
Communicating Process Architectures 2008
P.H. Welch et al. (Eds.)
IOS Press, 2008
c© 2008 The authors and IOS Press. All rights reserved.

67

Communicating Haskell Processes:
Composable Explicit Concurrency

using Monads
Neil C.C. BROWN

Computing Laboratory, University of Kent,
Canterbury, Kent, CT2 7NF, England.

neil@twistedsquare.com

Abstract. Writing concurrent programs in languages that lack explicit support for
concurrency can often be awkward and difficult. Haskell’s monads provide a way to
explicitly specify sequence and effects in a functional language, and monadic combi-
nators allow composition of monadic actions, for example via parallelism and choice –
two core aspects of Communicating Sequential Processes (CSP). We show how the use
of these combinators, and being able to express processes as first-class types (monadic
actions) allow for easy and elegant programming of process-oriented concurrency in
a new CSP library for Haskell: Communicating Haskell Processes.

Keywords. Communicating Sequential Processes, CSP, Haskell, monads, explicit
concurrency.

Introduction

Communicating Sequential Processes (CSP) is a formal algebra encompassing processes,
events and synchronous channel communications [1]. CSP is the basis for the occam-π
process-oriented programming language [2], and CSP libraries for a wealth of other lan-
guages, including: Java [3,4], C++ [5,6], C [7], Python [8] and the .NET languages [9,10].

This paper introduces Communicating Haskell Processes (CHP), a library for Haskell
that is also based on CSP. The primary difference between the CHP library and its predeces-
sors is that Haskell is a functional language rather than imperative. However one of Haskell’s
distinctive features is monads, which allow control over how operations are sequenced and
thus allow for imperative-style programming [11].

Haskell’s monads and CSP’s algebra share an elegant feature: ease of composition.
Monadic combinators have been used in the past to implement sequence (and iteration), ex-
ceptions, concurrency and choice – CSP allows composition of processes in similar ways.
CHP thus marries CSP’s process composition with Haskell’s monad composition. This al-
lows a level of composition across function/procedure boundaries that is not present in any
other CSP-based language or library.

Using our choice operator <-> and our parallelism operator <||> we can write a process
that reads from either of its two input channels and sends the value down both its output
channels in parallel:

proc (in0 , in1) (out0 , out1)
= do x <- readChannel in0 <-> readChannel in1

writeChannel out0 x <||> writeChannel out1 x

68 N.C.C. Brown / Communicating Haskell Processes

We are then able to compose this process again using choice, sequence, parallelism or
iteration1. Taking p and q to be processes, and using the notation from Hoare’s book [1], the
compositions are as follows:

p <-> q −− choice, CSP: P |Q
p <||> q −− parallelism , CSP: P ||Q
p >> q −− sequence, CSP: P ; Q
forever p −− iteration , CSP: ∗P

where
p = proc (in0 , in1) (out0 , out1)
q = proc (in2 , in3) (out2 , out3)

We will explain the necessary background in Haskell required to be able to understand
the examples and concepts in the paper (section 1), and then examine each type of combinator
in CHP:

• Sequence (section 2),
• Parallelism (section 3),
• Exception (poison) handling (section 5),
• Choice, often referred to as ALTing (section 6), and
• Iteration constructs (section 7).

We go on to examine building simple processes with several different combinators, and
demonstrate the closeness of the Haskell code to the CSP algebra as well as the use of choice
over outputs (section 8).

We will also examine how Haskell makes it easy to wire up networks of processes and
channels (section 4). Brief details on the implementation of CHP using Software Transac-
tional Memory (section 9) are also provided, as is discussion of related work (section 10).

1. Background – Haskell

Haskell is a statically-typed lazily-evaluated functional programming language. This section
provides the necessary background information on Haskell to understand this paper. We ex-
plain how to read Haskell types and some basic syntax. Further details are supplied where
necessary throughout the paper.

1.1. Types

We precede every Haskell function with its type signature. The format for this is:

functionName :: typeOfParameter1 -> typeOfParameter2 -> ... -> resultType

The statement x :: t should be read as “x has type t”. Each parameter is separated by
an arrow, so that a ->b is “a function that takes a parameter of type a, and returns type b.”
Any type beginning with an upper-case letter is a specific type, whereas any type beginning a
lower-case letter (by convention, single lower-case letters are used) is a parameterised type.
This is the type of the map function, that applies a transformation to a list:

map :: (a -> b) -> [a] -> [b]

This takes a function transforming a value of type a into type b, and maps from a list of
type a to the corresponding list of type b. The a and b types can be the same (and frequently
are).

1Note that in CHP, unlike the formal algebra of CSP, there is no difference in type between an event and a
process.

N.C.C. Brown / Communicating Haskell Processes 69

1.2. Functions

A Haskell function definition simply consists of the function name, followed by a label for
each of its parameters, then an equals sign and the definition of the function. For example,
this function adds the squares of two numbers:

addSquares :: Int -> Int -> Int
addSquares x y = (x ∗ x) + (y ∗ y)

There is also an infix notation for functions. The prefix function call addSquares 3 5 may
also be written 3 ‘addSquares‘5; the infix form is created by using backquotes around the
function name.

2. Sequential Composition

A monad type in Haskell defines how to compose operations in sequence. Examples of com-
mon monads include state monads, error-handling monads (that can short-circuit computa-
tion) and the IO monad for dealing with input and output.

We will not fully explain the underlying mechanics of monads here, but thankfully
Haskell provides a do notation that should render our programs readable to those not familiar
with Haskell and monads. Consecutive lines in a do block are sequential monadic operations.
A do block follows standard Haskell indentation rules, lasting until the indentation decreases
(similar to occam-π’s indentation rules), or the end of the expression (e.g. a closing paren-
thesis that began before the do block). The output values of monad operations can be labelled
using the <- notation. For example, this program reads in a character and writes it out again
twice (then finishes):

main :: IO ()
main = do c <- getChar

putChar c
putChar c

The type of getChar is IO Char. This indicates that the function is a monadic action in the
IO monad that returns a value of type Char. The type of the main function is IO () ; the Haskell
unit-type (“ ()”, which can be read as an empty tuple) is used to indicate that there is no useful
return value, and is very common. Note that there is no difference in types between a do block
and a single monadic action; the former simply composes several of the latter in sequence,
and either or neither may give back a useful value.

Recursion is possible in do blocks. We present here the standard forever function that
repeats a monadic action2:

forever :: Monad m => m a -> m ()
forever action = do action

forever action

The type signature of forever states that for any monad m, forever takes a monadic action
that returns some value and gives back a monadic action that returns no value. In this instance,
the implementation of the function is easier to follow than its type.

CHP defines the CHP monad, in which all of its operations take place. Two elementary
monadic operations are readChannel, which reads from a given channel, and writeChannel which
writes a given value (second parameter) to a given channel (first parameter). Thus, we can

2As we will see later on, errors such as poison can break out of a forever block.

70 N.C.C. Brown / Communicating Haskell Processes

write the classic id process that continually reads from one channel and writes to another,
omitting support for poison (see section 5):

idNoPoison :: Chanin a -> Chanout a -> CHP ()
idNoPoison input output
= forever (do x <- readChannel input

writeChannel output x
)

CHP uses the idea of channel-ends, as most CSP frameworks do. Both channels carry
type a, which may be any type – but the type carried by the input channel must match the
type carried by the output channel; otherwise the compiler will give a type-checking error.
Because in is a reserved word in Haskell, we use input as a variable name instead.

The process could also be written recursively:

idNoPoison input output
= do x <- readChannel input

writeChannel output x
idNoPoison input output

Where possible, we prefer the forever idiom, both to shorten definitions and also because
it makes clear that no state is carried between iterations of the process. Iteration constructs
are examined in more detail in section 7.

The channels in CHP are synchronous. This means that when a process attempts to write
to a channel, it must wait until the reader arrives and takes the data before the write operation
will complete. Synchronous channels are used in all CSP-based frameworks, and this is one
difference between CHP and, for example, Erlang.

3. Parallel Composition

Processes can be composed in parallel using the runParallel function:

runParallel :: [CHP a] -> CHP [a]

Its type can be read as follows: runParallel takes a list of processes that return values of
type a, and composes them into a single process that returns a list of values of type a. It gets
these values by running the processes in parallel and waiting for them all to complete.

We also provide an operator, <||>, such that p <||>q is semantically identical to
runParallel [p , q]. The types are slightly different however: the operator returns a pair of val-
ues (which can have different types), whereas the function returns a list of identically-typed
values. A sum type could be used if heterogenous return types are required.

In contrast to other CSP frameworks, parallelism here supports returning the result values
of the sub-processes. This was primarily out of necessity; if we only had the runParallel
function that does not return the output of the sub-processes3:

runParallel :: [CHP a] -> CHP ()

Then there would be no easy way to return any values from the parallel processes. As-
signment to variables cannot be used because there is no assignment in functional languages,
and values could not be communicated back to the parent process because it would be waiting
for the sub-processes to finish (and hence deadlock would ensue).

3The underscore-suffix on a monadic function is a Haskell convention indicating that the output is discarded.

N.C.C. Brown / Communicating Haskell Processes 71

3.1. Forking with Monads

In occam-π, it is possible to use a FORKING block to dynamically start new processes. At the
end of the FORKING block, the completion of all the processes is waited for. This idea was
carried across to C++CSP2, using the scope of objects to enforce a similar rule – although
with an added danger because of the ordering of object destruction [5].

We can again implement this concept in CHP using monads. There is no danger of object
destruction, as CHP channels are garbage-collected only when they are no longer in use. We
declare a forking monad4 that gives us the following functions:

forking :: ForkingCHP a -> CHP a
fork :: CHP () -> ForkingCHP ()

The forking function takes a monadic ForkingCHP block and runs it, waiting for all the
processes at the end before returning the output. The fork function forks off the given CHP
process from inside the ForkingCHP block. Unlike our normal parallelism operators described
previously, there is no way for a forked process to directly return a value. Forked processes
that need to pass back a value to the parent process may do so using a channel communication.

4. Channel Wiring

In occam-π, PROCedures are not first-class types. A block of monadic code is a first-class type
in Haskell, and can be passed around, as we have already seen with our combinators. We can
also pass around functions that yield a monadic item: in CHP terms, this is a process that still
needs parameters.

We can take advantage of this to provide functions for standard wiring idioms. An obvi-
ous example is wiring a list of processes into a pipeline:

pipeline :: [Chanin a -> Chanout a -> CHP b] -> Chanin a -> Chanout a -> CHP [b]

This function takes a list of processes that require a reading- and writing-end of a channel
carrying type a. The pipeline function also takes the channel ends to be used at the very
beginning and end of the pipeline, and returns the parallel composition of the processes in
the pipeline.

The pipeline function can be defined in several ways. Here we use an elegant recursive
definition of a helper function wirePipeline that wires up all the processes and returns them in
a list:

pipeline procs input output
= do wiredProcs <- wirePipeline procs input output

runParallel wiredProcs

wirePipeline :: [Chanin a -> Chanout a -> CHP b]
-> Chanin a -> Chanout a -> CHP [CHP b]

wirePipeline [p] input output = return [p input output]
wirePipeline (p : ps) input output
= do c <- newChannel

rest <- wirePipeline ps (reader c) out
return ((p input (writer c)) : rest)

The first line of wirePipeline is a base case, and matches a single-process list. The remain-
ing lines are the recursive step, with a pattern-match to decompose the process list into its

4Technically, this is a monad transformer that composes the CHP monad with a ForkingT monad transformer.

72 N.C.C. Brown / Communicating Haskell Processes

head p (a single process) and the remainder of the list ps (a list of processes). The : constructor
is used again in the last line to join an item onto the head of the list rest .

Here is an example of using the function:

fifoBuffer :: Int -> Chanin a -> Chanout a -> CHP ()
fifoBuffer n input output
= do pipeline (replicate n idProcess) input output

return ()

The replicate function takes a replication count and a single item, and returns a list con-
taining the item repeated that many times.

We can also easily define a function for wiring up a cycle of processes, by making the
two ends of the pipeline use the same channel:

cycle :: [Chanin a -> Chanout a -> CHP b] -> CHP [b]
cycle procs = do c <- newChannel

wiredProcs <- wirePipeline (reader chan) (writer chan) procs
runParallel wiredProcs

It would not be difficult to make general functions for wiring up other common idioms.

4.1. Channel Type Inference

For channels there is a bijective mapping between the two channel-end types and the channel
implementation. A Chanin and Shared Chanout are associated with an any-to-one channel. A
Chanin and Chanout are associated with a one-to-one channel.

This means that if the Haskell type-checker (which uses type inference) knows either
the two channel-end types or the channel type, it can infer the other. Typically this is used to
allocate a channel using the newChannel function, and have the type-checker figure out what
type the channel needs to be, based on what processes the ends are passed to. Programmers
who prefer to be explicit can still use individual oneToOneChannel functions.

The difference in types between the various channel-ends prevents channel-ends being
used incorrectly (for example, using a shared channel-end without claiming it), so there is no
possibility for error, and it also makes the code simpler. No other CSP framework or language
has this capability, because of the lack of such type inference.

Channels do not need to be explicitly destroyed in CHP – instead, they will be garbage-
collected when no longer in use (using standard Haskell mechanisms). This removes any
worry about correctly nesting the scope of channels.

5. Poison and Exception Handling

Poison is a technique for safely shutting down a process network, without inviting deadlock
or forcefully aborting processes [12,13,14]. A channel can either be in a normal operating
state, or it can be poisoned. Any attempt to read or write on a poisoned channel will result in
a poison exception being thrown.

Poison propagates throughout a network as follows. When a process catches a poison
exception, it poisons all its channel-ends. Thus its neighbours (according to channel connec-
tions in a process graph) will also get poison thrown, and they will do the same, until all chan-
nels in a process network have been poisoned. Once processes have poisoned their channels,
they shut down, and thus the process network terminates. This mechanism has previously
been incorporated into C++CSP, JCSP and others.

Our discussion here is centred around poison, but the ideas should generalise to any no-
tion of exceptions in process-oriented programs. Haskell supports exceptions in three ways:

N.C.C. Brown / Communicating Haskell Processes 73

in pure code, in the IO monad, and in special error monads. The latter approach is the neatest
solution. Thus we allow poison exceptions to occur in our CHP monad.

The onPoisonTrap function may be used (typically infix) to trap and handle poison. For
example, here is the identity process with poison handling:

idProcess :: Chanin a -> Chanout a -> CHP ()
idProcess input output
= (forever (do x <- readChannel input

writeChannel output x
)

) ‘onPoisonTrap‘ (do poison input
poison output)

It is important that the forever combinator is used inside the body of the poison, e.g.
(forever ...) ‘onPoisonTrap‘(...). If the process was composed as forever ((...) ‘onPoisonTrap‘
(...)) then it would form an infinite loop, forever catching the poison, handling it, and loop-
ing again.

We also add another poison handler (onPoisonRethrow) that always rethrows after the han-
dler has finished. This handler can be used either inside or outside of the forever combinator,
without encountering the infinite loop problem. The use of this function is further examined
in section 8.

5.1. Parallelism and Poison

One problem with poison has been deciding on the semantics of poison and parallel compo-
sition. In short, when p and q are composed in parallel and p exits due to poison, what should
happen to q, and what should happen to their parent process?

Forcibly killing off q is an ugly solution that goes against the main principle of poison
(allowing for controlled termination). Doing nothing at all is an odd solution, because the
parent will not know whether its sub-processes terminated successfully or died because of
poison. Consider the following process:

delta2 :: Chanin a -> Chanout a -> Chanout a -> CHP ()
delta2 input output0 output1
= forever (do x <- readChannel input

writeChannel output0 x <||> writeChannel output1 x)
‘onPoisonRethrow‘ (do poison input

poison output0
poison output1)

If the parent is never notified about its subprocesses dying of poison, the delta2 process
would continue running if one, or even both, of its output channels was poisoned, because
the poison exception would be masked by the parallel composition.

The semantics we have chosen are straight-forward. The parent process spawns off all the
sub-processes, and waits for them all to complete, either normally (no poison) or abnormally
(with poison). Once they have all completed, if any of the sub-processes exited in a state of
exception (with poison), the runParallel function (or similar) throws a poison exception in the
parent process.

This solution corresponds to the ideas in Hilderink’s CSP exception operator [13] and
Hoare’s concurrent flowcharts [15]. It maintains the associativity of PAR; the following two
lines are semantically equivalent:

runParallel [runParallel [p , q], r]
runParallel [p , runParallel [q , r]]

74 N.C.C. Brown / Communicating Haskell Processes

The other preserved useful property is that running one process in parallel is the same
as running the process directly: runParallel [p] is semantically identical to p. Commutativity
of PAR is also maintained. It should be noted that the types differ slightly between all the
aforementioned examples, but our concern here is only with semantics.

6. Composition using Choice – Alts and Implicit Guards

In occam-π, it is possible to choose between several events using the ALT construct, or PRI ALT
which gives its guards descending priority. Each option has a guard, followed by a body:

PRI ALT
c ? x -- input guard
d ! x -- body (output)

SKIP -- guard
d ! 0 -- body (output)

SKIP is a guard that is always ready. Thus the above code checks the channel c to see if
input is waiting. If some input is waiting it is read and sent out on channel d, otherwise the
SKIP guard is chosen and the value 0 is sent instead.

Frameworks such as JCSP and C++CSP2 have translated the ALT into a construct that
takes an array of guards and returns an integer denoting which guard is ready. The program
then follows this up by acting on the guard. For example, the occam-π code above would be
written as follows in C++CSP2:

Alternative alt (c.guard()) (new SkipGuard);
switch (alt.priSelect()) {

case 0: {
c >> x;
d << x;

} break;
case 1: {

d << 0;
} break;

}

Note how the input must be performed separately from the guard. This was a design
decision (taken from JCSP) to easily allow either normal or extended input on the channel
after it has been found to be ready by the Alternative construct.

6.1. Implicit Guards

In CHP, we are able to integrate the guard and its body. We can write, similar to CSP:

alt [do x <- readChannel c
writeChannel c x

, do skip
writeChannel d x]

We say that choice is implicitly available here, because the first action in each body
supports choice – such actions are skip , a channel read or write (normal or extended), a
wait action, a barrier synchronisation or another alt (which allows alts to be nested). This
is achieved by constructing a special monad that allows us to keep track of the first action
(and a hidden associated guard) in any given monadic action. It is possible to supply only one
action, such as skip , to the alt without a do block if no body is required.

N.C.C. Brown / Communicating Haskell Processes 75

In addition to the alt and priAlt functions, we supply corresponding operators: <-> for
choice without priority, and </> for choice with left-bias. That is, the expression p <->q is
identical to alt [p , q] and the expression p </>q is identical to priAlt [p, q]. The operators are
associative. The functions also have the property that alt [p], priAlt [p] and p are all identical,
provided that p supports choice (otherwise a run-time error will result). The duality between
choice (a sum of processes) and parallelism (a product of processes) is clearer in CHP than it
is in occam-π.

An eternal fairAlt that cycles priority between the guards is also easy to construct – we
choose to represent it here with recursion:

fairAlt :: [CHP a] -> CHP ()
fairAlt (g:gs) = do priAlt (g:gs)

fairAlt (gs ++ [g])

6.2. Composition of ALTs

ALTs in occam-π are composable to a certain degree. Directly nested ALTs are possible:

ALT
ALT
c ? x
d ! x

e ? x
d ! x

tim ? AFTER t
d ! 0

The above code chooses between inputs on c and e, and waiting for a timeout (for the
time t to occur). The body of each guard is an output on channel d.

However, you cannot pull out guards into a separate procedure:

PROC alt.over.all (CHAN INT c?, CHAN INT e?, CHAN INT d!)
ALT
c ? x
d ! x

e ? x
d ! x

:
ALT
alt.over.all (c, e, d)
tim ? AFTER t
d ! 0

This was a design decision, taken in classical occam, to treat the guards differently. In
our Haskell implementation, we only require the first action of any given monadic action
to support choice. Since an alt supports choice, we can nest them – regardless of function
boundaries. Therefore this is valid in CHP:

altOverAll :: Chanin Int -> Chanin Int -> Chanout Int -> CHP ()
altOverAll c e d = alt [do x <- readChannel c

writeChannel d x
, do x <- readChannel e

writeChannel d x]

alt [altOverAll c e d
, do waitUntil t

writeChannel d 0]

76 N.C.C. Brown / Communicating Haskell Processes

This new composability overcomes one of the shortcomings that Reppy pointed out in
the ALT construct when he developed Concurrent ML [16]. He noted that function composi-
tion was incompatible with choice. With implicit guards in CHP, this is not the case. This idea
would also be possible to build into occam-π or Rain [17], where the presence of choice could
be checked at compile-time. The compiler could eliminate the run-time errors that can occur
in CHP if you try to choose between something that does not support choice (for example,
poisoning a channel).

A further example of using choice can be seen in section 8.2.

7. Iteration

Most processes have repeating behaviour. It is very common to see WHILE some.condition

or even WHILE TRUE at the beginning of occam-π processes. The latter can be expressed with
the Haskell combinator forever , and can be broken out of using poison or other monadic
exception mechanisms.

The forever combinator repeatedly runs the same block of code. It does not support easily
stopping on a certain condition, or retaining any idea of state between subsequent runs of
the same block. For many small processes, such as the identity process, this is acceptable.
To demonstrate two different ways state can be implemented in the presence of iteration, we
will use the example of a runningTotal process that continually reads in numbers and outputs
the current total after each one.

The first obvious mechanism is to use recursion. We define the runningTotal process as
simply setting off another inner process5:

runningTotal :: Chanin Int -> Chanout Int -> CHP ()
runningTotal input output
= runningTotal ’ 0 ‘onPoisonRethrow‘ (do poison input

poison output)
where

runningTotal ’ :: Int -> CHP ()
runningTotal ’ prevTotal = do x <- readChannel input

let newTotal = prevTotal + x
writeChannel output newTotal
runningTotal ’ newTotal

We take advantage of the scoping of Haskell’s where clause; input and output are in scope
for runningTotal ’.

This recursion can get messy if many variables need to be passed to the recursive call.
Haskell’s state monad-transformer provides another alternative. The state monad-transformer
provides get and put monadic functions for dealing with the state, and a whole block can be
evaluated with a given state6:

runningTotal input output
= runWithState 0 runningTotal ’ ‘onPoisonRethrow‘ (do poison input

poison output)
where

runningTotal ’ = forever (do x <- readChannel input
prevTotal <- get
let newTotal = prevTotal + x
put newTotal
writeChannel output newTotal

)

5We use the suffix ’ here: a valid character in Haskell identifiers often used for this purpose.
6Technically, our runWithState function here is defined as flip evalStateT .

N.C.C. Brown / Communicating Haskell Processes 77

With the state monad, the reads and writes to and from the state can be placed more
appropriately throughout the code block, rather than having to name all the variables at the
start of the function, and pass them all again at the end of the function.

With the recursive method it is possible to control the looping by providing a base case,
whereas the state monad has no support for this. However, it is possible to support some more
easily controlled looping in Haskell, using yet another monad.

Inspired by Ian East’s revival of the DO-WHILE-DO loop (transmuted into his Honey-
suckle programming language as repeat-while [18]), CHP offers a loop-while construct using
another monad-transformer.

The loop function takes a block and executes it. Inside this block may be one or several (or
none, to loop forever) while statements. As an example of its use, here is a modified identity
process that stops (between the input and output) when a certain target value is seen:

idUntil :: a -> Chanin a -> Chanout a -> CHP ()
idUntil target input output
= loop (do x <- readChannel input

while (x /= target)
writeChannel output x)

This particular process would not be as elegantly expressed using recursion or the state
monad. It is possible to combine this looping monad with the state monad.

8. Further Composition

We have now presented five types of composition: sequence, parallelism, choice, exception
(poison) handling and iteration (cyclic sequence). All of these compositions can cross func-
tion boundaries in Haskell. We first show some general examples of all these types of com-
position, and also give an example of practical uses while implementing buffers.

8.1. General Composition

In this section we show how to compose several very simple processes. Each process is
given both in Haskell code and using CSP notation (with parameters omitted). We borrow
Hilderink’s exception-handling operator [13]: P

−→
4Q behaves as P , but if P throws a poison

exception it behaves instead like Q. We also invent a process, Ω(..) that poisons all channels
passed to it, and THROW that throws a poison exception.

Generally, the smallest composite process in process-oriented programming is the iden-
tity process – but this already contains two compositions (sequence and iteration), and three
in frameworks with poison such as C++CSP2. We start here with a forward process that is one
iteration of the identity process:

−− CSP: forward = input?x −→ output!x −→ SKIP
forward :: Chanin a -> Chanout a -> CHP ()
forward input output = do x <- readChannel input

writeChannel output x

This can then be composed into several other processes:

−− CSP: forwardForever = ∗forward
forwardForever :: Chanin a -> Chanout a -> CHP ()
forwardForever input output = forever (forward input output)

−− CSP: forwardSealed = forward
−→
4(Ω(input, output))

78 N.C.C. Brown / Communicating Haskell Processes

forwardSealed :: Chanin a -> Chanout a -> CHP ()
forwardSealed input output
= (forward input output)
‘onPoisonTrap‘ (do poison input

poison output)

−− CSP: forwardRethrow = forward
−→
4(Ω(input, output) ; THROW)

forwardRethrow :: Chanin a -> Chanout a -> CHP ()
forwardRethrow input output
= (forward input output)
‘onPoisonRethrow‘ (do poison input

poison output)

We include both of the latter two processes so that we can demonstrate their relative
composability below. Consider these further-composed processes:

−− CSP: id1 = forwardForever
−→
4(Ω(input, output))

id1 :: Chanin a -> Chanout a -> CHP ()
id1 input output
= (forwardForever input output)
‘onPoisonTrap‘ (do poison input

poison output)

−− CSP: id2 = forwardForever
−→
4(Ω(input, output) ; THROW)

id2 :: Chanin a -> Chanout a -> CHP ()
id2 input output
= (forwardForever input output)
‘onPoisonRethrow‘ (do poison input

poison output)

−− CSP: id3 = ∗forwardSealed
id3 :: Chanin a -> Chanout a -> CHP ()
id3 input output = forever (forwardSealed input output)

−− CSP: id4 = ∗forwardRethrow
id4 :: Chanin a -> Chanout a -> CHP ()
id4 input output = forever (forwardWithRethrow input output)

−− CSP: id5 = (∗forwardRethrow)
−→
4SKIP

id5 :: Chanin a -> Chanout a -> CHP ()
id5 input output
= (forever (forwardWithRethrow input output))
‘onPoisonTrap‘ skip

Intuitively, id2 is semantically identical to id4, and id1 is semantically identical to id5;
proving this is left as an exercise for the reader. We prefer id4 and id5, which locate the poison-
handling as close as possible in the composition to the channel-events. Processes id1 and id5
are not identical to id3, as the latter will never terminate, even if its channels are poisoned.

We can see that, pragmatically, the forwardWithRethrow function was much more compos-
able than the forwardSealed function. The implication in turn is that id2 and id4 will prove more
composable than their “sealed” counterparts, id1 and id5 – and we believe that in practice,
processes involving poison should always rethrow in order to make them more composable.

Our example shows that simple CHP programs can be reasoned about. The documenta-
tion supplied with CHP contains many useful laws to support such reasoning, for example:

N.C.C. Brown / Communicating Haskell Processes 79

runParallel [p] == p
throwPoison >> p == throwPoison
(p >> throwPoison) <||> q == (p <||> q) >> throwPoison

The >> operator represents sequence. These laws are similar to the laws of occam pre-
sented by Roscoe and Hoare [19].

There is a close correspondence between our extended CSP and the CHP code, especially
in the presence of composition. Even if the user of the library knows nothing about CSP,
the CHP compositions have inherited the beauty, and some of the reasoning power, of the
original CSP calculus.

8.2. Output Guards and Buffers

It is sometimes desirable to introduce buffering between two processes, rather than having
direct synchronous communication. A pipeline of N identity processes forms a limited ca-
pacity First-In First-Out (FIFO) buffer of size N . Sometimes, more complex buffering is re-
quired, such as overwriting buffers. An overwriting buffer also provides a limited capacity
FIFO buffer, but when the buffer is full, it continues to accept new data and overwrites the
oldest value in the buffer.

It is not possible in occam-π to define an overwriting buffer process with a single input
and single output channel. Consider the case of a size-one overwriting buffer process. The
process begins by reading in an item of data. If it subsequently writes out the data, it is
committed to the write because all writes must be committed to in occam-π . Another piece of
data arriving cannot affect this write, and thus the value cannot be overwritten. If the process
does not send out the data, it is breaking the semantics of the buffer that the data should be
available to be read.

Many frameworks, such as JCSP and C++CSP2 solve this problem by supplied buffered
channels that encapsulate this behaviour. This complicates the API for channels. In CHP we
allow choice over outputs (which no previous framework has done) and we can use this to
construct overwriting buffer processes.

Our CHP overwriting buffer process does not have to commit to the output. It therefore
chooses between reading a new data item in and writing out an item from the buffer. This
allows us to express the correct behaviour:

overwritingBuffer :: Int -> Chanin a -> Chanout a -> CHP ()
overwritingBuffer n input output
= (overwritingBuffer ’ []) ‘onPoisonRethrow‘ (do poison input

poison output)
where

overwritingBuffer ’ :: [a] -> CHP ()
overwritingBuffer ’ s | null s = takeIn

| n == length s = takeInReplace <-> sendOut
| otherwise = takeIn <-> sendOut

where
takeIn = do x <- readChannel input

over (s ++ [x])
takeInReplace = do x <- readChannel input

over (tail s ++ [x])
sendOut = do writeChannel output (head s)

over (tail s)

We define our buffer as simply setting off an inner process with an empty list7. The
inner process takes a list of items in the buffer. It then has three guards (indicated by the “ |”

7In our real buffers we use a data structure with O(1) append, but we use lists here for simplicity.

80 N.C.C. Brown / Communicating Haskell Processes

symbol). The first guard that evaluates to True is chosen. These are checked in sequential order
based on the function arguments, and should not be confused with guards used for alting.

The first guard checks if the buffer is currently empty. If so, the only action should be to
take in new data. If the buffer is full (the second guard), the process chooses between taking
in new data (and overwriting the oldest existing value) or sending out an item of data. If the
buffer is neither empty nor full (the last guard), the process chooses between taking in new
data (and adding it to the buffer) and sending out an item of data.

The process behaviours are at the end of the code above. The head function picks the
first item from a list, and the tail function is all of the list except for the first item. They use
recursion to provide iteration.

Buffers can be written in CHP quite easily because choice is available on channel writes
as well as reads; in other frameworks, choice was only available on channel reads because
there was not a fast and safe implementation until recently (see the next section).

9. Implementation

CHP’s channels and barriers are built on top of Haskell’s Software Transactional Memory
(STM) library [20]. Channels offer choice at both ends, using Welch’s idea for symmetric
channels [3]: both ends synchronise on an alting barrier (a multiway synchronisation with
choice) then proceed with the communication. The alting barriers use an STM implementa-
tion based on the “oracle” mechanism [21,22].

The only way to start an explicit new concurrent process in Haskell is with the forkIO
function. It takes a process and starts running it. It is a “fork-and-forget” function, providing
no means to wait for the completion of the forked process. Thus we implement our parallel
operators (that do wait for the completion of processes and return their outputs) by simply
having the processes write their result to a shared channel when they complete. The parallel
operator thus forks off N processes, then reads from the channel N times, sorts the results
and returns them.

10. Related Work

The idea of combining functional programming and process-oriented concurrency is now
quite old; Erlang is an obvious successful example [23]. Erlang is based on the actor model
[24], and as such has asynchronous communication and untyped addressed mailboxes instead
of CSP’s synchronous communication and anonymous typed channels. Erlang-style commu-
nication has also already been implemented in Haskell [25]. Erlang has explicit sequencing
in the language and strict evaluation, in contrast to Haskell’s monads and lazy evaluation.

Combining Haskell with some ideas from occam has been done before in Haskell#
(“Haskell-hash”) [26]. Haskell# began with explicit concurrency and has developed into a
separation of computation (expressed in Haskell) and topology/communication (expressed in
a separate Haskell Configuration Language), which contrasts to CHP’s standing as a Haskell
library.

The CHP library is built on top of Software Transactional Memory (STM), a Haskell
solution to the problem of explicitly concurrent programming [20]. Most previous concurrent
Haskell frameworks were built on top of an older system of shared mutable variables [27].
One of the main advantages of STM over the shared mutable variables is that STM naturally
supports choice, which is key to CSP programs, and allows for better composability.

STM allows multiple transactions in the STM monad to be composed via sequence or
choice into a single transaction. Parallelism is handled externally to the STM mechanism.
STM also allows full choice between sequentially composed transactions; both transactions

N.C.C. Brown / Communicating Haskell Processes 81

in sequence must succeed for it to be chosen. This is possible because STM only commits
transactions when they are successful. It does not make it possible to rollback a change which
can be viewed by another process.

Concurrent ML is another obvious predecessor to CHP [16], and in turn was an influ-
ence on STM. It had the notion of an event, and choice between events. Events could be de-
rived from channels by supplying a destination/source for a read/write. Events could be com-
posed via choice, and independently executed later on. This corresponds in CHP to forming
a monadic action using choice, and separately executing the action.

Concurrent ML did not feature the idea of poison or anything similar. Poison could
probably be built on top of Concurrent ML’s primitives, but the idea of poison requires careful
thought about the semantics of composing it via parallelism and iteration. ML permits side
effects and uses eager evaluation; Haskell’s purity and lazy evaluation may offer opportunity
for safer programming and different programming methods.

STM and Concurrent ML share some of the elegance in composition of CHP, but we
find that CSP is a more comprehensible programming model for explicit concurrency, and in
addition provides a formal basis for reasoning about programs.

11. Conclusions

We have presented a library that makes the CSP-based process-oriented programming model
available in Haskell, and have shown how natural, powerful and elegant its composition of
elements is. Code in CHP can have a strong correspondence to the original CSP algebra, with
identical semantics.

We believe that CHP is just as powerful as explicitly concurrent languages such as
occam-π for writing concurrent programs, and that parallelism, choice and composing pro-
cess networks with formulaic wiring are all easy in CHP, with the added feature of support for
poison. The occam-π implementation retains a memory and speed advantage over Haskell,
the former being able to allocate as little as 32 bytes per process and at least an order of
magnitude faster than the latter. CHP contains many of occam-π’s other features [2] such as
barriers, explicitly-claimed shared channels, extended input, as well as extended output that
is not currently present in occam-π.

The examples throughout this paper have also demonstrated how recursion can be used
with the CSP model to create small elegant understandable programs. Recursion has not
often been used in CSP implementations in the past – previous versions of occam did not
support recursion, and other frameworks shy away from it, as non-optimised recursion can
lead to needing a large amount of stack memory. In most frameworks, each process requires
a separate stack, so efforts are made to minimise the use of the stack.

We hope that this library will prove interesting and useful to a variety of people, includ-
ing: CSP theoreticians looking for a suitable development platform, process-oriented pro-
grammers who wish to use Haskell, and Haskell programmers who want a simple but power-
ful explicit concurrency framework.

11.1. Future Work

There is currently work at Kent ongoing to write a new occam-π compiler, Tock, in Haskell.
One possibility for future work would be to combine Tock with the CHP library in order to
produce an occam-π interpreter written in Haskell.

The performance of CHP could also be investigated and benchmarked. Haskell’s lazy
evaluation means that more thought is required to achieve speed-up through concurrency, so
CHP needs to be exercised on parallel processing tasks for this to be tested.

82 N.C.C. Brown / Communicating Haskell Processes

11.2. Practical Details

Like many Haskell programs, the CHP library uses features that are not part of the latest
Haskell standard (Haskell 98), but are likely to be part of the next Haskell standard (currently
entitled Haskell-Prime). It runs under the latest branch (6.8) of the most popular Haskell
compiler, GHC. The library has now been released, and more details on obtaining it can be
found at: http://www.cs.kent.ac.uk/projects/ofa/chp/.

Acknowledgements

Many thanks are due to Adam Sampson: for his comments on this paper, for his suggestion to
try implementing the library on top of STM, and for his suggestion that alts themselves could
provide implicit guards, thus allowing alts to be nested as they can be in occam. Thanks are
also due to the anonymous reviewers for their helpful comments, and to Claus Reinke for his
suggestions regarding a few aspects of the library.

References

[1] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
[2] Peter H. Welch and Fred R. M. Barnes. Communicating mobile processes: introducing occam-pi. In 25

Years of CSP, volume 3525 of Lecture Notes in Computer Science, pages 175–210. Springer Verlag, 2005.
[3] Peter Welch, Neil Brown, Bernhard Sputh, Kevin Chalmers, and James Moores. Integrating and Extending

JCSP. In Alistair A. McEwan, Steve Schneider, Wilson Ifill, and Peter Welch, editors, Communicating
Process Architectures 2007, pages 349–370, 2007.

[4] Jan F. Broenink, Andrè W. P. Bakkers, and Gerald H. Hilderink. Communicating Threads for Java. In
Barry M. Cook, editor, Proceedings of WoTUG-22: Architectures, Languages and Techniques for Concur-
rent Systems, pages 243–262, 1999.

[5] Neil C. C. Brown. C++CSP2: A Many-to-Many Threading Model for Multicore Architectures. In Com-
municating Process Architectures 2007, pages 183–205, 2007.

[6] B. Orlic. and J.F. Broenink. Redesign of the C++ Communicating Threads Library for Embedded Control
Systems. In 5th Progress Symposium on Embedded Systems, pages 141–156, 2004.

[7] James Moores. CCSP – A Portable CSP-Based Run-Time System Supporting C and occam. In Barry M.
Cook, editor, Proceedings of WoTUG-22: Architectures, Languages and Techniques for Concurrent Sys-
tems, pages 147–169, 1999.

[8] John M. Bjørndalen, Brian Vinter, and Otto Anshus. PyCSP – Communicating Sequential Processes for
Python. In Communicating Process Architectures 2007, pages 229–248, 2007.

[9] Kevin Chalmers and Sarah Clayton. CSP for .NET Based on JCSP. In Frederick R. M. Barnes, Jon M.
Kerridge, and Peter H. Welch, editors, Communicating Process Architectures 2006, pages 59–76, 2006.

[10] Alex Lehmberg and Martin N. Olsen. An Introduction to CSP.NET. In Frederick R. M. Barnes, Jon M.
Kerridge, and Peter H. Welch, editors, Communicating Process Architectures 2006, pages 13–30, 2006.

[11] Simon L. Peyton Jones and Philip Wadler. Imperative functional programming. In POPL ’93: Proceedings
of the 20th ACM SIGPLAN-SIGACT symposium on Principles of Programming Languages, pages 71–84,
New York, NY, USA, 1993. ACM.

[12] Neil C. C. Brown and Peter H. Welch. An Introduction to the Kent C++CSP Library. In Jan F. Broenink
and Gerald H. Hilderink, editors, Communicating Process Architectures 2003, pages 139–156, 2003.

[13] Gerald H. Hilderink. Managing Complexity of Control Software through Concurrency. PhD thesis, Labo-
ratory of Control Engineering, University of Twente, 2005.

[14] Peter H. Welch. Graceful termination – graceful resetting. In Andrè W. P. Bakkers, editor, OUG-10:
Applying Transputer Based Parallel Machines, pages 310–317, 1989.

[15] C.A.R. Hoare. Fine-grain concurrency. In Communicating Process Architectures 2007, pages 1–19, 2007.
[16] John H. Reppy. First-class synchronous operations. In TPPP ’94: Proceedings of the International Work-

shop on Theory and Practice of Parallel Programming, pages 235–252. Springer-Verlag, 1995.
[17] Neil C. C. Brown. Rain: A New Concurrent Process-Oriented Programming Language. In Communicating

Process Architectures 2006, pages 237–251, September 2006.
[18] Ian R. East. The Honeysuckle programming language: an overview. IEE Proc.-Softw., 150(2):95–107,

April 2003.

N.C.C. Brown / Communicating Haskell Processes 83

[19] A. W. Roscoe and C. A. R. Hoare. The laws of occam programming. Theor. Comput. Sci., 60(2):177–229,
1988.

[20] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy. Composable memory transactions.
In PPoPP ’05, pages 48–60. ACM, 2005.

[21] P.H. Welch. A Fast Resolution of Choice between Multiway Synchronisations (Invited Talk). In Frederick
R. M. Barnes, Jon M. Kerridge, and Peter H. Welch, editors, Communicating Process Architectures 2006,
pages 389–390, 2006.

[22] P.H. Welch, F.R.M. Barnes, and F.A.C. Polack. Communicating complex systems. In Michael G Hinchey,
editor, Proceedings of the 11th IEEE International Conference on Engineering of Complex Computer
Systems (ICECCS-2006), pages 107–117, Stanford, California, August 2006. IEEE. ISBN: 0-7695-2530-
X.

[23] Joe Armstrong, Robert Virding, and Mike Williams. Concurrent Programming in Erlang. Prentice Hall,
1993.

[24] Carl Hewitt, Peter Bishop, and Richard Steiger. A Universal Modular ACTOR Formalism for Artificial
Intelligence. In IJCAI, pages 235–245, 1973.

[25] F. Huch. Erlang-style distributed Haskell. In 11th International Workshop on Implementation of Func-
tional Languages, September 1999.

[26] Francisco Heron de Carvalho Junior and Rafael Dueire Lins. Haskell#: Parallel programming made simple
and efficient. Journal of Universal Computer Science, 9(8):776–794, August 2003.

[27] Simon L. Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell. In Symposium on Principles of
Programming Languages, pages 295–308. ACM Press, 1996.

