
Testing-framework-aware Refactoring

Huiqing Li
School of Computing, University of Kent, UK

H.Li@kent.ac.uk

Simon Thompson
School of Computing, University of Kent, UK

S.J.Thompson@kent.ac.uk

Abstract
Testing is the predominant way of establishing evidence that
a program meets it requirements. When both test code and
the application under test are written in the same program-
ming language, a refactoring tool for this language should
be able to refactor both application code and testing code
together. However, testing frameworks normally come with
particular programming idioms, such as their use of naming
conventions, coding patterns, meta-programming techniques
and the like. A refactoring tool needs to be aware of those
programming idioms in order to refactor test code properly.
Meanwhile the particularities of test code also suggest refac-
torings that are particularly applicable to test code.

In this paper we present our experience of extending
Wrangler, a refactoring tool for the Erlang programming lan-
guage, so as to handle the three common testing frameworks
for Erlang, as well as discussing the refactoring of test code
in its own right.

Categories and Subject Descriptors D.2.3 [SOFTWARE
ENGINEERING]: Coding Tools and Techniques; D.2.6 []:
Programming Environments; D.2.7 []: Distribution, Main-
tenance, and Enhancement; D.3.2 [PROGRAMMING LAN-
GUAGES]: Language Classifications—Applicative (func-
tional) languages; Concurrent, distributed, and parallel lan-
guages; D.3.4 []: Processors

General Terms Languages, Design

Keywords Erlang, refactoring, testing, Wrangler, program
analysis, program transformation, testing framework.

1. Introduction
While it is not possible to prove that a program is correct
by testing, this is still the predominant way of establishing
evidence that a program meets its requirements. Various

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
3rd Workshop on Refactoring Tools ’09 Oct. 26, 2009, Orlando, FL
Copyright c© 2009 ACM 978-1-60558-909-1. . . $5.00

testing methodologies are intended to make the search for
faults as thorough as possible, and in addition there are a
number of general frameworks designed to make the testing
process both efficient and effective. For Erlang the available
systems include those which are based on writing test suites
and others which are random and property-based.

The most commonly used testing tools for Erlang include
the OTP Test Server and Common Test (1; 2), EUnit (4), and
QuickCheck (11; 14). Test Server, Common Test and EUnit
are based on writing test suites, though EUnit is designed
to support unit tests, in contrast to the system-level testing
provided by Test Server and Common Test. QuickCheck
allows users to express properties required of a system; these
properties are checked by running the system with randomly
generated test data.

From the refactoring point of view, the common aspect
of each of these three frameworks is that the testing code
is itself Erlang program text. So, an Erlang refactoring tool
should be able to refactor code written under these test-
ing frameworks. However, this cannot be achieved without
addressing the particular idioms of these systems, such as
their use of naming conventions, callback functions, meta-
programming and the like. This mainly affects those refac-
torings that change the interfaces of functions and modules.

Test code is code - albeit of a particular kind. Test code
can be refactored in its own right. Apart from those general
refactorings, most testing frameworks also suggest a set of
testing-framework-specific refactorings.

Wrangler (5; 6; 7; 8) is a refactoring tool which sup-
ports interactive refactoring for Erlang programs. It is in-
tegrated with both Emacs and Eclipse (through the ErlIDE
plugin (3)). Wrangler supports a variety of refactorings, as
well as a set of “code smell” inspection functions, and facil-
ities to detect and eliminate code clones (9).

In the first releases of Wrangler testing frameworks were
not taken into account. Therefore when a program contain-
ing test code was under refactoring, things could easily go
wrong without even a warning. For example, in EUnit func-
tions with arity zero and names ending in test repre-
sent test generator functions, which represent a collection
of EUnit tests; carelessly renaming a function whose name
ends in test () to one with another suffix would break the
test code. In order to support consistent refactoring of appli-

cation code and test code, Wrangler now takes into account
the conventions of the testing frameworks discussed above.
We are also in the process of extending Wrangler to support
refactorings that are specific to these testing frameworks.

In the remainder of this paper we first survey the three
testing frameworks for Erlang in Section 2, and then give a
short overview of Wrangler in Section 3. Section 4 explains
the extension of Wrangler to support consistent refactoring
of test code when application code is refactored, and testing-
framework-specific refactorings are discussed in Section 5.
Finally, conclusions are drawn in Section 6.

2. Testing Tools for Erlang
In this section, we give a short overview of the three systems
supporting testing for Erlang, namely the Erlang/OTP Test
Server and Common Test, EUnit and QuickCheck.

2.1 Erlang/OTP Test Server and Common Test
In Erlang/OTP Test Server and Common Test (1; 2), a test
suite is an Erlang module that contains test cases. A test
suite module normally has a name of the form * SUITE.erl
(where * is used to denote the remainder of the name). A
collection of callback functions must be implemented in
each test suite module. A test suite consists of a number
of test cases, and test case is written as an Erlang function
using a special coding pattern: each test case has generally
three parts, describing the documentation, specification and
execution of the test.

These parts are implemented as three clauses of the same
function. The documentation clause matches the argument
atom doc and returns a list of strings describing the test case.
The specification clause matches the argument suite and
returns the test specification for the test case. The execution
clause implements the actual test case. It takes one argument,
Config, which contains configuration information. These
coding patterns should be observed by Erlang refactorers.

The result of the test is a set of HTML pages which
present the total result, the suite result, log information and
where in the test case source file the test failed (if it did).
This framework also has a test specification mechanism to
set out which test suites and test cases are (not) to be run.

2.2 EUnit
EUnit (4) is a lightweight unit testing framework for Erlang.
A unit is a “well defined” component, such as a function, a
module or an application. Within EUnit the tester adds test
functions or test generating functions to a module, including
the eunit.hrl header file.

A test function name should be of the form * test, and a
test generating function name on the form of * test . Sym-
bolic representation of test data is be used by test generat-
ing functions to generate test objects. For example, the tu-
ple {generator, ModuleName, FunctionName} is used
to represent the test objects generated by calling the func-

tion ModuleName:FunctionName(), where ModuleName
and FunctionName represent module and function names.

A collection of predefined macros are provided to abbre-
viate the test code. Test code can coexist with the application
code in the same module, but it is also possible to put test
code into a separate module. EUnit assumes that a module
named m tests represents the test module for module m.

2.3 QuickCheck
QuickCheck (11; 14) is a property-based testing tool for Er-
lang. Programs are tested by writing properties (using Er-
lang syntax) and test case generators in the source code.
QuickCheck tests these properties with automatically gener-
ated test cases and examines whether the system under test
satisfies them. By default, any function with arity zero whose
name begins prop is assumed to be a property.

When using QuickCheck to test, it is important to sep-
arate the testing of pure and impure functions. An impure
function can modify the global state of the system, while a
pure function will not. Impure operations are tested using
an Abstract State Machine (ASM). ASM test cases are lists
of symbolic commands, each of which binds a symbolic
variable to the result of a symbolic function call. For ex-
ample, {set, {var, 1}, {call, erlang, whereis,
[a]}} is a command to set variable 1 to the result of calling
function application erlang:whereis(a). The use of an
ASM also requires the tester to implement a set of callback
functions of the ASM.

3. An Overview of Wrangler
Wrangler (5; 6; 7; 8) is a refactoring tool which supports
interactive refactoring for Erlang programs. It is integrated
with both Emacs and Eclipse. Wrangler supports a variety
of refactorings: Rename variable/module/function/process,
Generalise function definition, Move function from a mod-
ule to another, Function/Macro extraction, Fold expressions
against function/macro, Tuple function parameters, etc.

Apart from refactorings, Wrangler also provides func-
tionalities for “bad smell” detection and semantics-aware
expression/variable search. Among others, Wrangler’s iden-
tical/similar code detection is able to detect identical/similar
code fragments across multiple modules. The concept of
“similarity” here is based on the idea of least-general com-
mon abstraction, which is also known as anti-unification (12;
15). Two expression/expression sequences are similar if their
least-general common abstraction satisfy some similarity
score, which is customizable by the user. More details of
the clone detection algorithm and the refactoring used to
eliminate clones are given in (9).

4. Extension of Existing Refactorings
Since each of the three testing frameworks uses Erlang as
the programming language for writing test code, much of
the extension is achieved by existing functionality; the rest

needs to address the particular idioms of the frameworks. In
general this extension affects all the refactorings that change
function and module interfaces.

With the current version of Wrangler (0.8), refactorings
affected by this extension include Rename function/module,
Generalise function definition, Function extraction, Tuple
function arguments, Move function definition to another
module. Instead of discussing the extension of each refactor-
ing, we give a summary of the different aspects that needed
to be addressed during the extension.

4.1 The Testing Framework(s) Used
Checking which testing frameworks are used by the program
under refactoring is trivial, since each testing framework
requires a different header file to be included in the program.

4.2 Naming Conventions
When a naming convention is enforced by a testing frame-
work, the refactorer must ensure that this naming convention
is observed. For example, when EUnit is used, renaming of
a function ending in test() or test () to a name with a
different ending (or vice versa) should generate a warning
message; renaming the module m to some other name should
also check whether there is a test module named m tests,
and if so, the test module should also be renamed.

4.3 Callback Functions
Both Erlang/OTP Test Server and QuickCheck abstract state
machines require the tester to implement certain callback
functions. A callback function has a specified function inter-
face that governs both the function name and the parameters
accepted by the function. A refactorer should be aware of
those callback functions, and always warn the user when the
refactoring to be applied would turn a callback function into
non-callback function (or vice versa).

4.4 Meta-programming
Each of the testing frameworks uses meta-programming to
some extent. For example, symbolic function calls of the
form {call, ModuleName, FunctionName, Args} are
used by QuickCheck abstract state machines, and EUnit
makes use of symbolic test data representation as mentioned
earlier. Note that meta-programming is not restricted to test-
ing frameworks, and the same format of symbolic function
call as used by QuickCheck could also be used by normal
application code in Erlang; however inferring whether meta-
programming is used by normal Erlang applications need
deep data-flow analysis, and is not fully supported yet.

Take {call, ModuleName, FunctionName, Args}
as an example: ideally a refactorer should be able to modify
the module name, function name or the argument list when-
ever the module name, or the function interface referred to
is modified by a refactoring. However, given the fact that
in Erlang atoms have multiple roles – syntactically module
name, function name, process name are all atoms – and an

atom could also act as a literal, it is also possible that the
same tuple format is used to mean different things in differ-
ent contexts.

Given this uncertainty, Wrangler takes a rather con-
servative approach. For refactorings like renaming, when
Wrangler cannot infer whether an atom represents the mod-
ule/function name to be named from syntactic information,
it will check the context in which the atom is used. If the
context indicates a high probability that the atom represents
the module/function name to be renamed, it will rename it;
otherwise leave it unchanged. In both cases a warning mes-
sage asking for the manual inspection from the user is given.

For refactorings that change the parameter of a function,
Wrangler will try to keep the original function interface in
the program, although its function body will be replaced
with an application of the new function introduced. This is
possible due to the fact the Erlang allows the same function
name to be re-defined with a different arity.

4.5 Macros
Refactoring programs containing macros is generally sup-
ported by Wrangler, but early releases of Wrangler did not
look into the actual definition of macros, and this turned
to be a problem when refactoring QuickCheck code where
macros are used very heavily.

In fact most of the QuickCheck library functions for writ-
ing properties are provided via macros; consider the example
of the FORALL macro in

prop_gcd()->

?FORALL(X, nat(),

?FORALL(Y, nat(),

ex:gcd(#rec{num1=X,num2=X*Y) == X)).

where it is used to represent universal quantification in way
that allows tests to be generated for the property.

The heavy use of macros and the complexity of macro
definitions make it sometimes impossible to resolve the
binding structure of variables without looking into the ac-
tual macro definitions as the example function above shows.
The study of QuickCheck has led us to improve the way
in which macros are handled in Wrangler. Two kinds of
ASTs are kept during the refactoring process, one with all
macro applications expanded and one with macro expansion
bypassed. The former is used to infer the accurate binding
structure of variables, which is then passed on to the latter.

4.6 Coding Patterns
The Erlang/OTP Test Server and Common Test framework
ask testers to write test cases following a special coding pat-
tern. For example, a test case generally takes one parameter,
has three function clauses representing the documentation
part, the specification part and the execution part, and each
function clause takes a specific pattern to match. In this con-
text the refactorer should make sure this coding pattern is not
violated during the refactoring process.

Take the Generalisation refactoring as an example. This
refactoring generalises a function definition over an expres-
sion in the function body by adding a new parameter to
the function, replacing the expression selected with the new
variable, and adding the expression as a new parameter to
all the call-sites of this function. This refactoring certainly
changes the function interface, and generalisation of a test
case function will make it no longer a test case. With Wran-
gler, this kind of violation again is avoided by keeping the
original function in the program, but its function body will
become an application instance of the new function.

5. Testing-framework-specific Refactorings
To make Wrangler testing-framework-aware, we aim to
make Wrangler not only be able to refactor application code
and test code consistently, but also be able to support testing-
framework-specific refactorings. Our study of the three test-
ing frameworks shows that different refactorings will sup-
plement the different testing frameworks.

5.1 Erlang/OTP Test Server and Common Test
Test code written under the Test Server and Common Test
framework has a rather constrained top-level structure be-
cause of the coding pattern followed; however, our case stud-
ies show that most test cases have very similar structure, and
the copy, paste, then modify style of editing is very heavily
used, which results in substantial amount of duplicated code.

Tool support for duplicated code detection and elimina-
tion would help to provide better abstraction of some repeat-
edly used functionalities, improve the code structure, reduce
the size of the code, and make it much easier to understood.
Together with our project partner from Ericsson, Sweden, we
have used Wrangler’s support for duplicated code detection
and elimination (9); the results are discussed in (10).

5.2 EUnit
EUnit code could also be helped by refactoring. Some of the
refactorings to be added to Wrangler are:

• Convert tests written in plain Erlang into EUnit tests.
• Group isolated EUnit tests into a single test generator.
• Move EUnit tests in an application module to a separate

test module.
• Normalise EUnit tests to a standard pattern.
• Extract common setup and tear-down code into fixtures.

5.3 QuickCheck
With QuickCheck, our research has been focused on refac-
torings that create properties, and refactorings that change
the structure of existing properties. For example using the
techniques of similar code detection and elimination, it is
possible to turn a set of common test cases into a number of
calls to a single function. From these calls it is possible to
extract a QuickCheck property by the following steps:

• First identify all the calls to a particular function, and
extract their arguments into a list of tuples, each tuple
representing one call to the function.

• The tests can then be turned into a property by choosing
oneof the list of test data, with the tuple chosen becom-
ing the arguments to the call of the test function. Here
oneof is a simple example of a QuickCheck generator.

6. Conclusions
We have presented our experience of extending Wrangler to
accommodate testing framework programming idioms, and
discussed our ongoing work to support testing-framework-
specific refactorings. While this research focus on Erlang
and Wrangler, the same problem should apply to other pro-
gramming language domain and refactoring tools as well.

This research is supported by EU FP7 Collaborative
project ProTest (13), grant number 215868; we thank our
funders and colleagues for their support and collaboration.

References
[1] Erlang OTP/TestServer documentation page. http://www.

erlang.org/project/test_server/html/index.html

[2] Erlang Common Test documentation page. http://www.

erlang.org/doc/apps/common_test/index.html

[3] ErlIDE home page http://erlide.sourceforge.net/

[4] EUnit documentation. http://svn.process-one.net/

contribs/trunk/eunit/doc/overview-summary.html

[5] H. Li, S. Thompson: Tool Support For Refactoring Functional
Programs. In Partial Evaluation and Program Manipulation
(PEPM’08). San Francisco, California, USA (2008).

[6] H. Li, S. Thompson: A Comparative Study of Refactoring
Haskell and Erlang Programs. In Sixth IEEE International
Workshop on Source Code Analysis and Manipulation, 2006

[7] H. Li, S. Thompson: Testing Erlang Refactorings with
QuickCheck. In IFL2007, Freiburg, Germany, 2007.

[8] H. Li, S. Thompson, L. Lövei, Z. Horváth, T. Kozsik, A. Vı́g,
T. Nagy: Refactoring Erlang programs. In: The Proceedings
of 12th International Erlang/OTP User Conference, 2006.

[9] H. Li, S. Thompson: Similar Code Detection and Elimination
for Erlang Programs. Twelfth International Symposium on
Practical Aspects of Declarative Languages, Jan. 2010. (to
appear)

[10] Li, H., Lindberg, A., Schumacher, A., Thompson, S.: Improv-
ing Your Test Code with Wrangler. Technical Report 4-09,
School of Computing, Univ. of Kent, UK

[11] Open source Erlang QuickCheck home page. http://www.

cs.chalmers.se/~rjmh/ErlangQC/

[12] G. D. Plotkin: A Notes on Inductive Generalization. Machine
Intelligence. 5:153-163,1970.

[13] ProTest. http://www.protest-project.eu/

[14] QuviQ QuickCheck homepage. http://www.quviq.com/

[15] J. C. Reynolds: Transformational Systems and the Algebraic
Structure of Atomic Formulas. Machine Intelligence. 5,1970.

http://www.erlang.org/project/test_server/html/index.html
http://www.erlang.org/project/test_server/html/index.html
http://www.erlang.org/doc/apps/common_test/index.html
http://www.erlang.org/doc/apps/common_test/index.html
http://erlide.sourceforge.net/
http://svn.process-one.net/contribs/trunk/eunit/doc/overview-summary.html
http://svn.process-one.net/contribs/trunk/eunit/doc/overview-summary.html
http://www.cs.chalmers.se/~rjmh/ErlangQC/
http://www.cs.chalmers.se/~rjmh/ErlangQC/
http://www.protest-project.eu/
http://www.quviq.com/

	Introduction
	Testing Tools for Erlang
	Erlang/OTP Test Server and Common Test
	EUnit
	QuickCheck

	An Overview of Wrangler
	Extension of Existing Refactorings
	The Testing Framework(s) Used
	Naming Conventions
	Callback Functions
	Meta-programming
	Macros
	Coding Patterns

	Testing-framework-specific Refactorings
	Erlang/OTP Test Server and Common Test
	EUnit
	QuickCheck

	Conclusions

