Functional Programming

Olaf Chitil
University of Kent, United Kingdom

Abstract

Functional programming is a programming paradigm like object-oriented pro-
gramming and logic programming. Functional programming comprises both a spe-
cific programming style and a class of programming languages that encourage and
support this programming style. Functional programming enables the programmer
to describe an algorithm on a high-level, in terms of the problem domain, without
having to deal with machine-related details. A program is constructed from func-
tions that only map inputs to outputs, without any other effect on the program
state. Thus a function will always return the same output, regardless of when and
in which context the function is used. These functions provide clear interfaces, sep-
arate concerns and are easy to reuse. A small and simple set of highly orthogonal
language constructs assists in writing modular programs.

1 Introduction

Functional programs are written by composing expressions that can have values of any
type, including functions and large unbounded data structures. The functional program-
ming paradigm avoids the complications of imperative programming language features
such as mutable variables and statements in favour of a small set of highly orthogonal
language constructs. The simplicity of the functional computation model assists in writ-
ing modular programs, that is, programs that separate concerns, reuse code and provide
clear interfaces between modules.

A functional programming language encourages and supports the functional program-
ming style. Languages such as Haskell [1, 2] and Clean [3] are called purely functional.
Many widely used functional languages such as Lisp [4], Scheme [5, 6], ML [7, 8] and
Erlang [9] still include imperative language features that conflict with functional pro-
gramming ideals. Other languages such as APL and Python include constructs that
support functional programming but are not considered functional programming lan-
guages, because they do not strongly encourage a functional programming style. The
programming language of the Mathematica system and the XML transformation lan-
guage XSLT are functional languages. Popular spreadsheet languages such as Microsoft
Office Excel are restricted functional languages.

Like logic programming, functional programming is a declarative programming paradigm.
This paradigm comprises programming on a high level, expressing tasks directly in terms

of the problem domain, without having to deal with implementation details such as mem-
ory allocation. Nonetheless functional programming is not about specifying a problem
without knowing a constructive solution; instead functional programming allows the
programmer to describe algorithms without distraction by unnecessary, machine-related
details.

Historically functional languages have been used intensively for artificial intelligence
and symbolic computations. More generally, functional languages are often chosen for
rapid prototyping and the implementation of complex algorithms, possibly working on
complex data structures, that are hard to “get right” in other programming paradigms.

2 Characteristic Features

Functional programming is characterised by a small set of language and programming
style features.

2.1 Expressions have values — no side-effects

In imperative programming every procedure or method is defined by a sequence of state-
ments. A computation consists of sequential execution of one statement after the other;
each statement changes the global state of the computation, that is, changes the values
of variables, writes output or reads input. Such changes of a global state are called
side-effects.

In contrast, a functional program consists of a set of function definitions. Each
function is defined by an expression. Expressions are formed by applying functions
to other expressions; otherwise constants, variables and a few special forms are also
expressions. Every expression has a value. A computation consists of determining the
value of an expression, that is, evaluating it. This evaluation of an expression only
determines its value and has no side-effects. A variable represents a fixed value, not a
memory location whose content can be modified.

Unless otherwise stated, all examples in this chapter will be written in Haskell [1, 2], a
purely functional programming language. The following program defines two functions,
isBinDigit and max. Each definition consists of a line declaring the type of the function,
that is, its argument and result types, and the actual definition is given in the form of
a mathematical equation. The function isBinDigit takes a character as argument and
decides whether this character is a binary digit, that is, whether it is the character ’0’
or (operator ||) the character *1’. The function max takes two integer arguments and
returns the greater of them. In contrast to imperative languages, the conditional if
then else is an expression formed from three expressions, here x > y, x and y, not a
statement with statements after then and else.

isBinDigit :: Char -> Bool
isBinDigit x = (x == ’0’) || (x == ’1’)

max :: Integer -> Integer -> Integer

max x y = if x > y then x else y

In standard mathematics and most (also functional) programming languages the
arguments of a function are surrounded by parenthesis and separated by commas. In
Haskell, however, functions and their arguments are separated by blanks. So isBinDigit
’a’ evaluates to False and max 7 4 evaluates to 7 whereas max (7,4) is not a valid
expression. Parenthesis are needed to group subexpressions; for example, max 7 (max
4 9) evaluates to 9 whereas max 7 max 4 9 is an invalid expression. This syntax is
convenient when higher-order functions are used (Section 2.4).

2.2 Iteration through recursion

Functional programming disallows or at least discourages a modification of the value
of a variable. So how shall an iterative process be programmed? Imperative languages
use loops to describe iterations. Loops rely on mutable variables so that both the
loop condition changes its value and the desired result is accumulatively obtained. For
example the following program in the imperative language C computes the product of
all numbers from 1 to a given number n.

int factorial(int n) {
int res = 1;
while (n > 1) {
res = n * res;
n =n-1;
}

return res;

}

Functional programming implements iteration through recursion. The following func-
tional program is a direct translation of the C program. The iteration is performed by
the recursively defined function facWork, that is, the function is defined in terms of
itself, it calls itself.

factorial :: Integer -> Integer
factorial n = facWork n 1

facWork :: Integer -> Integer -> Integer
facWork n res = if n > 1 then facWork (n-1) (n*res)
else res

In every recursive call of the function facWork the two parameter variables have
new values; the value of a variable is never changed, but every function call yields a new
instance of the parameter variables. The parameter variable res is called an accumulator.
In general a parameter variable is an accumulator if in recursive calls it accumulates the
result of the function, which is finally returned by the last, non-recursive call.

The evaluation of an expression can be described as a sequence of reduction steps.
In each step a function is replaced by its defining expression, or a primitive function is
evaluated:

factorial 3

= facWork 3 1

= if 3 > 1 then facWork (3-1) (3*1) else 1
= if True then facWork (3-1) (3*1) else 1
= facWork (3-1) (1*3)

= facWork 2 (1%3)

= facWork 2 3

= if 2 > 1 then facWork (2-1) (2%3) else 3
= if True then facWork (2-1) (2%3) else 3
= facWork (2-1) (2%3)

= facWork 1 (2%3)

= facWork 1 6

= if 1 > 1 then facWork (1-1) (1*6) else 6
= if False then facWork (1-1) (1*6) else 6
6

For the same expression several different reduction step sequences exist, as Section 4
will show, but all finite sequences yield the same value.

In imperative languages programmers usually avoid recursion because of its high
performance costs, including its use of space on the runtime stack. The lack of side-
effects enables compilers for functional programming languages to easily translate simple
recursion schemes as present in facWork into code that is as efficient as that obtained
from the imperative loop.

The following is a simpler definition of the factorial function that does not use an
accumulator. It resembles the common mathematical definition of the function.

factorial :: Integer -> Integer
factorial n = if n > 1 then factorial (n-1) * n else 1

2.3 Data structures

Functional programming languages directly support unbounded data structures such as
lists and trees. Such data structures are first-class citizens, that is, they are used like
built-in primitive types such as characters and numbers. They do not require any explicit
memory allocation or indirect construction via pointers or references.

A list is a sequence of elements, for example [4,2,2,5]. It can have any length. In
statically typed languages all elements must be of the same type; [Integer] is the type
of lists whose elements are of type Integer. The function enumFromTo constructs a list:

enumFromTo :: Integer -> Integer -> [Integer]

enumFromTo m n = if m == n then []
else m : (enumFromTo (m+1) n)

The value of the expression enumFromTo 3 7 is the list of integers [3,4,5,6,7]. In
the function definition [] denotes the empty list and : is an operator that combines a
value and a list to a list, such that the value is the first element. [] and : are constants
and operators for lists similar to 0 and + for numbers.

The list is the most frequently used data structure in functional programming. Lists
can be used for representing many other data structures such as sets and bags. Lists
are also frequently used as intermediate data structures that replace and modularise
iterative processes:

factorial :: Integer -> Integer
factorial n = product (enumFromTo 1 n)

This definition expresses clearly that the factorial of n is the product of the numbers
from 1 to n. Both functions product and enumFromTo have clear meanings and are likely
to be reused elsewhere. Some optimising compilers will remove the intermediate list and
produce the same efficient code as for the imperative loop (cf. Chapter 7.6 of [2]).

In several functional languages the definition of some tree-structured data type looks
similar to a context free grammar:

= Val Bool
| And Expr Expr
| Or Expr Expr

data Expr

Expr is a new type whose values are built from the data constructors Val, And
and Or. Hence And (Val True) (Or (Val False) (Val True)) is an expression that
constructs the syntax tree of True && (False || True).

Many functional languages also provide pattern matching as a mechanism that simul-
taneously tests the top data constructor of a value and gives access to its components:

eval :: Expr -> Bool

eval (Val b) = b

eval (And el e2) = eval el && eval e2
eval (Or el e2) = eval el || eval e2

So the value of eval (And (Val True) (Or (Val False) (Val True))) is True.
Data structures as first-class citizens and pattern matching together enable clear and
succinct definitions of complex algorithms on unbounded data structures, for example
standard algorithms on balanced ordered trees [10]. Functional programming encourages
the programmer to view a large data structure as a single value instead of concentrating
on its many constituent parts.

Besides data constructors and variables, patterns may also contain values of built-in
types such as numbers. If the patterns of several defining equations overlap, then the

first matching equation defines the function result. In the next definition of the function
factorial the first equation defines the result value for the argument 0 and the second
equation defines it for all other arguments.

factorial :: Integer -> Integer
factorial O 1
factorial n = n * factorial (n-1)

Because functional languages are often used for symbolic computations, many func-
tional languages provide a large set of numeric types, including arbitrary size integers,
rationals and complex numbers, and aim for precise and efficient implementations of
basic numeric operations.

2.4 Higher-order functions

In functional programming functions are first-class citizens. The value of an expression
may be a function and functions can be passed as arguments to other functions and
returned as results from functions. A function that takes another function as argument
or that returns a function is called a higher-order function.

A standard higher-order function is the function map:

map :: (a -> b) -> [a] -> [b]

It takes a function and a list as arguments and applies the function to all list elements,
returning the list of the results. For example, the value of map even [1,2,3,4] is
[False,True,False,True]. The type variables a and b in the type of map will be
discussed in Section 3.

Even though the function map is usually defined recursively and hence iteratively
consumes its argument list and produces its result list, the programmer can view a
higher-order function such as map as processing a whole large data structure in a single
step.

Many traditional imperative programming languages such as C also allow passing
functions as arguments and results, and hence the definition of a higher-order function
such as map, but the definition of new functions through composing existing functions is
rather limited. For example, such limitations make it impossible to define the function
scale by composing the existing functions map and * (or a multiplication function; in
C operators are different from functions). Here the function scale shall take a list of
numbers (e.g. prices) and multiply all of them by the same given factor; for example,
scale 1.25 [2,0,4] yields [2.5,0,5]. The difficulty in defining the function scale in
terms of map and * lies in that the function to be mapped over the list is not *, which
requires two arguments, but a function that takes only one argument and multiplies it
with the given factor. A functional language provide at least one of two ways of solving
this task:

scale :: Float -> [Float] -> [Float]

scale factor prices = map scaleOne prices
where
scaleOne :: Float -> Float
scaleOne p = factor * p

The preceding, first solution defines a function scaleOne locally, so that the local
definition can use the variable factor, because it is in scope. The second definition
below builds the function that is to be mapped over the list by partially applying the
function * to one argument. So (*) factor is an expression denoting the function that
takes one argument and multiplies it with factor.

scale :: Float -> [Float] -> [Float]
scale factor prices = map ((x) factor) prices

For functional programming not just the presence of higher-order functions, but
also the language support for composing arbitrary functions to generate an unbounded
number of functions at execution time are essential.

Many higher-order functions are included in the definitions of functional languages
or their standard libraries. For lists, besides the function map, the function foldr (or
reduce) is the most commonly used higher-order function. This function combines all
list elements with a given binary function, using a given constant for processing the
empty list:

product :: [Integer] -> Integer
product xs = foldr (%) 1 xs

So

product [3,2,4]
3x (2 % (4% 1))
= 24

Although our examples only show higher-order functions that take simple (first-order)
functions as arguments, functions that take functions as arguments which take functions
as arguments and so forth are used frequently [11].

2.5 Point-free programming

There exists a shorter definition of the function product as the functional value of the
expression foldr (%) 1:

product :: [Integer] -> Integer
product = foldr () 1

The factorial function can also be defined using the function composition operator

(.):

factorial :: Integer -> Integer
factorial = product . (enumFromTo 1)

Expressions or function definitions without argument variables are called point-free.
Often they are shorter and simplify program transformation, but they can be harder
to understand and to modify. Most functional programs are written in a mixture of
point-free and “point-full” style.

2.6 Embedded Domain Specific Languages

Identifying the right abstractions is a key component of designing a program. In func-
tional programming the reuse of existing, mostly higher-order functions or, especially for
new data structures and problem domains, the identification of new higher-order func-
tions is central. Several functional programming languages such as Lisp [4] and Scheme
[5, 6] also provide an elaborate macro mechanism for extending the language by new
constructs. Thus the design of a solution to a problem and especially the design of a
general library for a problem domain often leads to the design of an embedded domain
specific language. This is is a collection of higher-order functions or new language con-
structs that together substantially simplify programming solutions in a given domain.
The embedded language hides domain specific algorithms and data structures behind an
easy to use interface.

As a simple example for an embedded domain specific language the following inter-
face outlines an embedding of propositional logic. The implementation of the type of
propositional formulae, Formula, is hidden.

true :: Formula

false :: Formula

variable :: String —-> Formula

(/\) :: Formula -> Formula -> Formula
(\/) :: Formula -> Formula -> Formula
negate :: Formula -> Formula
satisfiable :: Formula -> Bool

tautology :: Formula -> Bool

Logical formulae can be constructed and checked for whether they are satisfiable
or even tautologies. For example, tautology (negate (variable "a") \/ variable
"a") yields True.

More complex are the widely studied and used embedded domain specific languages
for describing parsers through context-free grammars. The following example is a simple
parser for fully bracketed Boolean expressions, using Swierstra’s parser interface [12].

pExpr :: Parser Expr
pExpr = Val True <$ pStr "True"

<|> Val False <$ pStr "False"
<|> And <$ pSym ’(’ <*> pExpr <* pStr "&&" <*> pExpr <+ pSym ’)’
<|> Or <$ pSym ’(° <*> pExpr <* pStr "||" <x> pExpr <* pSym ’)’

pStr :: String -> Parser ()
pStr [] = pSucceed ()
pStr (x:xs) = () <$ pSym x <* pStr xs

The definition of the parser pExpr looks like a context-free grammar. The operator
<|> combines alternative parsers. The operators <*> and <* concatenate two parsers.
Only <$ does not relate to a construct of a context-free grammar; it turns a function
for constructing the desired result into a parser and concatenates it with another parser.
All operators associate to the left. For the operators <* and <$ only the left argument
yields the parser’s result, whereas for the operator <*> both arguments contribute to the
parser’s result. The function pStr constructs a parser that accepts the given string, re-
turning a required but superfluous empty tuple (). Parsing " (True&&(Falsel| | True))"
with the parser pExpr will yield And (Val True) (Or (Val False) (Val True)).

Simple implementations use backtracking and define the parser type as a function
that maps the input string to a list of possible parse results and remaining input:

data Parser a = P (String -> [(a,String)])

Here a is a type variable as will be discussed in Section 3. More efficient parser imple-
mentations use more sophisticated parser representations [13].

An embedding of the logical language Prolog in Haskell is described in [14]. Pretty
printing, graphics, simulation and music composition are further domain examples [15].

There is no clear boundary between an abstract data type and an embedded domain
specific language, but the later gives the programmer the illusion of a new programming
language for a specific domain. An embedded domain specific language strives to hide
some features of the host language, give domain specific compiler errors and enable
domain specific debugging.

2.7 Program Algebra

Because in pure functional programming evaluation of an expression only determines its
value but does not cause any side-effects, functional programs have a rich algebra. For
example the law

map f . map ¢ = map (f . ¢)

holds for any expressions f and g (whose values must be functions). If the functions
f and g modified a common variable, this equation would be unlikely to hold. Hence
in imperative programming languages hardly any non-trivial semantic equalities hold.
The term referentially transparent is often used synonymously with side-effect free in
functional programming. By definition a language is referentially transparent if a subex-
pression can be replaced by an equal subexpression without changing the meaning of

the whole expression or program. This, however, is just the definition of what it means
for two subexpressions to be equal. Relevant and useful is that many equations with
arbitrary unknown subexpressions hold, that is, the equational algebra is rich.

Standard higher-order functions such as map and foldr come with well-known laws.
In a new problem domain functional programmers strive for identifying functions with
rich algebraic properties. Such functions are highly versatile and thus reusable.

Program algebra has already been used to describe the evaluation of factorial 3 as
a sequence of single reduction steps. So evaluation can be described within the language,
without any reference to, for example, the memory locations of a computer.

Functional programming cultivates a school of program development by algebraic
derivation. The programmer starts with a set of desired properties expressed as equa-
tions or a highly inefficient implementation. These are then transformed step by step
using equational reasoning until an efficient implementation is obtained. Only using pro-
gram algebra guarantees that specification and implementation are semantically equal.
Reaching an efficient implementation is not automatic but requires the ingenuity of the
programmer. However, many strategies and heuristics for deriving programs have been
developed [2, 16].

Compilers for functional programming languages use program algebra for optimisa-
tions. For example, standard evaluation of map (f . g) is more efficient than the eval-
uation of map f . map g, because the later produces an intermediate list. A compiler
optimisation may hence replace the latter by the former expression. Compilers usually
perform a large number of very simple transformations, but altogether they may change
a program substantially [17]. In contrast, optimising compilers for imperative languages
require sophisticated analyses to detect side-effects that invalidate most optimisations.

Algebraic laws also prove to be useful for testing. A law such as

reverse (reverse xs) = IS

is a partial specification of the function reverse, which returns a list with all elements
in reverse order. A correct implementation of reverse should meet this property for all
finite lists xs. A simple tool can automatically test the law for a large number of lists
[18].

In a language without side-effects, program components can be tested separately and
test cases can be set up more easily. Equational properties are both documentation and
expressive test cases. They encourage the programmer to identify functions that meet
non-trivial equational properties.

3 Types

Functional programming languages support both avoidance and localisation of program
faults by having strong type systems. The type systems guarantee that all execution
errors such as the application of a function to unsuitable arguments are trapped before
they occur. There exist both functional languages with dynamic type systems (e.g. Lisp,
Erlang) that provide flexibility by performing all type checks at run-time and that often

10

do not include a fixed syntax for types, and functional languages with static type systems
(e.g. ML, Haskell).

Most static type systems of functional languages are based on the Hindley-Milner
type system [19]. This type system is flexible in that it allows (parametrically) polymor-
phic functions and data structures. That is, a function may take arguments of arbitrary
type if its definition does not depend on that type. For example, the function reverse
that takes a list and returns a list of all elements in reversed order has the type [a] ->
[a]. Here a is a type variable that represents an arbitrary type. The function reverse
can be applied to a list with elements of any type. The re-occurrence of a in the type
of the result states clearly that the elements of the result list are of the same arbitrary
type as the elements of the argument list. A more complex type is that of map given
before in Section 2.4:

map :: (a => b) -> [a] -> [b]

The repeated occurrences of the type variables a and b clearly state that (a) the type
of the argument list elements has to agree with the argument type of the function, (b)
the result type of the function has to agree with the type of the result list elements, but
these two types can be different, as in the case of map even [1,2,3,4] evaluating to
[False,True,False,True].

Another feature of the Hindley-Milner type system is that types can be inferred
automatically. Hence type declarations such as

reverse :: [a] -> [a]

are optional and many programmers only add them when program development has
stabilised after an initial phase of rapid prototyping.

Several functional languages extend the Hindley-Milner type system substantially.
ML [7] is renowned for its expressive module system. Types describe the interfaces of
modules, how modules can be combined and how abstract data types can be defined.
The Haskell [1, 2] class system uses classes, which are similar to types and remind of
the object-oriented paradigm, to describe interfaces of smaller pieces of code (e.g. a
few functions that express an ordering) than modules and to enable their combination
with little syntactic overhead. OCaml [20, 8] has a subtyping relationship between its
class types to enable object-oriented programming. Clean [3] annotates standard types
with uniqueness information to express that certain values are used only in a single-
threaded way, which enables a form of purely function input/output (see Section 5) and
compilation to more efficient code. Clean also supports generic, also called polytypic
programming. Polytypic language features enable the programmer to define a function
by induction on the structure of values of types. Like a parametrically polymorphic
function such a function works on all types, but its definition depends on the structure
of the values. Example applications are pretty printers, parsers and equality functions.

Further extensions of type systems in many other directions are a major topic of
research. A type describes a property of an expression or a piece of code. Types can
describe non-standard properties such as how much time or space evaluation of the

11

expression will cost (mainly for applications in embedded systems), or whether evaluation
of the expression may raise an exception or cause a side effect. Type inference is then
a form of automatic program analysis [21]. Dependent type systems allow types to be
parameterised not just by other types but also by values. For example, such a type
system can express that a vector addition function takes two vectors of any size and
returns a vector, but the sizes of all these vectors have to be the same. Dependent
type systems realise the Curry-Howard isomorphism which states that types are logical
formulae and the typed expressions are proofs of the formulae. Thus a program and
proofs of its properties can be written within the same advanced programming language.
The type systems of current functional programming languages already allow a limited
amount of dependent typing, usually based on non-trivial encodings of values in types.
The development of functional languages with dependent type systems that are easy
to use is a long-standing research topic [22]. In general most research on type systems
concentrates on functional programming languages with their simple and well-defined
semantics [23].

4 Non-Strict vs. Strict Semantics

A function is strict, if its result is undefined (error or evaluation does not terminate)
whenever any of its arguments is undefined. Like imperative languages many functional
programming languages (e.g. Lisp, ML, Erlang) have a strict semantics, that is, allow
only the definition of strict functions. This follows directly from their eager evaluation
order: in a function application first the arguments are fully evaluated and then the
function is applied to the argument values.

In contrast, languages with a non-strict semantics (e.g. Haskell, Clean) allow the
definition of non-strict functions and infinite data structures. A function enumFrom
yields an infinitely long list and is used in the definition of the infinite list of factorial
numbers, factorials. The factorial function then just takes the n-th element of this
list (list index numbers start at 0):

enumFrom :: Integer -> [Integer]
enumFrom n = n : enumFrom (n+1)

factorials :: [Integer]
factorials = 1 : (zipWith (%) factorials (enumFrom 1))

factorial :: Integer -> Integer
factorial n = genericlndex factorials n

The expression zipWith (*) takes two lists and combines their elements pairwise by
multiplication (*). The idea underlying the recursive definition of the list of factorial

12

numbers is expressed by the following table:

factorials = 1 1 2 6 24 120
* % % * *
enumFrom 1 = 1 2 3 4 5 6
| | | I |

factorials = 1 1 2 6 24 120 720

Even though semantically several infinite lists are defined, the evaluation of a factorial
number is finite:

factorial 3

= genericIndex factorials 3

= genericIndex (1: (zipWith (%) (1:...) (enumFrom 1))) 3

= genericIndex (1: (zipWith (*) (1:...) (1: (enumFrom (1+1))))) 3

= genericIndex (1: (1%1) : (zipWith (%) ... (enumFrom (1+1)))) 3

= genericIndex (1: (1x1) : (zipWith (¥) ((1*1) :...) ((1+1) : (enumFrom ((1+1)+1))))) 3
= genericIndex (1: (1*1) : ((1*1)*(1+1)) : (zipWith (*) ... (enumFrom ((1+1)+1)))) 3
= genericIndex (1:1: (1x(1+1)) : (zipWith (%) ... (enumFrom ((1+1)+1)))) 3

= genericIndex (1:1: (1%2): (zipWith (*) ... (enumFrom (2+1)))) 3

= genericIndex (1:1:2: (zipWith (%) ... (enumFrom (2+1)))) 3

= genericIndex (1:1:2: (zipWith (*) (2:...) ((2+1) : (enumFrom ((2+1)+1))))) 3

= genericIndex (1:1:2: (2%(2+1)) : (zipWith (%) (...) (enumFrom ((2+1)+1)))) 3

= 2% (2+1)

= 2%3

=6

Implementations of non-strict functional languages usually use lazy evaluation, pass-
ing arguments in unevaluated form to functions but avoiding duplicated evaluation
through sharing of unevaluated expressions. Non-strict semantics enables modular solu-
tions to many programming problems [24]. Recursive definitions of constants are impor-
tant for defining parsers [12]. The programmer can also define new control structures
like if then else, which is non-strict in the two last arguments in all programming
languages:

isPositive :: Integer -> a -> a -> a
isPositive n yes no = if n > O then yes else no

factorial :: Integer -> Integer
factorial n = isPositive n (n * factorial (n-1)) 1

Non-strict languages have a simpler program algebra than strict languages, because
in the latter many equations do not hold for expressions with undefined values. However,
the time and especially the space behaviour of non-strict functional programs is much
harder to predict than that of strict ones.

13

5 Necessary Side-Effects

Functional programming aims to minimise or eliminate side-effects. However, an exe-
cuting program usually does not just transform an input into an output but also has to
communicate with users, other processes, the file system etc.; in short, it has to perform
I/O. Many functional languages such as Lisp and ML use simple side-effecting functions
for I/0, but some languages use I/O models that perform the side-effects required by
I/0O such that the program algebra remains unaffected, as if no side-effects were present.

Non-strict languages such as Miranda [25] and early versions of Haskell use the lazy
stream model. The program transforms a list of input events into a list of output events.
The non-strict semantics ensures that part of the output list can already be produced
after processing only part of the input list and hence earlier output events can influence
later input events [26]. Using this I/O model strengthens the intuition for non-strict
semantics. All other I/O models work for both strict and non-strict languages.

The uniqueness model is used in Clean [3]. This model is based on the idea that there
exists a special token, the world value, which every I/O function requires as an argument
and returns as part of its result. The world value can be used only in a single-threaded
way, that is, the world value cannot be duplicated or an old value be used twice. A
uniqueness type system ensures single-threaded use of the world value (cf. Section 3).

Early versions of Haskell also used the continuation model [26]. The idea of the
continuation model is that a function that performs I/O never returns; instead it takes an
additional argument, the continuation function, and after performing the side-effecting
I/0 operation calls this continuation function, passing any result of the I/O operation as
argument to the continuation function. In general a program written such that functions
do not return but instead pass their results to other functions is said to be in continuation
passing style. Continuation passing style enables the programmer to tightly control the
evaluation order [27] and thus ensure the required sequential execution of I/O operations.

Later versions of Haskell use the monad model. The monad model is similar to
the continuation model but allows easier composition of 1/O computations. Every 1/O
operation returns an element of the abstract monad type and monadic values can only be
composed by a sequence operator, thus enforcing the sequential order of 1/O operations
The following Haskell I/O operation reads characters from standard input until the
newline character is read and returns the list of read characters.

readLine :: I0 [Char]
readlLine = do
c <- getChar
if ¢ == ’\n’
then return []
else do
rest <- readLine
return (c:rest)

I0 is the monad and the type of readline is I0 [Char] because this operation
returns a list of characters, just as the type of getChar is I0 Char. The do construct is

14

syntactic sugar that makes monadic programs look very similar to imperative ones. The
keyword do is followed by a number of I/O operations, all of monadic I0 type, which
are executed sequentially. The <- notation gives access to normal values computed by
monadic operations.

In general monads are useful for embedding various operations that must be executed
in a specific order. For example, they can be used to add mutable references to a pure
functional language or to implement backtracking as used by many parser libraries [28].

The algebra for monadic expressions is more complex and, for arbitrary monads,
more limited compared to non-monadic expressions; by definition the compositionality
of monadic code is restricted.

Programmers use side-effects also for other purposes than I/O. Many well-known algo-
rithms rely on the modification of data structures to achieve their efficiency, especially
those that transform graph-structured data. In principle a mutable memory can be
simulated by a balanced tree in a functional program with a logarithmic loss of time
complexity. Nicholas Pippenger showed [29] that there are problems that can be solved
in linear time in an imperative language but that can be solved in a strict eagerly evalu-
ated functional programming language only with a logarithmic slowdown. However, this
theoretical argument does not apply to non-strict languages using lazy evaluation [30].

In practice many efficient purely functional algorithms exist [10]. Arrays are most
efficiently processed by operations that construct whole new arrays from existing ones
instead of emphasising individual elements [26]. Finally mutable references can be em-
bedded into pure functional languages using monads, but most functional programmers
prefer to use the expressibility of functional programming to develop new algorithms or
tackle problems that are too complex for imperative languages.

6 Implementation Techniques

In contrast to imperative languages functional languages are not based on standard com-
puter architecture and hence many different implementation models have been explored.
Backus [31] suggested that functional languages could inspire new computer architectures
and during the 1970s specially designed computers for running Lisp, Lisp machines, were
popular. However, Backus also noted that only when functional languages “have proved
their superiority over conventional languages will we have the economic basis to develop
the new kind of computer that can best implement them”. The speed of mass produced
processors grew far faster than that of specially designed hardware. Backus still saw
the efficient and correct implementation of the lambda calculus as a major obstacle [31]
and graph reduction machines reducing combinators (top-level functions) were devised
to circumvent this problem. Nowadays the compilation of functional programs into code
on standard hardware that is comparable in speed to that of imperative programs is
well understood and, although there exist many variations, compilation is surprisingly
similar to compilation of imperative languages [32, 33]. The two main additional issues
are: First, a functional language allocates most data objects on the heap and has to use

15

a garbage collector [34], because the lifetimes of data objects are not determined by the
program structure. Second, to implement functions as first class citizens they have to
be represented as closures. The standard representation of a closure is a pointer to the
function code plus an environment, a data structure that maps variables to their values.

Additionally implementations of non-strict functional languages have to pass uneval-
uated expressions as arguments; these are represented as thunks that can be implemented
identically to closures. Strictness analysis is used to reduce the number of unnecessary
and costly thunks. Compiler optimisations mostly work on the level of the functional
language, using the rich program algebra for program transformations (cf. Section 2.7).
The implementation model of a functional language is usually described by an abstract
machine. The first and best known, but not the most simple or most efficient, is Peter
Landin’s SECD machine.

Pure functional languages lend themselves naturally to parallel evaluation. In prin-
ciple all arguments of a function could be evaluated in parallel. Hence especially the
1980s saw substantial research into parallel implementations of functional languages.
The main problem proved to be that the implicit parallelism of functional languages is
of fine granularity and hence process creation and communication overheads are high.

7 Theoretical Foundations

The main theoretical foundation of functional programming is the lambda calculus [23,
35] which was developed by Alonzo Church in the 1930s, not as a programming language
but as a small mathematical calculus for describing the operational behaviour of math-
ematical functions. The syntax of the lambda calculus consists of only three different
kinds of expressions: variables, applications and abstractions. An abstraction, written
Az.e, where z is a variable and e an expression, denotes a function with parameter
variable x and body e. An application (e e2) applies a function e; to its argument es.
To evaluate expressions only a single reduction rule called G-reduction is needed:

(Ax.er)ea — eqlex/x]

All occurrences of the parameter variable x in the function body e; are replaced by the
argument es. [-reduction can be applied anywhere in an expression. Evaluation is a
sequence of (B-reduction steps:

Az.2)(A\y.y)(Az.2)) = Az.x)(Az.2) — (A2.2)

Usually there are many ways to evaluate an expression. An alternative to the previous
one is

(Az.x)(Ay.y)(Az.2)) = (Ay.y)(Az.2) — (Az.2)

An important property of the lambda calculus is its confluence, which ensures that
all evaluation sequences for an expression that terminate will yield the same final value.

16

The restriction of the lambda calculus to functions with one argument is not a limi-
tation, because the result of an application can be another function that is then applied
to its argument. For example, in ((ej e2) e3) the expression e; can be viewed as a func-
tion that takes two arguments, namely es and e3. The function e; is said to be curried.
We usually write (ej e2 e3). Many functional languages have adopted this notation for
function application instead of the more familiar ej(eq, €3).

The power of the lambda calculus stems from the fact that functions can be applied
to themselves. This allows functions that are usually defined recursively to be defined in
a non-recursive form. Hence the lambda calculus is Turing-complete even without having
a recursion construct. However, nearly all functional programming languages include ex-
plicit recursion for convenience. There exist many typed variants of the lambda calculus;
without an additional recursion construct most of them are strongly normalising, that
is, the evaluation of any expressions terminates, and thus they are not Turing-complete
but can still be very expressive.

All data structures such as natural numbers, Booleans and lists can be represented
in the lambda calculus via their Church-encodings. For most practical purposes these
Church-encodings are too inefficient, but they prove that built-in data structures are not
strictly required.

The lambda calculus forms the core of most functional programming languages and
thus also provides the foundation for their semantics and implementation. The theory
of term rewriting systems [36] provides a similar foundation. A term rewriting system
is basically a functional program, but most of the theory of term rewriting systems does
not cover higher-order functions.

Besides the operational semantics given by sequences of reduction steps, functional
programs also have useful denotational semantics [37]. First, denotational semantics
associates every type with a set, the set of values of this type. For example, the set of type
Int is the set of integers and the set of type Int -> Int is a set of functions that take
an integer and return an integer. Second, each expression is interpreted as an element
of the set of values of its type. This interpretation is defined by a simple induction on
the structure of the expression. For example, from knowing that the semantic value of a
function identifier add is the addition function and knowing the values of the expressions
3 and 4 we conclude that the expression add 3 4 has the value 7, without any reduction
sequence expanding the definition of add. Thus denotational semantics is compositional
and also less dependent on the syntax of the programming language than operational
semantics. Denotational semantics proved particularly useful as foundation for numerous
static program analysis methods [21].

8 Combinations with Other Programming Paradigms

Most functional programming languages are impure and thus include an imperative pro-
grammang language. Input and output are realised by side-effects and the values of
variables can be modified. In some languages such as ML [7] and Caml [8] mutable
variables have different types from non-mutable ones. So these languages enable and

17

encourage the functional programming style but do not require it.

The object-oriented programming paradigm comprises a number of features which can
be combined with a functional programming language in various ways. OCaml [20] and
some Lisp dialects provide features as they are familiar to object-oriented programmers.
Most functional programming languages achieve the modularity and code-reuse aimed
for by object-oriented programming by related but different means, often through their
flexible module and type systems.

Both functional and logic programming languages are declarative, that is, they ab-
stract from many implementation details and concentrate on describing the problem.
Several functional logic research languages combine both paradigms, Mercury [38] aug-
ments logic programming by functional programming and Curry [39] augments a Haskell-
like functional language by logic programming features.

Several extensions of standard functional programming languages with constructs
for concurrent programming exist. Erlang [9] was designed from the start as a concur-
rent functional programming language where any non-trivial program defines numerous
processes. Processes do not share data but communicate via message passing. Process
creation and communication are the only side-effects in the language. Limitation of side-
effects simplifies the language and enables an Erlang system to provide code updating
at runtime.

9 A Brief History of Functional Languages

Lisp [4] was the first functional programming language and is one of the oldest program-
ming languages still in use. John McCarthy started developing Lisp in the late 1950s as
an algebraic list-processing language for artificial intelligence research. A central feature
of Lisp is the construction of dynamic lists from simple cons cells and the use of a garbage
collector for reclaiming unused cells. Lisp provides many higher-order functions over lists
and further higher-order functions can easily be defined. Lisp is not a pure functional
language: list structures can be modified and already defining a function is implemented
through side-effects. Lisp has a very simple prefix syntax that represents both program
and data alike. Thus Lisp programs require numerous parentheses, but it is very simple
to extend the language within itself. The development of Lisp and Lisp applications
thrive on this easy extensibility. Although Lisp adopted the lambda abstraction for
defining functions from the lambda calculus, otherwise it was originally little influenced
by the lambda calculus. Hence most Lisp dialects still use dynamic binding, where the
scope of local identifiers is based on the call structure of the program, instead of static
binding, where local identifiers are bound by their enclosing definitions in the program
text. Scheme is a small modern dialect of Lisp (with static binding) that has become
particularly popular in teaching functional and imperative programming concepts [5, 6].
The following definition in Scheme demonstrates its simple syntax:

(define (factorial n) (if (> n 1) (* (factorial (- n 1)) n) 1))

18

One of the most cited papers on functional programming is John Backus’ 1977 Turing
Award lecture [31]. Backus’ arguments have particular authority, because he received
the Turing Award for his pioneering work on developing Fortran and significant influ-
ence on Algol. Backus criticises existing imperative programming languages as being
too tightly bound to the conventional von Neumann machine architecture. The assign-
ment statement directly reflects memory access in the von Neumann architecture. Thus
programming is dominated by a word-at-a-time sequential programming style instead of
thinking in terms of larger conceptual units. Furthermore, Backus attacked the “division
of programming into a world of expressions and a world of statements, their inability to
effectively use powerful combining forms for building new programs from existing ones,
and their lack of useful mathematical properties for reasoning about programs”. Backus
argues that an algebra of programs is far more useful than the logics designed for rea-
soning about imperative programs. Backus identifies two main problems of functional
languages existing at that time: First, the substitution operation required for implement-
ing the lambda calculus was difficult to efficiently implement; therefore his language FP
is completely point-free, defining new functions by combining existing ones. Second,
functional languages are not history sensitive, they cannot easily store data beyond the
runtime of a single program; hence he defines a traditional state transition system on
top of his functional FP system.

The language ML was originally developed at the end of the 1970s as command
language for a theorem prover but soon developed into a popular stand-alone language.
It’s main new feature is it’s advanced static type system, based on the Hindley-Milner
type system, and an expressive system for defining and combining modules. ML is not
pure because its I/O system is based on side-effects, but modification of variables is
limited to the use of separate reference types. Besides Standard ML [7] the Caml dialect
[8] is used widely. The following definition of the factorial function in Standard ML
leaves it to the system to infer the function type:

fun factorial x = if x = 0 then 1 else x * factorial (x-1)

In the 1970s and 1980s David Turner developed a series of influential functional lan-
guages, SASL [40], KRC [41] and Miranda [25], which in contrast to previous languages
have purely non-strict semantics. Similar to ML a program is a system of equations
but the syntax is even closer to common mathematical notation. Miranda also uses the
Hindley-Milner type system. Miranda is purely functional, the 1/O system uses lazily
evaluated lists. In the late 1980s and early 1990s Miranda was widely used in university
teaching.

In the late 1970s and the 1980s a large number of similar non-strict purely functional
languages appeared and hence at the end of the 1980s a committee was formed to define
a common language: Haskell. Its main novelties are the class system that extends
its Hindley-Milner type system and in later revisions the use of a monad to support
purely functional I/O. Haskell is widely used in teaching and its application outside
the academic community is growing [1, 2]. The purely functional language Clean [3] is
similar to Haskell but has a uniqueness type system to enable purely functional I/O and
generation of efficient code.

19

In the late 1980s Ericsson started the development of Erlang, a concurrent func-
tional programming language [9]. Erlang was designed to support the development of
distributed, fault-tolerant, soft-real-time systems.

The proceedings of the three ACM SIGPLAN conference on History of programming
languages (HOPL I,ILIII) give historic details about many functional programming lan-
guages.

10 Summary

Functional programs are built from simple but expressive expressions. User-defined un-
bound data structures substantially simplify most symbolic applications. Features such
as higher-order functions and the lack of side-effects support writing and composing
reusable program components. Program components cannot interact via hidden side-
effects but only via their visible interface. Thus all aspects of program development from
rapid prototyping, testing and debugging to program derivation and verification are sim-
plified. Ideas developed within functional programming, such as garbage collection and
several type system features, have been adopted by many other programming languages.
Several modern compilers produce efficient code. The abstraction from machine details
allows short and elegant formulation of algorithms. The regular Programming Pearls in
the Journal of Functional Programming [42] provide numerous small examples. Writing
solutions that are both elegant and efficient for applications that perform substantial
I/0 or transform graph-structured data is still a challenge.

References

[1] Simon Thompson. Haskell: The Craft of Functional Programming. Addison-Wesley,
1999.

[2] Richard Bird. Introduction to Functional Programming using Haskell. Prentice Hall,
1998.

[3] Rinus Plasmeijer and Marko van Eekelen. The Concurrent Clean language report,
version 2.0. http://www.cs.kun.nl/"clean, 2001.

[4] Guy L. Steele. Common Lisp the Language, 2nd edition. Digital Press, 1990.

[5] Harold Abelson and Gerald Jay Sussman. Structure and Interpretation of Computer
Programs. The MIT Press, 1996.

[6] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishna-
murthi. How to Design Programs: An Introduction to Programming and Computing.
The MIT Press, 2001.

[7] Larry C Paulson. ML for the Working Programmer. Cambridge University Press,
1996.

20

8]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

21]

[22]

[23]

Guy Cousineau and Michel Mauny. The Functional Approach to Programming.
Cambridge University Press, 1998.

Joe Armstrong. Programming Erlang, Software for a Concurrent World. Pragmatic
Bookshelf, 2007.

Chris Okasaki. Purely Functional Data Structures. Cambridge University Press,
1998.

Chris Okasaki. Functional pearl: Even higher-order functions for parsing or Why
would anyone ever want to use a sixth-order function? Journal of Functional
Programming, 8(2):195-199, 1998.

Doaitse Swierstra. Combinator parsers: From toys to tools. In G. Hutton, editor,
Haskell Workshop 2000, Electronic Notes in Theoretical Computer Science, volume
41. Elsevier Science Publishers, 2001.

John Hughes and Doaitse Swierstra. Polish parsers, step by step. In ICFP ’03:
Proceedings of the eighth ACM SIGPLAN international conference on Functional
programming, pages 239-248, New York, NY, USA, 2003. ACM Press.

J. Spivey and S. Seres. Embedding Prolog in Haskell. in Proceedings of Haskell’99
(E. Meier, ed.), Technical Report UU CS 1999-28, Department of Computer Science,
University of Utrecht., 1999.

Paul Hudak. Building domain-specific embedded languages. ACM Computing Sur-
vey, 28(4es), 1996.

John Hughes. The design of a pretty-printing library. In J. Jeuring and E. Meijer,
editors, Advanced Functional Programming, LNCS 925. Springer Verlag, 1995.

Simon L. Peyton Jones and André L. M. Santos. A transformation-based optimiser
for Haskell. Science of Computer Programming, 32(1-3):3-47, September 1998.

Koen Claessen and John Hughes. QuickCheck: a lightweight tool for random testing
of Haskell programs. ACM SIGPLAN Notices, 35(9):268-279, 2000.

John C Mitchell. Foundations for Programming Languages. The MIT Press, 1996.

Xavier Leroy et al. The Objective Caml system, documentation and user’s manual.
http://caml.inria.fr, 2007.

Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program
Analysis. Springer, 1999.

Thorsten Altenkirch, Conor McBride, and James McKinna. Why dependent types
matter. http://www.cs.nott.ac.uk/ txa/publ/ydtm.pdf, April 2005.

Benjamin C Pierce. Types and Programming Languages. The MIT Press, 2002.

21

[24]

[25]

[26]

[27]

[28]

[30]

[31]

[32]

[33]

John Hughes. Why Functional Programming Matters. Computer Journal, 32(2):98—
107, 1989.

David A Turner. An overview of Miranda. SIGPLAN Notices, 21(12):158-166,
1986.

Paul Hudak. Conception, evolution, and application of functional programming
languages. ACM Computing Surveys, 21(3):359-411, 1989.

John C. Reynolds. Definitional interpreters for higher-order programming lan-
guages. Higher Order Symbol. Comput., 11(4):363-397, 1998. Originally appeared
in: Conference Record of the 25th National ACM Conference, 1972.

Philip Wadler. Monads for functional programming. In M. Broy, editor, Pro-
gram Design Calculi: Proceedings of the 1992 Marktoberdorf International Summer
School. Springer-Verlag, 1993.

Nicholas Pippenger. Pure versus impure Lisp. ACM Trans. Program. Lang. Syst.,
19(2):223-238, 1997.

Richard Bird, Geraint Jones, and Oege De Moor. More haste, less speed: lazy
versus eager evaluation. J. Funct. Program., 7(5):541-547, 1997.

John Backus. Can programming be liberated from the von Neumann style? A
functional style and its algebra of programs. Commun. ACM, 21(8):613-641, 1978.

Dick Grune, Henri E Bal, Ceriel J H Jacobs, and Koen G Langendoen. Modern
Compiler Design. John Wiley & Sons, Ltd., 2000.

Simon L. Peyton Jones. The Implementation of Functional Programming Languages.
Prentice-Hall, 1987.

Richard Jones. Garbage Collection: Algorithms for automatic dynamic memory
management. John Wiley & Sons, 1999.

J. Roger Hindley and Jonathan P. Seldin. Lambda-Calculus and Combinators: An
Introduction. Cambridge University Press, 2008.

Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge Uni-
versity Press, 1998.

Glynn Winskel. The Formal Semantics of Programming Languages: An Introduc-
tion. Foundations of Computing series. MIT Press, February 1993.

Fergus Henderson, Thomas Conway, Zoltan Somogyi, et al. The Mercury project.
http://www.mercury.csse.unimelb.edu.au/

Michael Hanus et al. Curry: A truly integrated functional logic language.
http://www.informatik.uni-kiel.de/ curry

22

[40] David A. Turner. SASL language manual. Technical report, St. Andrews University,
Department of Computational Science Technical Report, 1976.

[41] David A. Turner. The semantic elegance of applicative languages. In FPCA ’81:
Proceedings of the 1981 conference on Functional programming languages and com-
puter architecture, pages 85-92, New York, NY, USA, 1981. ACM.

[42] Journal of functional programming. Cambridge University Press.

23

