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Abstract. While we strive to create robust language constructs and design patterns
which prevent the introduction of faults during software development, an inevitable
element of human error still remains. We must therefore endeavor to ease and acceler-
ate the process of diagnosing and fixing software faults, commonly known as debug-
ging. Current support for debugging occam-π programs is fairly limited. At best the
developer is presented with a reference to the last known code line executed before
their program abnormally terminated. This assumes the program does in fact termi-
nate, and does not instead live-lock. In cases where this support is not sufficient, de-
velopers must instrument their own tracing support, “printf style”. An exercise which
typically enlightens one as to the true meaning of concurrency... In this paper we ex-
plore previous work in the field of debugging occam programs and introduce a new
method for run-time monitoring of occam-π applications, based on the Transterpreter
virtual machine interpreter. By adding a set of extensions to the Transterpreter, we give
occam-π processes the ability to interact with their execution environment. Use of a
virtual machine allows us to expose program execution state which would otherwise
require non-portable or specialised hardware support. Using a model which bears sim-
ilarities to that applied when debugging embedded systems with a JTAG connection,
we describe debugging occam-π by mediating the execution of one execution process
from another.
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Introduction

While a program may be correct by design, as long as there remains a gap between that de-
sign and its implementation then an opportunity exists for errors to be introduced. In the ideal
world our implementations would be automatically verified against higher-level specifica-
tions of our designs, but despite much work in the area, such checking is not yet supported for
all cases in occam-π. Hence, support for finding of and fixing errors is essential to the rapid
development of large-scale and complex applications. Debugging is the process of locating,
analyzing, and correcting suspected errors [1].

The Kent Retargetable occam-π Compiler (KRoC) supports basic post-mortem debug-
ging [2], which gives the developer access to the last executed line and process call at the time
a fatal error such as integer overflow or array bounds is detected. This provides the devel-
oper with a starting point for debugging and assists with the correction of many trivial errors;
however, it does not elucidate the, often complex, interactions which lead up to application
failure, nor does it provide any assistance for non-fatal errors. The work presented in this
paper is an extension of earlier work and is aimed at providing the developer with uniform
and accessible tracing and replay facilities for occam-π applications.
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Without any explicit debugging support developers must implement their own tracing
support. This typically takes the form of a shared messaging channel along which component
processes emit their status. The programmer writes “print” commands into critical sections of
the application and then views the trace output. Concurrency, however, creates many issues
for this debugging approach. Buffering on the messaging channel or the presence of multiple
threads of execution will cause the trace output to deviate from the actual execution flow
of the application. This hinders the detection of errors in the interaction between processes.
In turn, the introduction of the messaging channel itself, a new shared resource on which
component processes synchronise, subtly changes the scheduling behaviour of the program
obscuring race condition related faults. This is often call the probe effect and we describe it
further in section 5.1.

In this paper we briefly review previous work in the field of parallel application de-
bugging, and more specifically the debugging of occam programs (section 1). Following on
we introduce a new method for run-time monitoring of occam-π applications, based on the
Transterpreter [3] virtual machine interpreter. Section 3 describes how virtual machine in-
stances can interact with the interpreter to intercede on each other’s execution. This allows an
occam-π process to mediate the execution of another occam-π program, a model which bears
similarities to that applied in debugging embedded systems with a JTAG connection [4]. Our
new extensible bytecode format which provides access to debugging information is detailed
in section 4. In section 5 we describe additional run-time debugging support we have added
to the Transterpreter virtual machine, and then in section 6 we apply it and virtual machine in-
trospection to the task of tracing occam-π programs. Conclusions are presented in section 7,
and pointers to future work in section 8.

1. Related Work

Viewing the state of an executing program is one method of obviating its behaviour and de-
bugging program code. Past work in the area of debugging occam has concentrated heavily
on networks of Transputers, as these were the primary target for large scale occam applica-
tion development. As such, tracing and debugging of program execution across networks of
processors increased the complexity of past solutions. In addition to this observation, past so-
lutions can be divided into those that traced and interacted with running programs and those
that acted on stored post-mortem traces.

Stepney’s GRAIL [5] extracted run-time data from a running network of Transputers, in-
strumenting the target occam program at compile-time with a modified version of the INMOS
compiler and extracting the data over a custom bus external to the Transputer network [6],
so as not to interrupt the communications occurring on the communications links. Maintain-
ing the original timings and communication semantics as a program not being debugged is
critical.

Cai and Turner identified in [7] the danger of added debugging hook processes altering
the timing of a parallel program and propose a model under which a monitor has execution
control over all processes and a logical clock is maintained for the execution of each process.
The logical clock provides a way to measure and balance the interaction added to the network
by the monitor hooks, and is similar to the approach we propose in section 5.1. The paper
also identifies the problem of maintaining timings for real-time systems whilst monitoring
the system, suggesting the use of dummy test-sources or buffering of real-time data.

Debugging methodologies that require annotations or changes to the code have the po-
tential to introduce additional complexity, changing the run-time dynamics of the program.
May’s Panorama [8], designed for the debugging of message-passing systems, identifies an
approach for post-mortem debugging which records a log of communications. Replaying
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these communications offers a look at the particular execution of the program whilst intro-
ducing only a minimal overhead at run-time. The Panorama system had the downside of re-
quiring all communications to be modified to use a different call and recompiled against a
custom library. This need for program modification, instrumentation or annotation is common
to many approaches that do not have the benefit of an interpreted run-time environment.

The INMOS Transputer Debugging System (TDS) [9] allowed the user to inspect the oc-
cam source and display run-time values of variables. Programs for use with TDS were com-
piled in a debug mode which embedded extra information: workspace offsets, types and val-
ues of constants, protocol definitions, and workspace requirements for procedures and func-
tions. The TDS provides access to running processes in the network by “jumping through”
channels to the process on the other end of the channel. Deadlock detection requires source
modification, as a deadlocked process can not be jumped to using the channel jump system.
Processes suspected of causing deadlock must be modified to include a secondary process
and channel which will not deadlock and allows a jump into the process for state inspection.

Finally, Zhang and Marwaha’s Visputer [10] provided a highly developed visual tool for
editing and analysing occam process networks. An editing suite allowed the assisted building
of programs using toolkit symbols. A network editor facilitated the configuration of networks
of Transputer processors. Pre-processing of source files inserted instrumentation library calls
to support post-mortem debugging and performance profiling. A static analyser also predicted
performance and detected deadlocks. Importantly Zhang and Marwaha pointed out that oc-
cam “has a language structure that is highly suitable for graphical representation”. The work
presented in this paper is intended to provide a means of extracting the information required
to exploit this feature of occam.

2. The Transterpreter Virtual Machine

The Transterpreter, or TVM (Transterpreter Virtual Machine), is a virtual machine interpreter
for running occam-π applications compiled to a modified form of Transputer bytecode [3].
Written in platform independent ANSI C, the TVM emulates a hybrid T8 Transputer pro-
cessor. Most T8 instructions are supported, with additional instructions added to support dy-
namics and mobility added by occam-π.

The Transputer was a three-place stack machine, and executed a bytecode where the
most common instructions and their immediates required only a single byte to represent.
Large instructions were composed from sequences of smaller instructions prior to execution.
Hence the Transputer bytecode is compact, and simple to interpret. A modified version of
the INMOS compiler with occam-π support is used to generated Extended Transputer Code
(ETC), which is then converted by a linker into bytecode for the TVM.

The TVM has a very small memory footprint making it suitable for use on small em-
bedded systems, such as the LEGO Mindstorms RCX [11] and Surveyor SRV-1 [12] mobile
robotics platform. The work presented in this paper focuses on execution on desktop class
machines; however, the portability of the bytecode representation used by the TVM allows
emulation of embedded systems on a desktop machine. We envisage that the techniques de-
tailed here be used in such a manner as to debug embedded application code via emulation
when the target platform has insufficient resources to support debugging in-place.

3. Introspection

Recently, we have transitioned the TVM from a static library design to a fully re-entrant
implementation. This shift allows us to run multiple virtual Transputers concurrently, or at
least with the appearance of concurrency. The virtual Transputers can communicate with each
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other, or more specifically processes in one TVM instance can communicate with processes
in another, efficiently and transparently. Being software defined, our Transputers are not re-
stricted in the number of communications links they support, and hence one virtual link is
provided per-shared channel, freeing the programmer from multiplexing a fixed number of
links. Mobile data [13] and mobile channels [14] are also supported, allowing the construc-
tion of arbitrary process networks which in turn span multiple virtual machines.

Each TVM instance has its own registers and run-queues. Instances can be scheduled
cooperatively (only switched when they relinquish control), or pre-emptively (time-sliced).
The specific algorithm used to schedule between TVM instances is defined by the virtual
machine wrapper, for most purposes a round-robin algorithm is used (the same as occam
processes); however, priority is also supported.

On a small robotics platform, the Surveyor Corporation SRV-1 [12], we have used mul-
tiple TVM instances to execute a cooperatively scheduled firmware and a time-sliced user
application. The user application is loaded at run-time, and may be swapped out, terminate
or even crash, without interfering with the firmware. The firmware executes as required, me-
diating access to the hardware on behalf of the user application.

Our virtual Transputers, TVM instances, give us the isolation and encapsulation we need
to start allowing one occam-π program to mediate and intercede on the execution of another.
This concept, of multiple concurrent virtual machine interpreters, underpins the debugging
framework presented in the rest of this paper.

3.1. Interface

The application running in each virtual machine instance can access the virtual machine
runtime via a special PLACED channel. Channel read requests to the PLACED channel return
a channel bundle (channel type [14]) which provides request and response channels for the
manipulation of the current virtual machine instances and the creation of new sub-instances.
For each sub-instance created a further channel bundle is returned that can be used to control
the instruction-by-instruction execution of the sub-instance.

The virtual machine interface channel also provides access to the interpreter’s bytecode
decoder. Using this interface, a virtual machine can load bytecode into new sub-instances,
and access additional information stored in the bytecode. Details of our bytecode format and
decoder interface can be found in section 4.

Having decoded bytecode we created a VM instance associated with it. Once top level
process parameters are supplied, and the instance started, the control interface can be used to
mediate its execution in a number of ways. The following subsections detail requests which
can be used to control execution.

3.1.1. run

Execute bytecode for a number of instruction dispatches, or until a breakpoint or error is en-
countered. With the exception of breakpoints this causes the sub-instance to act as a normal
virtual machine instance. At present this operation is implemented synchronously and is un-
interruptable, blocking execution of the parent virtual machine. However, there is no reason
that this could not be enhanced to permit interleaved execution. Where processing facilities
exist the sub-instance could also be executed concurrently on a separate processor.

3.1.2. step

Decode and dispatch a single bytecode instruction. Feedback is given when the instruction
is decoded and then after it is dispatched, allowing the supervising process to keep track of
execution state without querying the entire virtual machine state.



C.G. Ritson and J.Simpson / VM Based Debugging for occam-π 297

3.1.3. dispatch

Execute, dispatch, an instruction not contained in the program bytecode. This can be used
to alter program flow, for example to execute a stop process instruction to pause the running
process and scheduling the next. Alternatively this request can be used to inject a completely
new stream of instructions into the virtual machine instance.

3.1.4. get.state / set.state

Get and set requests for the state provide access to the virtual machine registers, instruction
pointer, operand stack and clock. By combining these requests with the dispatch request a
debugger can save virtual machine state, change processes and later restore state.

3.1.5. read / write

Read and write requests for all basic types provide access to the virtual machine’s memory.
As these can only be executed when the virtual machine is stopped, they have predictable
results outside their influence on program behaviour. If virtual memory is in use then address
translation occurs transparently.

4. Bytecode

To support our debugging enhancements we have developed a new extensible bytecode for-
mat for the TVM. Until the introduction of this new format, a number of different fixed for-
mats were used for the different platforms supported by the TVM. By creating a new format
we have unified bytecode decoding support code, and have removed the need to rewrite the
decoder when the bytecode is extended.

4.1. Encoding

We call our new encoding TEncode. TEncode is a simple binary markup language, a modified
version of IFF.

TEncode streams operate in either 16-bit or 32-bit mode, which affects the size of in-
tegers used. A stream is made up of elements. Each element consists of a 4-byte identifier,
followed by an integer, then zero or more bytes of data. Elements always begin on integer
aligned boundaries, the preceding element is padded with null bytes (“\0”) to maintain this.
All integers are big-endian encoded, and of consistent size (2-bytes or 4-bytes) throughout a
stream. Integers are unsigned unless otherwise stated.

Identifier := 4 * BYTE
Integer := INT16 / INT32
Data := { BYTE }
Padding := { "\0" }
Element := Identifier, Integer, Data, Padding

Identifiers are made up of four ASCII encoded characters stored in 8-bit bytes, and are
case-sensitive. The last byte indicates the type of data held in the element. The following
types are defined:

Byte string . Integer field encodes number of bytes in Data field, excluding padding
null-bytes.

Integer . Integer field encodes signed numeric value, no Data bytes follow.
List of elements . Integer field encodes number of bytes in Data field which will be a

multiple of the integer size, Data field contains nested elements, and may be parsed
as a new or sub-Stream.
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String (UTF8 null-terminated) . Integer field encodes number of bytes in Data including
null terminator, but not padding.

Unsigned integer . Integer field encodes unsigned numeric value, no Data bytes follow.

With the exception of signed and unsigned integer types, the Integer of all elements
defines the unpadded size of the Data which follows. Decoders may use this relationship to
skip unknown element types, therefore this relationship must be preserved when adding new
types.

A TEncode stream begins with the special tenc or TEnc element, the integer of which
indicates the number of bytes which follow in the rest of the stream. A lower-case tenc
indicates that integers are small (16-bit), whereas an upper-case TEnc indicates integers are
large (32-bits). The TEnc element contains all other elements in the stream.

ByteString := 3 * BYTE, "B", Integer, Data [, Padding ]
SignedInt := 3 * BYTE, "I", Integer
ElementList := 3 * BYTE, "L", Integer, Stream
UTF8String := 3 * BYTE, "S", Integer, {<character byte>},

"\0" [, Padding ]
UnsignedInt := 3 * BYTE, "U", Integer

Element := ByteString / SignedInt / ElementList / UTF8String /
UnsignedInt

Header := ("tenc", INT16) / ("TEnc", INT32)
Stream := { Element }
TEncode := Header, Stream

Decoders ignore elements they do not understand or care about. If multiple elements
with the same identifier exist in the same stream and the decoder does not expect multiple
instances then the decoder uses the first encountered. When defining a stream, new elements
may be freely added to its definition across versions; however, the order of elements must be
maintained in order to keep parsing simple.

4.2. Structure

The base Transterpreter bytecode is a TEncode stream defined as follows:

TEnc <stream length>
tbcL <length>

endU <endian (0=little, 1=big)>
ws U <workspace size (words)>
vs U <vectorspace size (words)>
padB <length> <padding>
bc B <length> <bytecode>

As previously stated, the TEnc element marks the beginning of a TEncode stream. The
stream contains a number of tbcL elements, each defines a bytecode chunk. A stream may
contain multiple bytecode chunks in order to support alternative compilations of the same
code, for example with different endian encodings. The endU element specifies the endian
type of the bytecode. The ws U and vs U elements specify the workspace and vectorspace
memory requirements in words. The padB element ensures there is enough space to in-
place decode the stream. Finally, the bc B element contains the bytecode which the virtual
machine interpreter executes.

Following the mandatory elements a number of optional elements specify additional
properties of a chunk of bytecode. By placing these elements after the mandatory elements
a stream decoder on a memory constrained embedded system can discard all unnecessary
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elements, such as debugging information, once the mandatory elements have been received
and decoded.

A tlpL element defines the arguments for the top level process (entry point). The for-
eign function interface table, and associated external library symbols are provided in a ffiL
element. A symbol table, defining the offsets, memory requirements and type headers of pro-
cesses within the bytecode is provided by a stbL element. Finally a dbgL element specifies
debugging information.

The debugging information takes the following form:

dbgL <length>
// File names
fn L <length>

fn S <length> <file name>
// Line Numbering Data
lndB <length>

<bytecode offset> <file index> <line number>
... further entries ...

A table of source file names is defined by fn S elements. A table of integer triples is
then specified by the lndB element. The integers in each triple correspond to a bytecode
offset, the index of the source file (in the source file name table), and the line number in
the specified source file. The table is arranged such that bytecode offsets are ascending and
offsets that fall between entries in the table belong to the last entry before the offset. For
example if entries exist for offsets 0 and 10, then offset 5 belongs to offset 0.

4.3. In-place Decoding

On memory constrained embedded platforms it is important to minimise and preferably re-
move dynamic memory requirements. For this reason we designed our new bytecode format
so as not to require dynamic memory for decoding. We achieve this by providing for rewrit-
ing of the bytecode in memory as it is decoded. The C structure tbc_t is placed over the
memory of the tbcL element of the TEncode stream and the component fields written as
their TEncode elements are decoded. The bytecode field is a pointer to the memory ad-
dress of the data of the bc B element. tlp, ffi, symbols and debug fields are pointers
to the in-place decodes of their associated elements. The pointers are NULL if the stream does
not contain the associated element.

struct tbc_t {
unsigned int endian;
unsigned int ws;
unsigned int vs;

unsigned int bytecode_len;
BYTE *bytecode;

tbc_tlp_t *tlp;
tbc_ffi_t *ffi;
tbc_sym_t *symbols;
tbc_dbg_t *debug;

};

4.4. Interface

As with the introspection interface discussed in section 3, the bytecode decoder also has a
channel interface accessible from within a virtual machine instance. When passing an en-
coded bytecode array to the virtual machine, a channel bundle is returned which can be used
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to access the decoded bytecode. The following subsections detail some of the available re-
quests.

4.4.1. create.vm

Create a new virtual machine instance based on this bytecode. A control channel bundle is
returned for the new instance.

4.4.2. get.file

Translate a source file index to its corresponding file name. The file name is returned as a
mobile array of bytes.

4.4.3. get.line.info

Look up the line numbering information for a bytecode address. The source file index and
line number are returned if the information exists.

4.4.4. get.symbol / get.symbol.at

Look up a process symbol by name or bytecode address. The symbols bytecode offset, name,
type description and memory requirements are returned if the symbol exists.

4.4.5. get.tlp

Access information on the top-level-process (entry point), if one is defined in the bytecode.
If defined, the format mask and symbol name of the process are returned. This information is
required to setup the entry point stack.

5. Debugging Support

We have added additional features to the TVM in order to support debugging. The following
section details some of the more significant changes we have made and how they may be
applied to the problem of debugging occam-π programs.

5.1. The Probe Effect

The probe effect is a term used to describe the consequence that observing a parallel or dis-
tributed system may influence its behaviour. This is a reminiscent of the Heisenberg uncer-
tainty principle as applied in quantum physics. If the decisions made in non-deterministic el-
ements of a program differ between runs under and not under observation, then the observed
behaviour will not be the actual operation behaviour of the program. The impact of this on
debugging is that, on observation of a known faulty program, errors do not occur or different
errors appear.

To prevent the occurrence of the probe effect we must ensure the non-deterministic be-
haviour of the program is not altered by observation. In occam-π there are two sources of
programmed non-determinism: alternation constructs and timers. A program free of these
constructs is completely deterministic; in fact a program is still deterministic in the presence
of simple timer delays [15].

Previous work has shown that by maintaining the sequence of events in a program and
recording the decisions made by non-deterministic elements, it is possible to replay par-
allel programs [16]. In the work presented here we do not attempt to constrain the non-
determinism which occurs from external inputs to the program, only to control the internal
non-determinism. Given that the implementation of virtual machine constructs such as alter-
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nation is unaffected by changes made to monitor program execution, we need only manage
the non-determinism caused by timers.

Our present approach to constraining timer based non-determinism is to use a logical
time clock, as opposed to a real time clock [7]. This logical clock ticks based on the count of
instructions executed. By applying a suitable multiplier the instruction count is scaled to give
a suitable representation of time.

The accuracy of the logical clock’s representation of time depends on the scaling value
used. At program start-up the virtual machine (or firmware components of it), calculate the
average execution time of a spread of instructions, and use this to derive a scaling factor. This
scaling factor is then periodically adjusted and offset, such that the clock time matches the
actual time required to execute the program so far. If virtual machine execution pauses, for
example waiting on the timer queue, then an adjustment need only be stored to the new time
when execution resumes.

In order to replay a program’s execution we need only store the initial scaling factor and
the instruction offset and value of subsequent adjustments. If adjustments are stored in three
32-bit integers, then any single adjustment will be 12 bytes in size. Assuming adjustments
are made approximately once a second then around 40KiB of storage is required for every
hour of execution. As the program is replayed, adjustments are applied at their associated
instruction offsets irrespective of the actual execution speed of the program.

5.2. Memory Shadowing

We have added support for shadowing each location of the workspace (process stack) with
type information of the value it holds. This information assists in the debugging of programs
in the absence of additional compiler information about the memory layout. The type map-
ping is maintained at run-time for the virtual machine registers and copied to and from the
shadow map as instructions are interpreted. For example if a pointer to a workspace memory
location is loaded and then stored to another memory location, then the type shadow will
indicate the memory is a workspace pointer. The shadow types presently supported are:

Data: The memory location holds data of unknown type.
Workspace: Pointer to a workspace memory location.
Bytecode: Pointer to a location in bytecode memory, e.g. an instruction or constant

pointer.
Mobile: Pointer into mobile memory.
Channel: Memory is being used as a channel.
Mobile type: Mobile type pointer or handle.

By iterating over the shadow of the entire memory, a debugger can build an image of a
paused or crashed program. To assist in this, the memory shadow holds flags about whether
the memory is utilised or not. Workspace words are marked as in-use when they write to,
and marked as free whenever a process releases them via the adjust workspace instruction.
As memory known to be unused need not be examined, false positives and data ghosts are
reduced.

In addition to a utilisation flag, call stack and channel flags are also recorded. Whenever
a call instruction is executed, the workspace word used to store the return address is marked.
This allows later reconstruction of the call stack of processes. Any word used as a channel
in a channel input or output instruction is also marked to facilitate the building of process
network graphs. If a process’s workspace holds a channel word, or a pointer to a channel
word, then we can assume it is a communication partner on that channel. When more than two
such relationships exist then pointers can be assumed to represent the most recent partners on
the channel, for example a channel declared in a parent process being used by two processes
running in parallel beneath it.
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6. A Tracing Debugger

The virtual machine extensions and interfaces so far detailed can be used to implement vari-
ous development and debugging tools. In this section we will detail a tracing debugger.

6.1. Instancing Bytecode

First we must decode the bytecode we intend to run, this is done by making a decode.bytecode
request on the introspection channel. Having successfully decoded bytecode we can request
a virtual machine instance to execute it. The following code example demostrates decoding
bytecode and creating a virtual machine instance. A virtual machine introspection bundle is
assumed to be defined as vm.

MOBILE []BYTE data:
INT errno:
SEQ

... load bytecode into data array ...
vm[request] ! decode.bytecode; data
vm[response] ? CASE
CT.BYTECODE! bytecode:
bytecode; bytecode

-- bytecode decoded
SEQ

bytecode[request] ! create.vm
bytecode[response] ? CASE
CT.VM.CTL! vm.ctl:
vm; vm.ctl

-- VM instance created
error; errno

... handle VM creation error, e.g. out of memory ...
error; errno

... handle decoding error, e.g. invalid bytecode ...

6.2. Executing Bytecode

Before we can execute bytecode in our newly created virtual machine instance we must
supply the parameters for the top-level-process. In a standard occam-π program these provide
access to the keyboard input, and standard output and error channels. In our example tracing
code we will assume the program being processed has a standard top-level-process; however,
to handle alternate parameter combinations the get.tlp (section 4.4.5) request would be
used to query the bytecode. In the following code example we supply the top level parameters
as channel bundles, preparing the bytecode for execution:

CT.CHANNEL? kyb.scr, scr.svr, err.svr: -- server ends
CT.CHANNEL! kyb.cli, scr.cli, err.cli: -- client ends
SEQ

... allocate channels ...
-- fork off handling processes
FORK keyboard.handler (kyb.cli, ...)
FORK screen.handler (scr.svr, ...)
FORK error.handler (err.svr, ...)
-- set top level parameters
vm.ctl[request] ! set.param.chan; 0; kyb.scr
vm.ctl[response] ? CASE ok
vm.ctl[request] ! set.param.chan; 1; scr.cli
vm.ctl[response] ? CASE ok
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vm.ctl[request] ! set.param.chan; 2; err.cli
vm.ctl[response] ? CASE ok

Having provided the top level parameters we can begin executing instructions from the
bytecode. We want to trace the entire execution of the program thus we use the step request
on the VM control channel bundle. If we did not require information about the execution
of every instruction then we could use the run request. The following code snippet demon-
strates the step request, which returns two responses, one on instruction decode and one on
dispatch:

IPTR iptr:
ADDR wptr:
INT op, arg:
SEQ

vm.ctl[request] ! step
vm.ctl[response] ? CASE decoded; iptr; op; arg
-- decoded instruction "op", with argument "arg"
-- new instruction pointer: iptr
vm.ctl[response] ? CASE dispatched; iptr; wptr
-- dispatched instruction
-- new instruction pointer: iptr
-- new workspace pointer: wptr

6.3. Tracking Processes

We want to create a higher level view of the program execution than the raw instruction
stream as it executes. Ideally we want to know the present line of execution of all the pro-
cesses. To do this we need to track the executing processes and attribute instruction execu-
tion to them. We need to monitor start process and end process instructions, additionally we
must track any instruction that alters the workspace pointer (stack) such as call and adjust
workspace pointer.

The following code snippet converts the decoding and dispatching of instructions into a
stream of executing, start.process, end.process and rename.process tagged protocol
messages. Each message carries the process workspace, which acts as the process identifier.
rename.process messages indicate a change of process identifier, or a shift in workspace
pointer.

ADDR id:
IPTR iptr:
WHILE TRUE

ADDR new.id:
SEQ

-- report present process position
out ! executing; id; iptr
-- start process and end process
vm.ctl[request] ! step
vm.ctl[response] ? CASE decoded; iptr; op; arg
IF

op = INS.OPR
VM.STATE state:
SEQ

vm.ctl[request] ! get.state
vm.ctl[response] ? CASE state; state
CASE arg

INS.STARTP
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-- process workspace is on the operand stack
out ! start.process; state[stack][0]

INS.ENDP
out ! end.process; id

ELSE
SKIP

TRUE
SKIP

-- workspace pointer altering operations
vm.ctl[response] ? CASE dispatched; iptr; new.id
IF

(op = INS.ADJW) OR (op = INS.CALL)
out ! rename.process; id; new.id

(op = INS.OPR) AND (arg = INS.RET)
out ! rename.process; id; new.id

TRUE
SKIP

-- update workspace pointer
id := new.id

6.4. Visualisation

The bytecode decoder interface detailed in section 4.4 is used to look up the present source
position of each process. This allows us to generate output on the current source file and line
being executed. Visualising this information as a graph of active processes we can see the
executing program, although the specifics of this visualisation is an area for future work (see
section 8). Call graphs can be generated by monitoring call and return instructions, and by
recording the process which executes a start process instruction as the parent of the process
started, we can see the program structure.

Adding to the graph of active processes, we also build a graph of relationships between
processes. Whenever a channel communication instruction is executed we record the channel
pointer in a channel table. Processes which access the same channel become related; edges
can be drawn between them in the graph of process nodes. On adjust workspace pointer in-
structions, and other memory deallocation instructions channel words which fall out of scope
are deleted from the channel table. This information can be used to visualise the relationships
between the active processes, either in real-time as communication occurs, or statically as a
cumulative image recorded over time.

Figure 1 applies these techniques to generate an idealised visualisation of the comm-
stime.occ example from the KRoC compiler distribution.

7. Conclusions

We have created a method for occam-π programs to inspect and intercede on the execution
of other occam-π programs. This access is driven through a channel based interface; which
permits reasoning about programs which use it, in-line with that applicable to a standard
occam-π program. Using this new interface it is possible to develop debugging tools for
occam-π using occam-π, which allows us to use a full parallel programming environment in
order to tackle the challenges we face developing such tools.

By constraining the probe effect caused by non-determinism related to the use of time in
programs, we in turn permit cyclic debugging: the process of repeated execution of a program
with slight modifications to its composition of inputs in an attempt to locate and fix an error.
Additionally, we expose as much memory typing information as we can in order to help build
complete debugging tools.
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PROC comms.time (CHAN BYTE keyboard?, screen!, error!)

PROC succ (CHAN INT in?, out!)

    SEQ
      in ? x
      out ! x PLUS 1  -- let's ignore overflow

demo_cycles.occ:49

      succ (c?, b!)
commstime.occ:83

PROC prefix (VAL INT n, CHAN INT in?, out!)

demo_cycles.occ:85
    id (in?, out!)

PROC id (CHAN INT in?, out!)

demo_cycles.occ:38
    SEQ
      in ? x
      out ! x

commstime.occ:77
      prefix (0, b?, a!)

PROC delta (CHAN INT in?, out.1!, out.2!)

      in ? x
      PAR
        out.1 ! x

demo_cycles.occ:74

          delta (a?, c!, d!)        -- the one that does a parallel output
commstime.occ:82

PROC consume (VAL INT n.loops, CHAN INT in?, CHAN BYTE out!)

        SEQ i = 0 FOR n.loops
          in ? value
        --}}}

commstime.occ:31

      consume (1000000, d?, screen!)
commstime.occ:84

Figure 1. Idealised visualisation of commstime.occ. Curved boxes represent processes. Squared boxes repre-
sent calls in the call stack. Bold text is the present line being executed, as taken from the source file. Dots
are channels, with arrowed lines representing communication requests. Hollow arrows are previously executed
input or output, and filled arrows are active blocked requests.

Overall, we hope that the work presented in this paper will form the basis for developing
visualising and debugging facilities for the occam-π tool-chain.

8. Future Work

Virtual machine sub-instances presently run synchronously to their parents, a logical en-
hancement to our work is the multiplex execution of virtual machine instances. Further to
this, by applying algorithms developed for the KRoC runtime support library, CCSP, we ex-
pect to be able to extend the TVM to execute multiple instances concurrently on multi-core
shared-memory hardware. These concurrently executing instances will be able to commu-
nicate, wait and synchronise on each other safely while maximising use of any underlying
hardware parallelism.

Given the powerful underlying tool for inspecting the behaviour of running parallel pro-
grams we have developed, we would ideally like to make this power available in an easy to
interpret graphical form. Exton identified four main areas of importance in the visualisation
of program execution: abstraction, emphasis, representation and navigation [17]. Being able
to provide a good abstraction level for observation of run-time activity, and the ability to ad-
just the level in tune with the user’s expertise is critical to sensibly observing executing net-
works of processes. The design of a suitable visual model to represent the state of a running
occam-π program is an as yet unexplored area, and may potentially provide useful insight to
inform related work in visual design of parallel programs.

Dynamicism of the network topology and processes provides additional complexity to
the debugging process beyond that encountered with occam 2 running on the Transputer.
Dijkstra [18] states that “our powers to visualise processes evolving in time are relatively
poorly developed”, a statement that encapsulates some of the difficulty encountered when
trying to reason about systems using dynamic process creation and mobile channels. Working
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to allow end-users to explore the execution of their program and interact with its run-time
behaviour to diagnose problems and mistakes would begin to provide some semblance of
modern, user-friendly debugging to the occam-π tool-chain.
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