
Communicating Process Architectures 2008
P.H. Welch et al. (Eds.)
IOS Press, 2008
c© 2008 The authors and IOS Press. All rights reserved.

329

Representation and Implementation of
CSP and VCR Traces
Neil C.C. BROWN a and Marc L. SMITH b

a Computing Laboratory, University of Kent,
Canterbury, Kent, CT2 7NZ, UK, neil@twistedsquare.com

b Computer Science Department, Vassar College,
Poughkeepsie, New York 12604, USA, mlsmith@cs.vassar.edu

Abstract. Communicating Sequential Processes (CSP) was developed around a for-
mal algebra of processes and a semantics based on traces (and failures and diver-
gences). A trace is a record of the events engaged in by a process. Several program-
ming languages use, or have libraries to use, CSP mechanisms to manage their con-
currency. Most of these lack the facility to record the trace of a program. A standard
trace is a flat list of events but structured trace models are possible that can provide
more information such as the independent or concurrent engagement of the process in
some of its events. One such trace model is View-Centric Reasoning (VCR), which
offers an additional model of tracing, taking into account the multiple, possibly imper-
fect views of a concurrent computation. This paper also introduces “structural” traces,
a new type of trace that reflects the nested parallelism in a CSP system. The paper
describes the automated generation of these three trace types in the Communicating
Haskell Processes (CHP) library, using techniques which could easily be applied in
other libraries such as JCSP and C++CSP2. The ability to present such traces of a
concurrent program assists in understanding the behaviour of real CHP programs and
for debugging when the trace behaviours are wrong. These ideas and tools promote
a deeper understanding of the association between practicalities of real systems soft-
ware and the underlying CSP formalism.

Keywords. Communicating Sequential Processes, CSP, View-Centric Reasoning,
VCR, traces.

Introduction

Communicating Sequential Processes (CSP) [1,2] is a model of concurrency based on pro-
cesses synchronising on shared events. To support this idea, Hoare developed a process al-
gebra to permit the specification of concurrency, and defined a semantics based on traces,
failures (deadlocks) and divergences (livelocks). This paper is only concerned with traces:
records of a program’s event behaviour.

The recent growth in multicore processors has led to the need for programming models
that can exploit concurrency. In contrast to the popular locks and threading models, CSP and
process-oriented design promise an elegant and powerful alternative when used properly. The
occam-π programming language [3] and libraries for several other mainstream programming
languages use CSP as the basis for their concurrency. CSP and formal methods have a reputa-
tion as being challenging and divorced from practice. However, applying CSP without proper
training can diminish its advantages.

When programmers encounter problems in programming concurrent systems, they nat-
urally turn to familiar methods of debugging – for example, adding “print” statements at
points of interest in their programs. Programmers new to concurrency soon discover that due

330 N.C.C. Brown and M.L. Smith / Implementing CSP and VCR Tracing

to non-deterministic scheduling their programs can behave differently from run to run, and
that adding these debugging statements can also change the behaviour of the program.

Programmers are effectively seeking to understand their program’s behaviour. Debug-
ging statements primarily reveal the behaviour of a single component in the system, not syn-
chronisations between components. In contrast to print statements, traces record these inter-
actions between components – such as channel communications, barriers, etc.

An additional frustration in using disciplined process-oriented programming (such as in
occam-π) can be the addition of the necessary wiring that will enable debugging messages
to be printed. Programmers must redesign their process networks to route output channels
in order to print messages from processes. This further complicates mastering the new pro-
gramming model.

We have augmented a CSP implementation for Haskell (Communicating Haskell Pro-
cesses, CHP) [4] to provide a convenient tracing facility. When enabled, it records channel
communications and barrier synchronisations that have completed. This is akin to a CSP trace
of the program.

When a problem arises, this trace facility allows the programmer to see what events
actually occurred, and their order. They can compare this behaviour with their intentions.
While this is no substitute for formal reasoning and/or model checking, this is a practical aid
for programmers, and introduces them to the notion of tracing. We believe tracing is a viable
entry point to the CSP theory for programmers unfamiliar with formal reasoning and model
checking tools such as FDR2[5], which can check various safety, refinement and liveness
properties of CSP processes.

Our approach is intended to aid programmers in debugging real programs, which may
not have been formally modelled. This is distinct from tools such as FDR2 and ProBE, which
allow a programmer to investigate the behaviour of CSP models in a language-independent
manner.

Recording traces of a computation brings with it a set of questions and challenges.
Specifically, how shall traces be represented in a meaningful way, and how shall we imple-
ment these traces? View-Centric Reasoning (VCR) [6,7] was developed to address some of
challenges posed by the CSP observer, including the bookkeeping practice of reducing ob-
served concurrency to sequential interleavings of events. VCR offers an additional model of
tracing, taking into account the multiple, possibly imperfect views of a concurrent computa-
tion.

One aspect of traces that programmers may find challenging is the flattening of their
parallel-composed process network into a single sequential trace. For this reason, we also
introduce structural traces. Structural traces contain notions of sequential and parallel com-
position that enable these traces to reflect to some degree the sequential and parallel logic of
original program.

In this paper we will introduce all three trace types fully (section 1) before explaining
how we have implemented the recording of each of these trace types (section 2). We will then
present examples of each of the traces (section 3) before looking at related and future work
(sections 4 and 5).

1. Background

Tracing is the recording of a program’s behaviour. Specifically, a trace is a record of all the
events that a process has engaged in. A trace of an entire program is typically an interleaving
(in proper time order) of all the events that occurred during the run-time of the program. In
this section we briefly recap CSP and VCR tracing, and introduce a new form of trace that
will be used in this paper: structural tracing.

N.C.C. Brown and M.L. Smith / Implementing CSP and VCR Tracing 331

For our trace examples in this section, we will use the following CSP system:

(a → b → c → STOP) ‖
{a}

(a → d → e → STOP)

1.1. CSP Tracing

A CSP trace is a sequential record of all the events that occurred during the course of the
program. Hoare originally described the trace as being recorded by a perfect observer who
saw all events. If the observer saw two (or more) events happening simultaneously, they were
permitted to write down the events in an arbitrary order.

For example, these are the possible maximal traces of our system:

〈a, b, c, d, e〉 〈a, b, d, c, e〉 〈a, b, d, e, c〉
〈a, d, b, c, e〉 〈a, d, b, e, c〉 〈a, d, e, b, c〉

1.2. VCR Tracing

A VCR trace is similar to a CSP trace, but instead of recording a sequence of single events
in a trace, the observer records a sequence of multisets. In the original model of VCR traces,
each multiset represented a collection of simultaneous events, preserving information that the
CSP observer had lost. In practice, simultaneity is a difficult concept to define, reason about
or observe.

We have therefore adapted the meaning of event multiset traces in VCR. In our imple-
mentation in CHP each multiset is a collection of independent events. We term a and b to
be independent events if a did not observably require b to occur first, and vice versa. The
implication is that it was possible for events a and b to occur in either order without altering
the meaning of the program.

By convention in this paper, we write multisets of size one without set notation. These
are the possible maximal traces of our system:

〈a, b, c, d, e〉 〈a, b, d, c, e〉 〈a, b, d, e, c〉
〈a, d, b, c, e〉 〈a, d, b, e, c〉 〈a, d, e, b, c〉

〈a, b, {c, d}, e〉 〈a, b, d, {c, e}〉
〈a, d, b, {c, e}〉 〈a, d, {b, e}, c〉

〈a, {b, d}, {c, e}〉

VCR also permits multiple observers and imperfect observation (some events may not
be recorded), but unless specifically stated, in this paper we will be using a single observer
that records all events.

1.3. Structural Tracing

To explore other forms of trace recording, we have created structural tracing. CSP and VCR
tracing are both based on recording the events in a single, fairly flat trace. Structural tracing
is a constrasting approach where a structure is built up that reflects the parallel and sequential
composition of the processes being traced. Traces can be composed in parallel with the ||
operator, and these parallel-composed traces may appear inside normal sequential traces.

332 N.C.C. Brown and M.L. Smith / Implementing CSP and VCR Tracing

There is only one possible maximal trace of our system:

〈a, b, c〉 || 〈a, d, e〉

Note that a single occurrence of an event is recorded multiple times (once by each pro-
cess engaging it), which is distinct from both CSP and VCR tracing. This makes structural
traces quite different from the classic notion of tracing.

1.4. Communicating Haskell Processes

Communicating Haskell Processes (CHP) is a new concurrency library in the tradition of
JCSP et al for the Haskell programming language [4]. We have chosen to implement our
traces in CHP because it was the easiest framework to add tracing to, given the differing
implementations of the various CSP libraries and the authors’ expertise. The techniques pre-
sented here should be immediately portable to any other CSP framework.

CHP is primarily built on top of Software Transactional Memory (STM), a library for
implementing concurrency in Haskell [8]. STM is built on the idea of atomic transactions that
modify a set of shared transactional variables. Event recording (at least for CSP and VCR
traces) takes place in the same transaction as actually completing the event itself, and thus
the recording is indivisible from the event.

2. Implementation

2.1. General

The Communicating Haskell Processes library has two types of synchronisations: channel
communications (that transmit data) and barrier synchronisations (that have no data). This is
also true for most CSP-derived languages and libraries. We have altered CHP so that after the
completion of every successful event, the event is recorded. For CSP and VCR this is done
by the process that completes the synchronisation. For structural traces, every process that
engages in the event records it.

This highlights the fundamental difference between structural tracing and the other two
forms; under structural tracing, events are recorded multiple times, but under CSP and VCR
tracing events are only recorded once.

Tracing can be enabled or disabled at the start of the program’s execution. Switching on
tracing is as simple as changing a single line in the user’s program. This makes the tracing
facility very easy to use.

2.2. CSP Traces

CSP tracing is the most straightforward to implement. Hoare’s perfect observer can be im-
plemented by modifying a single sequence shared between all processes (with appropriate
mechanisms, such as a mutex, to handle the concurrent updates). Due to Haskell’s lists hav-
ing O(1) time complexity for prepending but not for appending, we add all new events at the
head of the list, effectively recording the trace backwards.

2.2.1. Recording Bottleneck

The main problem with CSP tracing is that it serialises the whole program. All processes end
up contending for access to the central trace, and thus with multiple threads this can slow
down the program. An alternative approach would be to have each process record its own
trace with events timestamped (as in notions of timed CSP), and merge these sorted traces by
timestamp from sub-processes into their parent process when the sub-processes complete.

N.C.C. Brown and M.L. Smith / Implementing CSP and VCR Tracing 333

The problem with such timestamps is that modern computers (from the point of view of
a portable high-level language) often have timers with relatively coarse frequency, such as
once per millisecond. CHP is able to complete around a hundred events in that time, and thus
events that occur within a millisecond of each other would be recorded in arbitrary order.
Therefore we still record CSP traces using a single shared sequence.

2.3. VCR Traces

As described in section 1.2, we group independent events into multisets for VCR traces. If
we can deduce a definite ordering of two events, we take the latter event to be dependent on
the former. Otherwise, we take the events to be independent. For example, we know that two
events must be sequential if they are both performed by the same process-thread. To be able
to reason about this and other details, we record events with associated process identifiers.

2.3.1. Process Identifiers

We use process identifiers to deduce information about sequencing. Consider these two CSP
systems:

(a → (b → SKIP ||| c → SKIP)) ; (d → e → STOP)

(f → SKIP ||| g → SKIP) ; (h → STOP ||| i → STOP)

We wish to be able to deduce the following facts, where < is the strict partial ordering
of the events in time:

a < b, a < c

b < d, c < d

d < e

f < h, g < h

f < i, g < i

Process identifiers are one or more integers (sequence numbers) joined together by a
sub-process operator, B

x
where x is itself an integer (a parallel branch identifier). The top-

level process of the program starts with the identifier 0. Process identifiers only change when
the process runs a parallel composition. Before and after the composition, the last (right-
most) sequence number is incremented. The identifiers for the sub-processes are formed by
appending B

x
0 to the current identifier, where x is distinct for each sub-process.

Our example programs, with process identifiers, are shown in figures 1 and 2. Each event
is given in a circle. The open double-headed arrows indicate sequencing, and sub-processes
are shown in a vertical relation, with an empty (dot) event as a parent. The events are grouped
into dashed boxes, which represent the actual processes that will be created when the program
is run. Next to each event is the associated process identifier that will be recorded with it.

The sequence numbers in the top row of each figure are not in error. Events d and e are
associated with the same sequence number. Event e will definitely be recorded after event
d (since the same process is doing them in sequence) so we do not need to use the process
identifier to tell them apart. It is only in the case of parallel composition that we must change
the sequence numbers, in order to deduce an ordering between the parent’s events (such as
a and d) and the sub-processes’ events (b and c). The incrementing before and after both
parallel compositions is what leads to the sequence numbers being 1 and 3 for the second
figure.

The following Haskell pseudo-code explains the algorithm for comparing process iden-
tifiers:

334 N.C.C. Brown and M.L. Smith / Implementing CSP and VCR Tracing

a · d

cb

0 21

e

2

1 0
1

1 0
0

Figure 1. The program (a → (b → SKIP ||| c → SKIP)) ; (d → e → STOP), with the identifiers for each
event

·

gf

1

·

ih

3

1 0
0

1 0
1

3 0
0

3 0
1

Figure 2. The program (f → SKIP ||| g → SKIP) ; (h → STOP ||| i → STOP), with the identifiers for each
event

data Maybe a = Nothing | Just a

type ProcessId = (Integer , Maybe (Integer , ProcessId))

lessThan :: ProcessId -> ProcessId -> Bool
lessThan (x , Nothing) (y , Nothing) = x < y
lessThan (x , Just (xpar , xpid)) (y , Just (ypar , ypid))
= if x == y

then
(if xpar == ypar

then lessThan xpid ypid
else False) −− Independent

else x < y

The data type indicates that a process identifier is a pair of an integer, and an optional
(indicated by the Maybe type) parallel branch identifier with the further part of the process
identifier. So the identifier 2 B

1
4 would be represented as (2, Just (1, (4, Nothing))) .

If the process identifiers are both single sequence numbers, we simply compare these
sequence numbers. If they are a compound identifier, we again start by comparing the se-
quence numbers. If they are not equal, we return the value of x < y. If however they are equal,
we compare their parallel branch identifiers. If these identifiers are not equal, we know the
identifiers come from parallel siblings, and we return false. If they are equal, we proceed with
comparing the remainder of the process identifiers.

N.C.C. Brown and M.L. Smith / Implementing CSP and VCR Tracing 335

P Q R
c d

Figure 3. A standard pipeline of three processes

Due to the incrementing of the sequence number before and after running sub-processes,
it can be seen that no recorded identifier will ever be an exact prefix of another. In our dia-
grams (figures 1 and 2), the parent with the same prefix is represented as a dot, and engages
in no events itself. Thus, pairs of recorded identifiers will always differ within the length of
the shorter identifier, or both identifiers will be equal.

2.3.2. Recording Rules

In the previous section we explained our process identifiers and a partial order over them. We
will now show how we use this to record VCR traces, for the moment considering events that
only involve one process.

When recording an event in a VCR trace, a process must look at the most recent set of
parallel events, here termed Θ. Θ is a set1 of pairs of an event (for which we use α, β, etc)
and a process identifier (for which we use p, q, etc). We must determine, for a given (β, q)
whether to add the new event to Θ or whether to start a new set of parallel events. Our rule is
straightforward: if ∃(α, p) ∈ Θ : p < q ∨ p = q, we must start a new set of parallel events
because an event in the most recent set provably occurred before the event we are adding.
Otherwise, add the new event to Θ (the events are independent).

Consider the following CSP traces of our example processes from figures 1 and 2, anno-
tated with process identifiers:

〈a[0], c[1 B
1

0], b[1 B
0

0], d[2], e[2]〉

〈f [1 B
0

0], g[1 B
1

0], i[3 B
1

0], h[3 B
0

0]〉

Following our rules, the same traces recorded in VCR form would be:

〈a, {b, c}, d, e〉
〈{f , g}, {h, i}〉

2.3.3. Multiple Processes

We have so far considered events with just a single process. In reality, events involve multiple
processes synchronising. Consider a process pipeline, where three processes are connected
with channels c and d, as shown in figure 3. We will assume here that the reader happens
to record the events (recall that events are recorded by the last process to engage in the
synchronisation). Process Q will read from channel c, and record this event. Then it will write
to channel d and the process R will read and record the event. Because the process identifiers
for Q and R have no ordering, the events will be recorded as being independent. However, the
communication on channel d was clearly dependent on the communication on from channel
c, since process Q communicated on channel c before communicating on channel d.

In order to combat this problem, we modify our synchronisation events so that the party
that records the event can know the process identifier of all the other processes that engaged
in the synchronisation. The event is recorded with a set of process identifiers (in barriers,
there may be more than two participants) rather than a single identifier.

1Technically in VCR, it is a multiset, but due to our recording strategy, no pair of event and process identifier
will occur multiple times in the same set.

336 N.C.C. Brown and M.L. Smith / Implementing CSP and VCR Tracing

Thus we can adjust our previous rule, now that Θ is a set of pairs of single event identifier
and a set of process identifiers (for which we will use capital P, Q, etc). For adding a new
pair of event and identifier set (β, Q): if ∃(α, P) ∈ Θ,∃ p ∈ P,∃ q ∈ Q : p < q ∨ p = q, start
a new set of parallel events. Otherwise, add the new event to Θ.

In our previous example, the communication on channel c will have been recorded with
the process identifiers for processes P and Q. When process R then records the communica-
tion on channel d with the identifiers for Q and R, the events will be seen to be dependent.

The reader may wonder what happens should it also be the case that ∃ p ∈ P,∃ q ∈ Q :
q < p in the above rule. This is not possible in the CHP library because the recording of an
event is bound into the synchronisation, so events will always be recorded in order. It cannot
be the case that an event a that provably occurred before b will be recorded after b.

2.3.4. Relevance of Event Identifiers

The event identifier currently plays no role in our rules – it is usually subsumed by consid-
ering the identifiers of processes engaging in the events. Therefore the only cases where it
would be of use are where an entirely different (unrelated) set of processes may engage on
two successive occurrences of the same event.

Communication on unshared channels, and channels with only one shared end, are taken
care of by considering the processes involved. In these cases, one process will always be in-
volved2 in the subsequent communications, and we can use this to deduce sequence informa-
tion. Therefore we need only consider here channels that are shared at both ends.

With channels that are shared at both ends, it is possible for P and Q to communicate
once on the channel, then release the ends, after which R and S claim them and perform
another communication. In such a situation, we do not consider the second communication
to be dependent on the first, and so we do not use the event identifier to deduce any sequence
information.

2.3.5. Independence and Inference

The VCR theory describes events in the same multiset as being observed simultaneously, but
we have altered this and implemented our traces to record independent events in the same
multiset. This means that some of the theoretically possible VCR traces can never actually be
recorded in our implementation, and also that some sequence information can be retroactively
inferred.

Recall our CSP system from the example in section 1:

(a → b → c → STOP) ‖
{a}

(a → d → e → STOP)

Imagine that the first two events to occur are a and b, giving us a partial trace: 〈a, b〉.
According to the VCR theory, the possible maximal traces that may follow from this are:

〈a, b, c, d, e〉 〈a, b, d, c, e〉 〈a, b, d, e, c〉
〈a, b, {c, d}, e〉 〈a, b, d, {c, e}〉 〈a, {b, d}, {c, e}〉

Which trace is recorded will depend on which event occurs next. If the next event is c,
the theoretical traces are:

〈a, b, c, d, e〉 〈a, b, {c, d}, e〉

2Or a process and its sub-processes, that we can deduce sequence information about.

N.C.C. Brown and M.L. Smith / Implementing CSP and VCR Tracing 337

In fact, the trace recorded in our implementation will always be the second trace. Be-
cause c and d are independent events, they will always be recorded in the same multiset. If
c happens first, the partial trace will be 〈a, b, c〉. But then when d is recorded, because it is
independent of all events in the most recent multiset (c, in a singleton multiset), it will be
added to that multiset, forming 〈a, b, {c, d}〉, then become the second trace shown above. The
trace 〈a, b, c, d, e〉 can never actually be recorded using our implementation.

If instead the next (third) event is d, the possible theoretical traces are:

〈a, b, d, c, e〉 〈a, b, d, e, c〉 〈a, b, d, {c, e}〉
〈a, b, {c, d}, e〉 〈a, {b, d}, {c, e}〉

For similar reasons to the previous example, it is not possible to record any of the top
three traces. The pairs of events (b, d), (c, d) and (c, e) are each independent, so the traces
would always be recorded using the latter two traces (with appropriate multisets) rather than
the earlier three traces with only singleton multisets.

It is even possible to infer sequence from a trace with multisets. Consider the trace
〈a, b, {c, d}, e〉. If event d had occurred before c, then b and d would have been grouped into
the same multiset (since they are independent). Therefore to produce this trace, c must have
happened before d.

These issues reflect the difference between the theory of VCR and our actual implemen-
tation of its tracing. Our trace may seem to add obfuscation over and above the CSP trace.
But it also abstracts away from some of the unnecessary detail. Grouping two events into a
multiset implies that they could have happened in either order. For trace compression (see
section 2.5), comprehension and visualisation, a more regular trace that abstracts away from
some of the scheduling-dependent behaviour of the program may well be appealing in some
circumstances.

2.4. Structural Traces

A structural trace is the most natural – and fastest – to record. Each running process records
events it has engaged in using a local trace. Since the trace is unshared, there is no contention
or need for locks, and hence it is faster than any other method of recording. Sequential events
are recorded by adding them to a list. As with the other traces, it adds to the front of the list
(reversing the order) to be faster.

When a process runs several sub-processes in parallel, they all also separately record
their own trace. Upon completion they all send back their traces to the parent process. These
traces are received by the parent and form a hierarchy in the parent’s trace. This process of
joining traces means that the end result is one single trace that represents the behaviour of
the entire program.

The drawback with structural traces is that information about the ordering of events
between non-descendant processes is lost. Consider the trace:

〈a, a, a, a, a, a〉 || 〈b, b, b, b, b, b〉
We cannot tell from this trace whether all the events a happened before all the events b,

vice versa, a strict interleaving or any other possible pattern.

2.5. Compression

One problem of recording the trace of a system is that a large amount of data is generated.
IF the system may generate an event every microsecond3, that is a million events a second.

3This figure is a very rough average of channel communication times on modern machines from various CSP
implementations.

338 N.C.C. Brown and M.L. Smith / Implementing CSP and VCR Tracing

Assuming on a 32-bit machine that an event could be reduced to eight bytes per event (four
bytes for an identifier, four for a pointer in a linked list or similar), in the worst case nearly a
gigabyte of data would be generated approximately every two minutes. Generally programs
are likely to fall far below this upper bound, but ideally we would like to reduce the space
required.

Processes usually iterate (by looping or recursion), and thus display repetitive behaviour.
This repetition is often diluted by observing the behaviour of several processes, but even large
process networks can display regular behaviour.

Repeated patterns appearing in the trace means that it should be possible to compress
the trace by removing this redundancy. To gain much benefit from this, we need to compress
the trace on-line, while the program is still running, rather than off-line after the program has
finished.

The obvious compression approaches are forms of run-length encoding that can reduce
consecutive repeated behaviour, and dictionary-based compression methods that can spot
common patterns and reduce them to an index in a lookup table of frequently occurring
patterns.

We also note that viewing the compressed version is often more comprehensible to the
programmer than its raw, uncompressed form. Most of the structural traces in this paper have
been left in their compressed form for that reason.

2.6. Rolling Trace

A primary use of traces is for post-mortem debugging, especially in the case of deadlock or
livelock. In this case the programmer is interested to see what the program was doing leading
up to the failure.

This failure could occur after the program has been running for hours, or days. The
earlier behaviour of the program will probably not be of interest. Therefore a good policy
in these cases would be to keep a rolling trace which records, say, the most recent thousand
events. This would require a constant amount of memory rather than accumulating the trace
as normal (recording using an array, rather than a linked list).

This would allow tracing to place some time overhead on the program, but only a small
amount of memory overhead, and would still be useful in the case of program failure.

3. Example Traces

In this section we present examples of traces of several different small programs. Each trace
is recorded from a different run of the program, so the traces will not (necessarily) be direct
transformations of each other.

3.1. CommsTime

Commstime is a classic benchmark used in process-oriented systems. Its configuration is
shown in figure 4.

For this benchmark, we show approximately six iterations of the commstime loop.

3.1.1. CSP
〈 prefix-delta, delta-recorder, delta-succ, succ-prefix,
prefix-delta, delta-succ, delta-recorder, succ-prefix,
prefix-delta, delta-succ, delta-recorder, succ-prefix,
prefix-delta, delta-succ, delta-recorder, succ-prefix,
prefix-delta, delta-succ, delta-recorder, succ-prefix,
prefix-delta, delta-succ, succ-prefix, delta-recorder,

delta-succ 〉

N.C.C. Brown and M.L. Smith / Implementing CSP and VCR Tracing 339

Delta

Prefix Succ

Recorder
delta-recorder

succ-prefix

prefix-delta

delta-succ

Figure 4. The CommsTime Network

3.1.2. VCR
〈 {prefix-delta}, {delta-succ}, {delta-recorder, succ-prefix},
{prefix-delta}, {delta-succ}, {delta-recorder, succ-prefix},
{prefix-delta}, {delta-recorder, delta-succ}, {succ-prefix},
{prefix-delta}, {delta-recorder, delta-succ}, {succ-prefix},
{prefix-delta}, {delta-recorder, delta-succ}, {succ-prefix},

{prefix-delta}, {delta-recorder, delta-succ}, {succ-prefix}, {delta-succ} 〉

3.1.3. Structural
〈〈〈7*〈delta-succ? , succ-prefix!〉, delta-succ?〉

|| 〈7*〈prefix-delta! , succ-prefix?〉 , prefix-delta!〉
|| 〈6*〈delta-recorder?〉〉

|| 〈7*〈prefix-delta? , 〈delta-recorder! || delta-succ!〉〉〉〉〉

3.1.4. Summary

The CSP trace reflects the interleaving that occurred between all the parallel processes, and
shows how the order of events changes slightly at the beginning and end of the trace.

The lines in the middle of the VCR trace are probably what we would expect; singleton
sets of prefix-delta and succ-prefix, and a set of the two parallel events from the delta process:
delta-recorder and delta-succ. However, the early traces show that there is a different record-
ing that can occur, with the delta-succ event happening first, and the delta-recorder happening
in parallel with succ-prefix. This is a valid behaviour of our process network.

It is easy to see the four different processes in the structural trace, each with distinct
behaviour. This would be visible even if the channels were not labelled. The regular repetition
of all of the processes is also clear.

3.2. Dining Philosophers

The dining philosophers is a classic concurrency problem described by Hoare in his original
book on CSP [1]. We use the deadlocking version for our benchmark. To keep the traces
simpler and to provoke deadlock more easily, we use only three philosophers. The fork-
claiming channels are named according to the philosopher they are connected to – the names
of all of the channels are shown in figure 5. We show only the tail-end of the traces (leading
up to the deadlock) as the full traces are too long to display here.

3.2.1. CSP

〈 . . . , fork.right.phil1, fork.left.phil0, fork.left.phil2, fork.right.phil2, fork.right.phil0, fork.left.phil1,
fork.right.phil0, fork.left.phil0, fork.right.phil1, fork.left.phil2, fork.left.phil1, fork.right.phil2, fork.right.phil1,
fork.left.phil0, fork.left.phil2, fork.right.phil0, fork.right.phil2, fork.left.phil1, fork.left.phil0, fork.right.phil0,
fork.right.phil1, fork.left.phil2, fork.left.phil1, fork.right.phil1, fork.right.phil2, fork.left.phil0, fork.left.phil2,
fork.right.phil2, fork.right.phil0, fork.left.phil1, fork.right.phil0, fork.left.phil0, fork.left.phil2, fork.left.phil0 〉

340 N.C.C. Brown and M.L. Smith / Implementing CSP and VCR Tracing

Philosopher

Philosopher Philosopher

fork.left.phil0

fork.left.phil2

fork.left.phil1fork.right.phil2

fork.right.phil1

fork.right.phil0

Figure 5. Dining Philosophers with Three Philosophers

3.2.2. VCR

〈 . . . , {fork.left.phil2}, {fork.right.phil0, fork.right.phil2}, {fork.left.phil0, fork.right.phil0, fork.left.phil1},
{fork.right.phil1, fork.left.phil2}, {fork.left.phil1, fork.right.phil1}, {fork.left.phil0, fork.right.phil2},
{fork.left.phil2, fork.right.phil2}, {fork.right.phil0, fork.left.phil1}, {fork.left.phil0, fork.right.phil0},
{fork.right.phil1, fork.left.phil2}, {fork.left.phil1, fork.right.phil1}, {fork.left.phil0, fork.right.phil2},
{fork.left.phil2, fork.right.phil2}, {fork.right.phil0, fork.left.phil1}, {fork.left.phil0}, {fork.right.phil0,

fork.right.phil1}, {fork.left.phil1, fork.right.phil1}, {fork.left.phil0, fork.left.phil1, fork.left.phil2} 〉

3.2.3. Structural

Unfortunately our current implementation of structural tracing in CHP cannot show its traces
in the presence of deadlock, due to the fast way the traces are recorded (in local per-process
storage) and the way that the error manifests (being caught outside the scope of this storage).
We hope to remedy this situation in the near future.

3.2.4. Summary

The dining philosophers problem is an example of a larger process network with less regular
behaviour. Another problem is that it is hard to identify which messages are “pick up” mes-
sages and which are “put down” messages. An automated tool for dealing with traces could
easily fix this by labelling alternating messages on the same channel differently. At the end of
each trace it can be seen (most visibly in the VCR trace) that each philosopher communicated
to its left-hand fork but not its right-hand fork, immediately before the deadlock.

3.3. Token Cell Ring

This example is a token-passing ring using alting barriers (multiway synchronisations that
support choice). The process network is a ring of cells, where each cell is enrolled on two
alting barriers (here termed “before” and “after”) and has a channel-end from a “tick” process.
A cell can have two states: full or empty.

If the cell is full, it offers to either engage on its “after” barrier (to pass the token on) or
read from its “tick” channel. If the barrier is the event chosen, the cell then commits to read
from its “tick” channel. If the cell is empty, it offers to either engage on its “before” barrier
(to receive a token) or read from its “tick” channel. Again, if the barrier is chosen, it then
commits to reading from the “tick” channel.

The writing ends of all the tick channels are connected to a “ticker” process that writes
in parallel to all its channels, then repeats. Six cells are wired in a ring, and initially the
first (index: 0) is full, with the rest empty. All the barriers are named according to the cell

N.C.C. Brown and M.L. Smith / Implementing CSP and VCR Tracing 341

Cell 0 Cell 1 Cell 2 Cell 3 Cell 4 Cell 5

Ticker

tick0

tick1 tick2 tick3 tick4

tick5

to.cell1 to.cell2 to.cell3 to.cell4 to.cell5

to.cell0

Figure 6. Token Cell Ring Network

following it – that is, the barrier that is “after” for cell 2 and “before” for cell 3 is named
“to.cell3”.

This network is portrayed in figure 6. The idea is a simple version of the model used for
blood clotting in the TUNA project [9]. Eight iterations (i.e. eight ticks) of the network were
run.

3.3.1. CSP
〈 to.cell1, tick0, tick1, tick3, tick4, to.cell2, tick2, tick5,
tick2, tick0, tick1, tick3, tick5, to.cell3, to.cell4, tick4,
to.cell5, tick0, tick2, tick5, tick1, tick3, to.cell0, tick4,
tick0, tick2, tick3, tick5, to.cell1, tick1, to.cell2, tick4,
tick1, tick2, to.cell3, tick4, tick0, tick3, to.cell4, tick5,

tick2, tick3, tick4, tick5, tick0, to.cell5, tick1,
tick0, tick2, tick3, tick5, to.cell0, tick1, tick4,
tick1, tick2, tick4, tick0, tick3, to.cell1, tick5,

tick0, tick1, tick2, tick3, tick4, tick5 〉

3.3.2. VCR
〈 {tick1, tick2, tick4, tick5, to.cell1}, {tick0, tick3, to.cell2},

{tick0, tick1, tick2, tick3, tick4, tick5},
{tick1, tick2, to.cell3}, {tick0, tick3, tick4},

{tick2, tick3, tick5, to.cell4}, {tick0, tick1, tick4, tick5},
{tick2, tick3, tick4, to.cell5}, {tick0, tick1, tick5},

{tick0, tick1, tick2, to.cell0}, {tick3, tick4, tick5, to.cell1},
{tick0, tick1}, {tick2, tick3, tick4, tick5, to.cell2},

{tick0, tick1, tick3, to.cell3}, {tick4, to.cell4}, {tick2, tick5, to.cell5},
{to.cell0}, {tick0}, {tick1}, {tick2}, {tick3}, {tick5}, {tick4} 〉

3.3.3. Structural
〈〈〈to.cell1* , 4*〈tick0?〉 , to.cell0* , tick0? , to.cell1* , 2*〈tick0?〉 , to.cell0* , tick0? , to.cell1* , tick0?〉

|| 〈to.cell1* , tick1? , to.cell2* , 4*〈tick1?〉 , to.cell1* , tick1? , to.cell2* , tick1? , to.cell1* , tick1? , to.cell2* , tick1?〉
|| 〈to.cell2* , tick2? , to.cell3* , 4*〈tick2?〉 , to.cell2* , tick2? , to.cell3* , 2*〈tick2?〉 , to.cell2* , tick2?〉

|| 〈8*〈tick0! || tick1! || tick2! || tick3! || tick4! || tick5!〉〉
|| 〈tick3? , to.cell3* , tick3? , to.cell4* , 4*〈tick3?〉 , to.cell3* , tick3? , to.cell4* , 2*〈tick3?〉〉

|| 〈2*〈tick4?〉 , to.cell4* , tick4? , to.cell5* , 3*〈tick4?〉 , to.cell4* , tick4? , to.cell5* , 2*〈tick4?〉〉
|| 〈3*〈tick5?〉 , to.cell5* , tick5? , to.cell0* , 2*〈tick5?〉 , to.cell5* , tick5? , to.cell0* , 2*〈tick5?〉〉〉〉

3.3.4. Summary

We have separated the CSP and VCR traces approximately into the eight iterations of the
process network – one per line. It can be seen that each iteration interleaves its events slightly

342 N.C.C. Brown and M.L. Smith / Implementing CSP and VCR Tracing

differently as the token passes along the process pipeline. It is possible to see the movement
of the token in each of the different styles of tracing.

3.4. I/O-PAR Example

An I/O-PAR process is one that behaves deterministically and cyclically, by first engaging in
all the events of its alphabet, then repeating this behavior. I/O-PAR (and I/O-SEQ) processes
have been studied extensively by Welch, Martin, Roscoe and others in [10,11,12,13,14].
Roscoe and Welch separately proved I/O-PAR processes to be deadlock-free, and further that
I/O-PAR processes are closed under composition. This proof is not simple, and reasoning
about I/O-PAR processes from their traces is not straight-forward.

For an example of a simple IO-PAR network, we use the example originally presented in
[15]. One process repeats a in parallel with b ten times. The other process repeats b in parallel
with c ten times. The two processes are composed in parallel, synchronising on b together.

3.4.1. CSP

〈 a, b, c, c, a, b, a, b, c, a, b, c, a, b, c, a, b, c, a, b, c, a, b, c, a, b, c, a, b, c 〉

3.4.2. VCR

〈 {a, b, c}, {a, b, c}, {a, b, c}, {a, b, c}, {a, b, c}, {a, b, c}, {a, b, c}, {a, b, c}, {a, b, c}, {a, b, c} 〉

3.4.3. Structural

〈〈10*〈a || b〉〉 || 〈10*〈b || c〉〉

3.4.4. Summary

Given a simple process network, the structural trace again has a direct mapping to the original
program. The VCR trace shows the regular parallelism in the system, whereas the CSP trace
reveals a slight mis-ordering in the second triple of events. This was predicted in the original
paper; two c events happen in-between two b events in the CSP trace, but this slush is ironed
out in the VCR trace.

4. Related Work

While VCR is a model of true concurrency, and the basis for implementing a tracing facility
in CHP, it is by no means the only such model. A model of true concurrency is one which
does not reduce concurrency to a nondeterministic sequential interleaving of events. A com-
prehensive survey paper by Cleaveland, et al. [16] discusses models of true concurrency ver-
sus interleaving models (such as CSP). Of the models discussed in [16], the earliest exam-
ple of a model of true concurrency is Petri nets [17]. An introduction to Petri nets can be
found in [18]. Kahn nets [19] provide a fixed-point semantics for the concurrency found in
dataflow systems. While both are models of true concurrency, neither Petri nets nor Kahn nets
are trace-based models. Three trace-based models of true concurrency are discussed in [16],
and they are Mazurkiewicz traces [20], pomsets (partially-ordered multisets) [21], and event
structures, by Winskel [22]. Mazurkiewicz traces define an independence relation on events
to identify potential concurrency in traces of execution, which is in the same spirit of events
contained in CHP’s event multisets. From a purely model-theoretic standpoint, pomsets and
event structures are similar in spirit to VCR’s parallel event multisets and ROPEs (randomly
ordered parallel events).

The independence relation discussed here is also similar to Lamport’s seminal work on
the happened-before relation [23]. Lamport defined a partial ordering in time of events in

N.C.C. Brown and M.L. Smith / Implementing CSP and VCR Tracing 343

a system based on causality, inspired by the notion from special relativity that there is no
single definitive ordering, and that different observers can disagree on ordering. This is the
same idea that inspired VCR’s tracing model. Lamport’s work was in distributed systems
with asynchronous communications. In this paper we have adapted the relation to a hierar-
chy of parallel processes that communicate synchronously. Our techniques do not inherently
prohibit use in a distributed system, but are primarily suited to non-distributed systems.

Unlike much work on clocks (such as vector clocks [24]) in distributed systems, we
do not attempt to synchronise time between different processes. Each process has its own
process identifier (akin to a local clock), but it is never changed by, or synchronised with,
other process identifiers. Our process identifiers reflect the process hierarchy, which bears
some resemblance to work on hierarchical vector clocks [25] that tries to have a vector clock
per level of the process hierarchy.

5. Future Work

There are several interesting avenues for future work, one of them inspired by two other
tools. PRoBE is a formal CSP tool that allows step-by-step interactive exploration of the state
space for a CSP program. At each step, one of the next possible events is chosen, and the
program proceeds to the next step. The Concurrent Haskell Debugger [26] is a tool designed
to visualise and step through Concurrent Haskell programs. It includes the capability to spec-
ulatively search ahead in the space of possible execution orderings to try to locate potential
deadlocks [27].

We believe that the ideas behind these two systems could be combined, using the ap-
proach of the Concurrent Haskell Debugger with the trace recording facilities presented here,
to provide programmers with a debugging tool that could present them with traces represent-
ing a deadlock in their program, searched for while they run the program.

We have given no consideration in this paper to the CSP notions of event hiding and
renaming. Events have been taken to be globally visible, and cannot be renamed. It would
be possible to augment the CHP API and trace recording mechanism to allow hiding and
renaming of events. For example, in CHP one could write something like the following:

(p <||> q) <\\> ["c"]

This would represent the parallel composition of processes p and q, hiding event c in the
resulting trace. This would be especially applicable to structural traces, because the hiding
mechanism would be bound into the structure of the program.

6. Conclusions

We have explained how to implement the recording of CSP, VCR and structural traces, and
have shown examples of each. We are not aware of any previous work on recording such
traces from CSP implementations, besides the work of Barnes on compiling CSP [28]. We
believe that being able to record traces is a useful tool for debugging.

One problem with recording traces that is especially apparent in our dining philosophers
and token-cell examples is that traces can be large and difficult to understand. Tools to vi-
sualise and analyse traces will definitely be required for large and long-running programs.
Process-oriented programming has always supported visual representations of its program
layouts, and we hope that this could be integrated with replaying traces.

The work described here has been on the new Communicating Haskell Processes library,
but the techniques should apply to any other CSP implementation or language. All that is
really required is process-local storage and global shared data protected by a mutex – two

344 N.C.C. Brown and M.L. Smith / Implementing CSP and VCR Tracing

easily available features in most settings. It would be interesting to compare the traces from
different implementations of the same program.

The Communicating Haskell Processes library is publicly available under a BSD-
like licence. Details on obtaining and using the library can be found at its homepage:
http://www.cs.kent.ac.uk/projects/ofa/chp/. The tracing facilities are
contained in the Control.Concurrent.CHP.Traces module.

Acknowledgements

We would like to thank our anonymous reviewers, and also Peter Welch, for their incredibly
helpful and detailed comments on this paper.

References

[1] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
[2] A.W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1997.
[3] Peter H. Welch and Fred R. M. Barnes. Communicating mobile processes: introducing occam-pi. In 25

Years of CSP, volume 3525 of Lecture Notes in Computer Science, pages 175–210. Springer Verlag, 2005.
[4] N.C.C. Brown. Communicating Haskell Processes: Composable explicit concurrency using monads. In

Communicating Process Architectures 2008, September 2008.
[5] Formal Systems (Europe) Ltd. Failures-Divergence Refinement: FDR2 Manual. 1997.
[6] Marc L. Smith, Rebecca J. Parsons, and Charles E. Hughes. View-Centric Reasoning for Linda and Tuple

Space computation. IEE Proceedings–Software, 150(2):71–84, April 2003.
[7] Marc L. Smith. Focusing on traces to link VCR and CSP. In East, Martin, Welch, Duce, and Green,

editors, Communicating Process Architectures 2004, pages 353–360. IOS Press, September 2004.
[8] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy. Composable memory transactions.

In PPoPP ’05, pages 48–60. ACM, 2005.
[9] P.H. Welch, F.R.M. Barnes, and F.A.C. Polack. Communicating complex systems. In Michael G Hinchey,

editor, Proceedings of the 11th IEEE International Conference on Engineering of Complex Computer
Systems (ICECCS-2006), pages 107–117, Stanford, California, August 2006. IEEE. ISBN: 0-7695-2530-
X.

[10] P.H. Welch. Emulating Digital Logic using Transputer Networks (Very High Parallelism = Simplicity =
Performance). International Journal of Parallel Computing, 9, January 1989. North-Holland.

[11] P.H. Welch, G.R.R. Justo, and C.J. Willcock. Higher-Level Paradigms for Deadlock-Free High-
Performance Systems. In R. Grebe, J. Hektor, S.C. Hilton, M.R. Jane, and P.H. Welch, editors, Trans-
puter Applications and Systems ’93, Proceedings of the 1993 World Transputer Congress, volume 2, pages
981–1004, Aachen, Germany, September 1993. IOS Press, Netherlands. ISBN 90-5199-140-1.

[12] J.M.R. Martin, I. East, and S. Jassim. Design Rules for Deadlock Freedom. Transputer Communications,
3(2):121–133, September 1994. John Wiley and Sons. 1070-454X.

[13] J.M.R. Martin and P.H. Welch. A Design Strategy for Deadlock-Free Concurrent Systems. Transputer
Communications, 3(4):215–232, October 1996. John Wiley and Sons. 1070-454X.

[14] A. W. Roscoe and Naiem Dathi. The pursuit of deadlock freedom. Information and Computation,
75(3):289–327, December 1987.

[15] Mark Burgin and Marc L. Smith. Compositions of concurrent processes. In F.R.M. Barnes, J.M. Ker-
ridge, and P.H. Welch, editors, Communicating Process Architectures 2006, pages 281–296. IOS Press,
September 2006.

[16] Rance Cleaveland and Scott A. Smolka. Strategic directions in concurrency research. ACM Computing
Surveys, 28(4), January 1996.

[17] C. A. Petri. Kommunikation mit automaten. Technical report, Schriften des IIm 2, Institut fur Instru-
mentelle Mathematik, Bonn, 1962.

[18] W. Reisig. Petri Nets—An Introduction, volume 4 of EATCS Monographs on Theoretical Computer Sci-
ence. Springer-Verlag, Berlin, New York, 1985.

[19] G. Kahn. The semantics of a simple language for parallel programming. In J. L. Rosenfeld, editor,
Information Processing 74, North-Holland, Amsterdam, 1974.

[20] A. Mazurkiewicz. Trace theory. In W. Brauer, W. Reisig, and G. Rozenberg, editors, Petri Nets: Appli-
cations and Relationships to Other Models of Concurrency, Advances in Petri Nets, 1986, Part II; Pro-

N.C.C. Brown and M.L. Smith / Implementing CSP and VCR Tracing 345

ceedings of an Advanced Course (Bad Honnef, Sept.), volume 255 of Lecture Notes in Computer Science,
pages 279–324, Berlin, 1987.

[21] V. R. Pratt. Modeling concurrency with partial orders. Int. J. Parallel Program., 15(1):33–71, 1986.
[22] G. Winskel. An introduction to event structures. In J. W. de Bakker, W. P. de Roever, and G. Rozenberg,

editors, REX School and Workshop on Linear Time, Branching Time and Partial Order in Logics and
Models for Concurrency, volume 354, pages 364–397, New York, 1989. Springer-Verlag.

[23] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun. ACM,
21(7):558–565, 1978.

[24] C. J. Fidge. Timestamps in message-passing systems that preserve the partial ordering. In Proceedings of
the 11th Australian Computer Science Conference (ACSC’88), pages 56–66, February 1988.

[25] D.A. Khotimsky and I.A. Zhuklinets. Hierarchical vector clock: Scalable plausible clock for detecting
causality in large distributed systems. In Proc. 2nd Int. Conf. on ATM, ICATM’99, pages 156–163, 1999.

[26] Thomas Böttcher and Frank Huch. A debugger for concurrent haskell. In Implementation of Functional
Languages 2002, pages 129–141, 2002. Draft Proceedings.

[27] Jan Christiansen and Frank Huch. Searching for deadlocks while debugging concurrent haskell programs.
SIGPLAN Not., 39(9):28–39, 2004.

[28] F.R.M. Barnes. Compiling CSP. In P.H. Welch, J. Kerridge, and F.R.M. Barnes, editors, Communicating
Process Architectures 2006, pages 377–388. IOS Press, September 2006. ISBN: 1-58603-671-8.

