Pearlman.
“Use of SAML for OGSI Authorization”, GFD.66. March
2006
20. OASIS. “Security Assertion Markup Language
(SAML) 2.0 Specification”, November 2004.
21. Scott Cantor. “Shibboleth Architecture, Protocols and
Profiles, Working Draft 10 September 2005, see
http://shibboleth.internet2.edu/shibboleth-documents.html
22. OASIS. XACML v3.0 Administrative Policy Version
1.0, Working Draft 16, 22 February 2007
23. N. Zhang, L. Yao, A. Nenadic, J. Chin, C. Goble, A.
Rector, D. Chadwick, S. Otenko and Q. Shi; "Achieving
Fine-grained Access Control in Virtual Organisations", to
appear in Concurrency and Computation: Practice and
Experience, published by John Wiley and Sons publisher.
24. For the VPMan project see
http://sec.cs.kent.ac.uk/vpman
25. ITU-T Rec X.812 (1995) | ISO/IEC 10181-3:1996
“Security Frameworks for open systems: Access control
framework”
26. For the Shintau project, see
http://sec.cs.kent.ac.uk/shintau and
27. David W Chadwick, Sean Anthony. “Using WebDAV
for Improved Certificate Revocation and Publication”. In
LCNS 4582, “Public Key Infrastructure. Proc of 4th
European PKI Workshop, June, 2007, Palma de Mallorca,
Spain. pp 265-279
28. David W Chadwick, Wensheng Xu, Sassa Otenko,
Romain Laborde and Bassem Nasser. “Multi-Session
Separation of Duties (MSoD) for RBAC”. First
International Workshop on Security Technologies for Next
Generation Collaborative Business Applications
(SECOBAP'07), April 16-20, 2007, Istanbul, Turkey
29. David W Chadwick, Linying Su, Romain Laborde.
“Coordinating Access Control in Grid Services”. Accepted
Oct 2007 for publication in Concurrency and Computation:
Practice and Experience, John Wiley and Sons.

