Communicating Process Architectures 2009 1
Peter Welch, Herman Roebbers and Tobe Announced (Eds.)

I0S Press, 2009

(© 2009 The authors and 10S Press. All rights reserved.

M obile Escape Analysis for occam-pi

Frederick R.M. BARNES

School of Computing, University of Kent,
Canterbury, Kent, CT2 7NF. England.

F.R.M.Barnes@kent.ac.uk

Abstract. Escape analysis is the process of discovering boundarigaimically al-
located objects in programming languages.d®gject-orientedanguages such as C++
and Java, this analysis leads to an understanding of whimfrgm objects interact
directly, as well as what objects hold references to othgratd. Such information can
be used to help verify the correctness of an implementatitmmespect to its design,
or provide information to a run-time system about which otgecan be allocated on
the stack (because they do not ‘escape’ the method in whaghdte declared). For
existing object-oriented languages, this analysis icglpi made difficult by aliasing
endemic to the language, and is further complicated by itdrere and polymorphism.
In contrast, th@ccam-1t programming language ispocess-orientethnguage, with
systems built from layered networks of communicating corent processes. The lan-
guage has a strong relationship with the CSP process algilatacan be used to
reason formally about the correctnes®otam-ttprograms.

This paper presents early work on a compositional escaggsismgechnique for
mobilesin the occam-T1t programming language, in a style not dissimilar to existing
CSP analyses. The primary aim is to discover the boundafiembiles within the
communication graph, and to determine whether or notéisegpeny particular pro-
cess or network of processes. The technique is demonsbyptaadalysing some typ-
ical occam-Tt processes and networks, giving a formal understandingsif mhobile
escape behaviour.

Keywor ds. occam-pi, escape analysis, concurrency, CSP

I ntroduction

The occam-1t programming language [1] is a highly concurrent processated language,
derived from classicabccam [2], in which systems are built from layered networks of
communicating processes. The semantics of classmam are based largely on those of
Hoare’'s Communicating Sequential Processes (CSP) [3]gaibra that can be used to rea-
son about the concurrent behaviourotam programs [4,5].

To occam, occam-Tt adds new mechanisms and language constructs for data, chan-
nel and process mobility, inspired by Milnerscalculus [6]. In additioroccam-Tt offers a
wealth of other features that allow the construction of agitaand evolving software sys-
tems [7]. Some of these extensions, such as dynamic processon, mobile barriers and
channel-bundles, have already had CSP semantics defindekfor{8,9,10], providing ways
for formal reasoning about these. These semantics areisnffior reasoning about most
occam-Tt programs in terms of interactions between concurrent corpis, typically to
guarantee the absence of deadlock, or refinement of a sp#ioificHowever, these seman-
tics do not adequately deal widscape analysisf the various mobile types, i.e. knowing in
advance theange of movemermtf mobiles between processes and process networks.

The escape analysis information for an individual processedwork of processes is
useful in several ways:

2 F.R.M. Barnes / Mobile Escape Analysis for occam-pi

e For checking design-level properties of a system, e.g.rargthat private mobile
data in one part of a system does not escape.

e For the implementation, as it describes the componggitgly coupledby mobile
communication — relevant in shared-memory systems, whairégrs are communi-
cated between processes, and for the breakdown of conteysiems in distributed
execution.

The remainder of this paper describes an additior@ility analysis foroccam-ttprograms,

in a style similar to the well-knowtraces failures anddivergencesnalyses of CSP [11].
Section 1 provides a brief overview otcam-1t and its mobility mechanisms, in addition
to current analysis techniques foccam-Tt programs. Section 2 describes the additions for
mobile escape analysis, in particular, a newbility model. Section 3 describes how mobile
escape analysis is performed fmccam-1t program code, followed by initial applications
of this to occam-1t systems in section 4. Related research is discussed imsdgtiwith
conclusions and consideration for future work in section 6.

1. Occam-pi and Formal Analysis

The occam-1tlanguage provides a natural expression for concurrentranogmplementa-
tion, based on a communicating processes model as destiyp€&P. Whole systems are
built from layered networks of communicating processesclvimteract through a variety of
synchronisation and communication mechanisms.

The primary mechanism for process interaction is througlinokl communication,
wheretwo processes synchronise (with the semantics of @&at$, and communicate data.
The occam-Tt ‘BARRIER’ type provides synchronisation between any number of mees
but allows no communication (although barriers can be us@ddvide safe access to shared
data [12]). The barrier type is roughly equivalent to theegahCSP event, though our im-
plementation does not suppanterleaving— synchronisation between subsets of enrolled
processes.

There are four distinct groups of mobile types in ttewam-T1t language, that cover all
of the occam-1t mobility extensions. These are mobdata mobile channel-endsmobile
processe®nd mobilebarriers. The operational semantics of these vary depending on the
type of mobile (described below).

Mobile variables, of all mobile types, are implemented @ity aspointersto dynami-
cally allocatedmemory. To avoid the need for complex garbage collection)(Gtict alias-
ing rules are applied. For all mobile types, routines exighie run-time system that allow
these to be manipulated safely including: allocation,asée input, output, assignment and
duplication.

1.1. Operational Semantics of Mobile Types

Mobile data exists largely for performance reasons. Ordalata is communicated over
occam-ttchannels using eopyingsemantics — i.e. the outputting process keeps its original
data unchanged, and the inputting process receives a copy\ating a local variable or
parameter). With large data (e.g. 100 KiB or more), the cbgtis copy becomes significant,
compared with the cost of the synchronisation. Whitbbile data, only areferenceto the
actual data is ever copied — a small fixed overhead [13]. Hewew order to maintain the
aliasing laws of occam (and to avoid parallel race-hazardshared data), the outputting
process mudbsethe data it is sending — i.e. it Imovedo the receiving process. ALONE’
operator exists for mobile data that createsoay, for cases where the outputting process
needs to retain the data after the output.

F.R.M. Barnes / Mobile Escape Analysis for occam-pi 3

Mobile barriers allow synchronisation between arbitramynivers of parallel processes.
This has uses in a variety of applications, such as the stronlaf complex systems [14],
where barriers can be used to protect access to shared deitg fphasedaccess pattern of
global read then local write). When output by a process, ereete to a mobile barrier is
moved unless it is explicitlycloned in which case the receiving processisrolledon the
barrier before the communication completes.

Mobile channel-ends refer to the end-pointsradbile channel bundle3hese are struc-
tured types that incorporate a number of ordinary chankkiike ordinary channels, how-
ever, thesenobilechannel-ends may baovedoetween processes — dynamically restructur-
ing the process network. Mobile channel ends magtmredor unsharedUnshared ends are
alwaysmovedon output. Shared channel-ends are alwadgaedon output. Communication
on the individual channels inside a shared channel-end beugone within acLaix’ block,
to ensure mutually exclusive access to those channels.

Mobile processes provide a mechanism foocess mobilityn occam-tt [1]. Mobile
processes are eithactive meaning that they are connected to an environment and are ru
ning (or waiting for an event), or aigactive meaning that they are disconnected from any
environment and are free to be moved between processesnokie data, there is no con-
cept of asharedmobile process, though a mobile process may contain othbil@sdshared
and unshared) as part of its internal state.

The rules for mobile assignment follow those for communazat— in line with the
existing laws ofoccam. For example, assuming’‘and ‘y’ are integer (Int’) variables, the
two following fragments of code are semantically equivalen

CHAN INT c:
PAR
=T = c!ly
c?x

This rule must be preserved when dealing with mobiles, whieterences are either
moved or duplicated, depending on the mobile type used. &mastics of communication
are also used when passing molpiggameterdo dynamically created (forked) processes [15]
— renamingsemantics are used for ordinary procedure calls.

1.2. Analysis of occam-pi Programs

Starting with anoccam-Tt process, it is moderately straightforward to construct # €%
pression that captures the process’s behaviour [4,5]r&ifjshows the traditional ‘id’ pro-
cess and its implementation, that acts as a one-place butfén a process network.

PROC id (CHAN INT in?, out!)

WHILE TRUE
INT x: o outl
in~ . !
SEQ — ! id L
in 7 x
out ! x

Figurel. One place buffer process.

If the specification is for a&ingleplace buffer, this code represents the most basic im-
plementation — all other implementations meeting the sapeeification are necessarily
equivalent. The parameterised CSP equation for this psasesmply:

ID(in, out) = in — out — ID(in, out)

4 F.R.M. Barnes / Mobile Escape Analysis for occam-pi

This captures the behaviour of the process (interactiolm igtenvironment by synchro-
nisation on ‘in’ and ‘out’ alternately), but makes no sta&ts about individual data values.
CSP itself provides only a limited support for describing $hateful dateof a system. Where
such reasoning is required, it would be preferable to useaelalgebras such &srcus [16]
or CSH|B [17].

Using existing and largely mechanical techniques, theegai@ilures and divergences of
this ‘ID’ process can be obtained:

traces ID = {(), (in), (in, out), (in, out, in), ...}
{

(
failures ID = {(), {out}), ((in), {in}),
((in, out), {out}),

((in, out, in), {in}),...}

divergences ID = {}

As described in [11], théracesof a process are the sequences of events that it may
perform. For the ID process, this is ultimately arfinite trace containingin’ and ‘out’
alternatively.

Thefailuresof a process describe under what conditions a procesd®&aliilock behave
asSTOP). These are pairs of traces and event-sets(&.gF), which state that if a process
has performed the tracE and the event& are offered, then it will deadlock. For example,
the first failure for the ID process states that if the prodessnot performed any externally
visible events, and it is only offeredt’, then it will deadlock — because the process is
actively only waiting for in’.

Thedivergence®f a process are similar to failures, except these desdrdbednditions
under which a process wilvelock (behaves asdiv). The ID process iglivergence free

2. Mobility Analysis

The primary purpose of the extra analysis is to trackdbeapeof mobile items from pro-
cesses. With respect to mobile items, processes can:

e create new mobile items;
e transport existing mobiles through their interfaces; and
e destroy mobile items.

Unlike traces, failures and divergences, thebility of a process cannot be derived from
a CSP expression of asccam-T1t process alone — requiring either the original code from
which we would generate a CSP expression, or an augmentgidivexf§ CSP that provides a
more detailed representation of program behaviour, speattifithe mobile operations listed
above.

The remainder of this section describes the represent&ioriax) used for mobility
sequences, and some simple operations on these.

2.1. Representation
The mobility of a process is defined as a set of sequenceggéd eveniswvhere the events

involved represent channels in the process’s environnk@mtthe non-mobile ‘id’ process
discussed in section 1.2, this would simply be the empty set:

mobility ID = {}

F.R.M. Barnes / Mobile Escape Analysis for occam-pi 5

For a version of the ‘id’ process that transports mobile datas:

mobility MID = {(in?? out!®)}

The name &’ introduced in the mobility specification has scope acrbgsithole sebf
sequences (though in this case there is only a single seguand indicates that the mobile
data received fromih’ is the same as that output omit’. The direction (input or output)
Is relevant, since escape is asymmetric. Processes tlae @edestroy mobiles instead of
transporting them are defined in similar ways.

The syntax for representing and manipulating mobility sgopes borrows heavily from
CSP [3,11], specifically the syntax associated widttes

2.1.1. Shared Mobiles

For unshared mobile items, simple mobility sequences itbhat most two itentsreflecting
the fact that a process acquires a mobile and then loses itdtharefore always in the order
of an input followed by an output. Feharedmobile items, mobility sequences may contain
an arbitrary number of outputs, as a process can duplickeerees to that mobile. Where
there is more than one output, the order is unimportant — kmgwhat the mobile escapes
is sufficient.

Shared mobiles are indicated explicitly — decorated with’aFor example, a version
of the ‘id’ process that transporshiaredmobiles has the model:

mobility SMID = {(in?*", out!*")}

2.1.2. Client and Server Channel Ends

As described in section 1.1, mobile channel bundles aresepted in code as pairs of con-
nected ends, termatlientandserver In practice these refer to the same mobile item, but for
the purpose of analysis we distinguish the individual ends.g- for some mobile channel
bundle %’, we use ‘@’ for the client-end andd’ for the server-end. A version of ‘id’ that
transports unshared server-ends of a particular chappelvwould have the mobility model:

mobility USMID = {(in??, out!®)}

These are slightly different from other mobiles in that tloayn appear as both super-
scripts (mobile items) and channel-names (carrying othalsile items). Recursive mobile
channel-end structures can also carry themselves, exprasse.g(a!*).

Where there are multiple channels inside a mobile chanmeltbe individual channels
can be referred to by their index, e(@?*), (a;)!*), to make clear which particular channel
(for communication) is involved.

2.1.3. Undefinedness

In certain situations, that are strictly program errorsyéhs a potential fonndefinednobile
items to escape a process. Such an undefined mobile cannséthénuany meaningful way,
but should be treated formally. A process that declares alenabd immediately outputs it
undefined, for example, would have the mobility model:

mobility BAD = {(out!")}

The absence of such things can be used to prove that a processcess network, does
not generate any undefined mobiles.

'Higher order operations, e.g. communicating channels dvannels, can produce mobility sequences con-
taining more than two items — see section 3.7.

6 F.R.M. Barnes / Mobile Escape Analysis for occam-pi

2.1.4. Alphabets

As is standard in CSP, we use sigm3) to refer to the set of names on which a process
can communicate. For mobility sequences, this can be diitte output channel$X') and
input channelgX"), such that: = ' U ¥7. Ordinary mobile items (data, barriers) are not
part of this alphabet, mobile channel-ends are however.

The various channels that are in the alphabet af@am-1t process can also be grouped
according to their typex,, wheret is any validoccam-ttprotocol andr is the set of available
protocols, such thate T. Followingon,>; = X}, U X!, andv¢: T - %, C 3.

For referring to all channels that casiiaredmobiles we hav&, , with =, = X!, UXY.

2.2. Operations on Mobility Sequences

For convenience, the following operations are defined fonimdating mobility sequences.
To illustrate these, the nanterefers to a set of mobility sequences= { R, Rs, ...}, each
of which is a sequence of mobile actioris = (X7, X5, . ..). Each mobile action is either an
input, X; = C'*, or an outputX, = D77,

2.2.1. Concatenation

For joining mobility sequences:
(X1, Xo, o) (Y, Yo,) = (X1, Xy, o, Y, Yo,)

2.2.2. Channel Restriction

Used to remove namethanneldrom mobility sequences:

(X, 017, ..y —{C)y = (X,,...)

Note that this is not quite the sametading, the details of which are described later.

3. Analysing occam-pi for Mobility

This section describes the specifics of extracting mobitaygs information foloccam-1t
processes. Where appropriate, the semantics of thesearia tdrCSP operators are given. A
refinementelation over mobility sets is also considered.

3.1. Primitive Processes

The two primitive CSP processéd'OP and SKIP are expressed iaccam-Ttusing ‘STop’
and ‘sk1p’ respectively. AlthoughsTtop’ is often not used explicitly, it is implicit in certain
occam-Tt constructs — for example, in an” structure, if none of the conditions evaluate
to true, or in an ALT’ with no enabled guards. BothK7P and STOP have empty mobility
models. Divergence and chaos, for which there is no esecam-1t equivalent, have un-
defined though legal mobility behaviours — and are able torddhang that anoccam-1t
process might.

F.R.M. Barnes / Mobile Escape Analysis for occam-pi 7

mobility SKIP = ()
mobility STOP = ()
mobility div = mobility CHAOS =
ey | cesyu{(Dy | D e X' U
{(C?, DY |Vt:T-(C,D) e X!l x %))}

The models of divergence and chaos specify that the procagsutputdefinednobiles
on any of its output channels, consume mobiles from any ahgst channels, and forward
mobiles from any of its input channels to any of its outputreiels (where the types are com-
patible). However, neither divergence or chaos will geteefand outputundefinednobiles,
but may forward undefined mobiles if these were ever received

3.2. Input, Output and Assignment

Input and output are the basic building blocks of mobile pedgaoccam-t— they provide
the means by which mobile items ameoved For example, a process that generates and
outputs a mobile (which escapes):

PROC P (CHAN MOBILE THING out!)
MOBILE THING x:

SEQ mobility P = {(out!”)}

initialise ‘x’
out ! x

Correspondingly, a process that consumes a mobile:

PROC Q (CHAN MOBILE THING in?)
MOBILE THING y:

SEQ mobility Q = {{in?")}

in 7 y
use y

A similar logic applies to assignment, based on the earjanalence with communication.
For example:

PROC R (CHAN MOBILE THING in?, out!)
MOBILE THING v, w:

SESH - mobility R = {(in?", Lc!”),
W=y (Lc?? out!™)} \ {Lc}
out ! w

The local channel-nambc comes from the earlier model for assignment (as a communica-
tion between two parallel processes). The semantics fatlphsm and hiding are described

in the following sections. A compiler does not need to modsignment directly in this
manner, however — it can track the movement of mobiles betweasal variables itself, and
generate simpler (but equivalent) mobility sequencestt@®above process’

mobility R = {{in?", out!")}

8 F.R.M. Barnes / Mobile Escape Analysis for occam-pi
3.3. Sequential Composition

Sequential composition provides one mechanism by whichlaleweceived on one channel
can escape on another. In the case of théprocess, whose mobility model is intuitively
obvious (but best determined automatically by a compilestber tool):

SEQ
in? v mobility ID = {(in?", out!”)}

out ! v

In general, the mobility model for sequential processesyiobility(P; (), is formed
by combining input sequences fromobility P with output sequences fromobility @,
matched by the particular mobile variable input or outpubhé¥ combining processes in this
and other ways, the individuahriablesrepresenting mobile items may need to be renamed
to avoid unintentional capture.

3.4. Choice

Programs may make choices either internally (e.g. withand ‘case’) or externally (with
an ‘ALT’ or ‘PRI ALT’). The rules for internal and external choice are straigttbrd — simply
the union of the sets representing the individual choicadiras. For example:

PROC plex.data (CHAN MOBILE THING in0O?, inl?, out!)
WHILE TRUE
MOBILE THING v:
ALT
in0 7

mobility PD = {(in07%, out!®),

out (in1?° out!®)}

v

!
inl ?7 v
out !

In general:

mobility (P O Q) = (mobility P) U (mobility Q)
mobility (P M Q) = (mobility P) U (mobility Q)
3.5. Interleaving and Parallelism

Interleaving and parallelism, both specified byr’ in occam-T1, have straightforward mo-
bility models. For example, a ‘delta’ process femrep mobile channel-ends, that performs
its outputs in parallel:

PROC chan.delta (CHAN SHARED CT.FOO! in?, outO!, outl!)
WHILE TRUE
SHARED CT.FOO! x:

SEQ
in ? x mobility CD = {(in?°", out0!*"),

PAR L .
2b+ 10+
out0 ! CLONE x (in?"", out11°*)}

outl ! CLONE x

This captures the fact that a mobile input on th€ thannel escapes to both the output
channels, indistinguishable from a non-interleaving psscthat makes an internethoice
about where to send the mobile. In general:

F.R.M. Barnes / Mobile Escape Analysis for occam-pi 9

mobility (P || @) = (mobility P) U (mobility Q)

Interleaving (e.gP ||| @) is a special form of the more general alphabetised paisattel
therefore it is not of huge concern for mobile escape aralysi

3.6. Hiding

Hiding is used to model the declaration and scope of chanm&scam-tt In particular, it
is also responsible for collapsing mobility structures —rbynoving channel names from
them. Whereoccam-tt programs are concerned, channel declarations typicatigrapany
‘PAR’ structures. For example:

PROC network (CHAN MOBILE THING in?, out!)

CHAN INT c:

PAR mobility NET = {(in??, c!),
thing.id (in?, c!) b b
thing.id (c?, out!) <C? aOUt!>}'\ {C}

This reduces to the set:

mobility NET = {(in??, out!®)}

The general rule for which is:

mobility (P \ z) = {M " N|o/f] |
(M~ (21*), (x?”)"N) € mobility P x mobilityP }U
((mobility P) — ({F"(2z!*) | F~(z!*) € mobility P}
U {(z?%)" G | (2?°)" G € mobility P}))U

{H | (H"(z!*)) € mobility P A\ ((z?°)"I) ¢ mobility P N H # () }U

{J| ((x?%)"J) € mobility P A (J"(z!*)) & mobility P A J # ()}
The above specifies the joining of sequences that end withutaibn the channel with
sequences that begin with inputs on the channélhe matching sequences are removed

from the resulting set, however, the starts of unmatchegutigequences and the ends of
unmatched input sequences are preserved.

3.7. Higher Order Communication

So far, only the transport of mobiles ov@aticprocess networks has been considered. How-
ever, in many real applications, mobile channels will bedusesetup connections between
processes, which are later used to transport other molnielsiding other mobile channel-
ends). Assuming that thet.roo’ channel-type contains a single channel nameditself
carrying mobiles, we might write:

10 F.R.M. Barnes / Mobile Escape Analysis for occam-pi

PROC high.order.cli (CHAN CT.FOO! in?)
CT.FOO! cli:
MOBILE THING v:
SEQ mobility HOC = {(in?, a!*)}

in 7 cli

initialise ‘v’

clifc] ' v

This captures the fact that the process emits mobiles orotinedoname’, which it received
from its ‘in’ channel. The typecT.Foo!’ specifies the client-end of the mobile charfned
similar process for the server-end of the mobile channdicbe:.

PROC high.order.svr (CHAN CT.F00? in?)
CT.F0OO? svr:
MOBILE THING x:
SEQ mobility HOS = {(in?°, ¢?%)}
in ? svr
svrlc] 7 x
use ‘x’

Connecting these in parallel with a generator process (fbaerates a pair of connected
channel-ends and outputs them), and renaming for parapessmg:

PROC foo.generator (CHAN CT.FOO! c.out!, CHAN CT.FOO? s.out!)
CT.F0O0? svr:
CT.FOO! cli:
SEQ
cli, svr := MOBILE CT.FOO mobility FG = {(c.out!x), <5.0ut!§)}
PAR
c.out ! cli
s.out ! svr

CHAN CT.FOO! c:

CHAN CT.F00? s: mobility = {{c17), (s17), (c7%, al®),

PAR
foo.generator (c!, s!) 2t —od
high.order.cli (c?) <S' » €1 >} \ {C’S}
high.order.svr (s?) — {<x[b>’<j?d>}

This indicates a system in which a mobile is transferred'inatidy, but never escapes. As
such, we can hide the mobile channel event(also ‘z’), giving an empty mobility set —
concluding that no mobiles escape this small system, as wéhiave expected.

3.8. Mobility Refinement

The previous sections have illustrated a range of mobiitg #r various processes and their
compositions. Within CSP and related algebras is the cardepfinementthat operates on
the traces, failures and divergences of processes, and gaméral be used to test whether a
particular implementation meets a given specification.dnegal, we write” C () to mean
that P is refined by@), or that(@ is more deterministithan P.

2The variable ¢11i’ is a mobile channel bundle containing just one channel @), identified by a record
subscript syntaxeli[c].

F.R.M. Barnes / Mobile Escape Analysis for occam-pi 11

For mobile escape analysis, it is reasonable to suggeshdratmay be a relatedobility
refinementwhose definition is:
PCy Q@ = mobility () C mobility P

The interpretation of this is tha® “contributes less to mobile escape” th&y and where
the subset relation takes account of renaming within séitis.i$ not examined in detail here
(an item for future work), but on initial inspection appeaensible — e.g. to test whether a
specific implementation meets a general specification.

4. Application

As previously discussed, the aim of this analysis is to deitez what mobiles (if any) escape
a particular network obccam-1t processes, and if so, how they escape with respect to that
process network (i.e. on which input and output channels).

Two examples of the technique are discussed here, one far gtacess networks and
one for dynamically evolving process networks. The fornsemiore typical of small-scale
systems, such as those used in small (and memory limited)ekev

4.1. Static Process Networks

Figure 2 shows a network of parallel processes and the cadletplements it. The individ-
ual components have the following mobile escape models:

mobility delta = {(in?®, out0!*), (in?®, out1!®)}

mobility choice = {(in??, out0!*), (in?", out1!’)}

mobility plex = {(in0?%, out!®), (in1?°, out!®)}

{
{
mobility gen = {(out!*)}
{
mobility sink = {(in0?7), (in17°)}

e ; PROC net (CHAN MOBILE THING A?, B?,

A? i X Xt, Yn
— delta :
3 Q\\E\H> iYI CHAN MOBILE THING p, q, r, s:
: plex |——» PAR
: q
B? | — 2T 3 delta (A7, X!, p!)
—— choice : .
: *\\(\H> 3 choice (B?, q!, r!)

sink ; gen (s!)

S ?
o ////H> % plex (p?, q7, Y!)

sink (r?, s7)

Figure2. Parallel process network.

When combined, with appropriate renaming for parametesipggand to avoid unin-
tentional capture), this gives the mobility set:

mobility Net = {(A?%, X1%), (A2, pI*), (B?°, q1¢), (B?%, r1%),
(s1), (p?, YV), (79, Y19), (r?"), (s?)} \ {p, ¢, 7, s}

12 F.R.M. Barnes / Mobile Escape Analysis for occam-pi

Applying the rule for hiding to the channels ¢, » ands gives:

MEL £rA7e, X1%), (A0, Y1%), (B, qI°), (B?%, r1%), (s1°), (79, Y19), (r?"), (s7)}
Mo frare, X1, (A0, YIP), (B?S, Y1), (B2, 119), (s1), (r7h), (s77))

M f(A7e, X1%), (A28, Y1%), (B, Y1), (B?Y), (s!°), (s7M)}

M f(aze, X19), (A7, Y10, (B°, YI%), (B7%)}

The resulting mobility analysis indicates that mobilesuinpn A escape through output
on X and Y, and that inputs received aB either escape throughi or are consumed in-
ternally. The fact that certain mobility sequences are mesgnt in the result provides more
information: that mobiles input oA are never discarded internally, and that the resulting
network does not generate escaping mobiles.

4.2. Dynamic Process Networks

In dynamically evolving systems, RdX in particular [18,19], connections are often estab-
lished within a system for the sole purpose of establishirigré connections. An example
of this is an application process that connects to the VGaétauffer (display) device via a
series of other processes, then uses that new connectirohargye mobile data with the un-
derlying device. Figure 3 showssaapshobf connected graphics processes within a running
RMoX system.

| service.core w
I R <
application gfx.core
-y
kernel vga.fb = vga

b driver.core

Figure 3. RMoX driver connectivity.

Escape analysis allows for certain optimisations in precegworks such as these. If the
compiler (and associated tools) can determine that mobike generated irvga’ or ‘vga. fv’
is not discarded internally, nor escapes through the psesesx.core’ and ‘application’,
then it will be safe to pass the real framebuffer (video) mgnaoound for rendering. Without
the guarantees provided by this analysis, there is a dahgeparts of the video memory
could escape into the general memory pool — with odd and ofitelesirable consequenées

Assuming that framebuffer memory originates and is conslmthin ‘vga.fb’, we have
anoccam-Tt process with the structure:

PROC vga.fb (CT.DRV? link)
CT.GUI.FB! fb.cli:
CT.GUI.FB? fb.svr:

3Mapping process memory (typically a processrkspacinto video memory, or vice-versa, does provide
an interesting way of visualising process behaviour indXyhowever.

F.R.M. Barnes / Mobile Escape Analysis for occam-pi 13

SEQ
fb.cli, fb.svr := MOBILE CT.GUI.FB

other initialisation and declarations

PAR
WHILE TRUE
link[in] ? CASE
CT.DRV.R! ret:
open.device; ret
IF
DEFINED fb.cli

ret[out] ! device; fb.cli

TRUE
ret[out] ! device.busy
other cases

PLACED MOBILE []1BYTE framebuffer AT ...:

WHILE TRUE
fb.svr[in] 7 CASE
get.buffer

fb.svrlout] ! buffer; framebuffer

put.buffer; framebuffer
SKIP

That has the mobility model:

—- create channel-bundle

-- request to open device

—-— return bundle client-end

—-- request from connected client

-- outgoing framebuffer
-- incoming framebuffer

mobility VFB = {<l7ﬁ€?r, ’I”!OL), <d[1]!b>, <EL[O]?C>}

The escape information here indicates that mobiles aragtteand consumed at the server-
end of the channel bundig whilst the client-end of this bundle, escapes through another
channel bundle that the process receives from itsk parameter.

Instead of going into detail for the other processes inwblteat would require a signif-
icant amount of space, the generic forwarding and use ofexiions is considered.

4.2.1. Client Processes

The mechanism by which dynamic connections to device-t¥i@ed suchlike are established
involves sending the client-end ofraturn channel-bundle along with the request. A client
process (e.gapplication’ from figure 3) therefore typically has the structure:

PROC client (SHARED CT.DRV! to.drv)
CT.DRV.R! r.cli:
CT.DRV.R? r.svr:
CT.GUI.FB! guilink:
SEQ
r.cli, r.svr := MOBILE CT.DRV.R

CLAIM to.drv
to.drv[in] ! open.device; r.cli

r.svr[out] ? CASE
device.busy
fail gracefully
device; guilink
use ’guilink’

—-— create response channel-bundle

-- send request

-- wait for response

14 F.R.M. Barnes / Mobile Escape Analysis for occam-pi

This has the mobility model:

mobility CLL = {(to.drv!®), (e?)} UM

whereM is the mobility model for the part of the process that usesgha ink’ connection

to the underlying service, and will communicate directlytib@ individual channels withif.
Connecting this client and thega. b’ processes directly, with renaming for parameter

passing, gives the following mobility set:

{<A?T7 T!a>7 <a[1}!b>7 <a[0}?c>7 <A!€>7 <é?f>} UM
Hiding the internal linkA, A gives:

{{e!), {am!"), (ag?°), (e?”) } UM

If we take a well-behaved client implementation fdr— i.e. one that inputs a mobile
(framebuffer) from the underlying driver, modifies it in semvay and then returns it, without
destroying or creating thesBl(= {(f17*, fig!*) }) — we get:

{(e®), (ap!®), (a?%), (), (i ?"s o)) }

Subsequently hiding, which represents thet.orv.r’ link, causesf to be renamed ta,
giving the set:

{{a!"), (a)?°), {ay?”, a)!”) }

Logically speaking, and for this closed systénandc must represent the same thing —
in this case, mobile framebuffers. Thus we have a guarahtentobiles generated within
the ‘vga.fv’ process are returned there, for this small system.

On the other hand, a less well-behaved client implememtdto M could be one
that occasionallyosesone of the framebuffers received, instead of returning.&. I =
{7, fio!®), (fiy?¥) }). This ultimately gives the mobility set:

{{@n!®), (a?%). {a?", a!"), {ay ?") }

As before,b and ¢ must represent the same mobiles, so the only mobiles retbagk
must have been those sent. However, the presence of thensequg,”?) indicates that
framebuffers can be received and then discarded by thistclie

Another badly behaved client implementation is one thaegeties mobiles and returns
these as framebuffers, in addition to the normal behavegrM = {(fi;?”, fig!"), (fin!*) }-
This gives the resulting mobility set:

{{an!®), (a ?°), (a?”, ap)!*), {ap)!*) }

In this casep and c do not necessarily represent the same mobiles — as wihakmn
only beb, ¢ can be either: (and thereforeé) or z. Thus there is the possibility that mobiles
are returned to thesga. £b’ driver that did not originate there.

4.2.2. Infrastructure

Within RMoX, such client and server processes are normally connebtedigh a net-
work of processes that route requests around the systemm ftgare 3, this includes the
‘driver.core’, ‘service.core’ and ‘kernel’ processes.

In earlier versions of RMX [19], both requests and their responses were routed throug
the infrastructure. This is no longer the case — requestsinovde, as part of the request,

F.R.M. Barnes / Mobile Escape Analysis for occam-pi 15

a mobile channel-end that is used for the response. This lsaa&r approach in many re-
spects and is more efficient in most cases. From the clieatspective, a little more work is
involved when establishing connections, since the rethamoel-bundle must be allocated.
Most of the infrastructure components within RM consist of a singleserver-encchannel-
bundle on which requests are received, whogent-endis shared between multiple pro-
cesses, and multiplelient-endsconnecting to other server processes such/@s fv’ and
other infrastructure components.

A very general implementation of an infrastructure compne

PROC route (CT.DRV? in, CT.DRV! out.this, SHARED CT.DRV! out.next)
WHILE TRUE
in[in] 7 CASE
CT.DRV.R! ret:
open.device; ret
IF
request.for.this
out.this[in] ! open.device; ret
NOT invalid
CLAIM out.next!
out.next[in] ! open.device; ret
TRUE
ret[out] ! no.such.device
other cases

The mobility model of this process is:

mobility Rt = {(in?*, out.this!®), (in?", out.next!"), (in?¢) }

The last component indicates that this routing process nspad the request (and the re-
sponse channel-end) internally — after it has reported am back on the response channel,
of course.

With the ‘route’ process as it is, there would need to be an additional psoaethe end
of this chainthat responds to all connection requests with an error, e.qg.

PROC end.route (CT.DRV? in)
WHILE TRUE
in[in] ? CASE

CT.DRV.R! ret: mobility ERt = {(in?") }
open.device; ret

ret[out] ! no.such.device
other cases

Combining oneroute’ process and onesnd.route’ process with the existingrga. fv’ and
‘client’ processes produces the network shown in figure 4.
This has the following mobility model:

{(C77 v, (), (%), (ALY, (€21), (BY7), (A7%, C1%), (42", BIY), (A7%)} UM

Hiding the internal links4, B and C' gives:

16 F.R.M. Barnes / Mobile Escape Analysis for occam-pi

client .|..

route >

C

T vgadb end.route

Figure4. RMoX routing infrastructure.
WL oy, (@), (ag?), (€2), (B2, (C1%), (B1)} UM
MBE @, m1y, (ag), (ag?9), (€7), (C19)} UM
MY Lrermy, (@), (ag?*), (7))} UM

This system has an identical mobile escape model to theeealiiectly connected
‘client’ and ‘vga.fb’ system. As such, the system can still be sure that framebuafbbiles
generated byvga.fb’ are returned there.

5. Related Research

The use ofescape analysifor determining various properties diynamicsystems stems
from the functional programming community. One use her@isdetermining which parts

of an expressioescapea particular function, and if they can therefore be allodaia the
stack (i.e. they are local to the function) [20]. More retgréscape analysis has been used
in conjunction withobject-orientedanguages, such as Java [21]. Here it can be used to
determine the boundaries of object references within thecblgraph, for the purposes of
stack allocation and other garbage collector (GC) optitimaa [22]. With the increasing use

of multi-coreandmulti-processosystems, this type of analysis is also used to discover which
objects are local to which threads (knowntaeead escape analy3isallowing a variety of
optimisations [23].

While escape analysis for functional languages is geryenall-understood, it gets ex-
tremely complex for object-oriented languages such as GwiJava. Features inherent to
object-oriented languagesheritanceandpolymorphismn particular, have a significant im-
pact on formal reasoning. The number of objects typicalpived also create problems for
automated analysis (state-space explosion).

The escape analysis described here is more straightforlvatds sufficient for deter-
mining the particular properties identified earlier. Thenpmsitional nature abccam-ttand
CSP helps significantly, allowing analysis to be done in adghand-conquer manner, or
to enable analysis to be performed on a subset of procesas wisystem (as shown in
section 4.2.2).

6. Conclusionsand Future Work

This paper has presented a straightforward techniquadtile escape analysis occam-Tt,
and its application to various kinds of process network. diedysis provides for the checking
of particular design-time properties of a system and campeertain optimisations in the
implementation. At the top-level of a system, this escapalyais can also provide hints
towards efficient distribution of the system across mudtippdes — by identifying those parts

F.R.M. Barnes / Mobile Escape Analysis for occam-pi 17

interconnected through mobile communication (and whoBei@icy of implementation is
greatly increased with shared-memory). Although the waatethas focused ooccam-,
the techniques are applicable to other process-orientggitages and frameworks.

The semantic model fomobility presented here is not quite complete. Some of the
formal rules for process composition have yet to be specifeiigh we have a good informal
understanding of their operation. Another aspect yet taublg €onsidered is one ahobile
processesThese can contain other mobiles as part of their state ifwlibical variables), and
as such warrant special treatment. The analysis technshesn provide a very general
model for mobile processes — in practice this either resuolts larger state-space (where
mobiles within mobile processes are tracked individuably)a loss in accuracy (e.g. treating
a mobile process aSHAOS). Once a complete semantic model has been established, it ca
be checked for validity, and the conceptbbility refinemeninvestigated thoroughly.

For the practical application of this work, the existiagcam-1t compiler needs to be
modified to analyse and generate machine readable repaieastof mobile escape. Some
portion of this work is already in place, discussed brieflf2i], where the compiler has been
extended to generate CSP style behavioural models (in XM ijdividual Procs occam-Tt
code. The mobile escape information obtained will be inethdithin these XML models,
incorporating attributes such as type. A separate but rerfypeomplex tool will be required
to manipulate and check particular properties of these —thaj an application process
does not discard or generate framebuffer mobiles (sect®)now such information can be
recorded and put to use for compiler and run-time optinosatis an issue for future work.

Acknowledgements

This work was funded by EPSRC grant EP/D061822/1. The awtbaid like to thank the
anonymous reviewers for their input on an earlier versiottisfwork.

References

[1] P.H. Welch and F.R.M. Barnes. Communicating mobile psses: introducing occam-pi. In A.E. Abdal-
lah, C.B. Jones, and J.W. Sanders, edit@bsYears of CSPvolume 3525 ol ecture Notes in Computer
Sciencepages 175-210. Springer Verlag, April 2005.

[2] Inmos Limited. occam 2.1 Reference Manual. Technicpbre Inmos Limited, May 1995. Available at:
http://wotug.org/occam/.

[3] C.A.R. Hoare.Communicating Sequential ProcessBsentice-Hall, London, 1985. ISBN: 0-13-153271-
5.

[4] M.H. Goldsmith, A.\W. Roscoe, and B.G.O. Scott. Denatatil Semantics fooccam2, Part 1. InTrans-
puter Communicationsolume 1 (2), pages 65-91. Wiley and Sons Ltd., UK, Noven9és.

[5] M.H. Goldsmith, A.W. Roscoe, and B.G.O. Scott. Denatatil Semantics fooccam2, Part 2. InTrans-
puter Communicationsolume 2 (1), pages 25-67. Wiley and Sons Ltd., UK, March4199

[6] R. Milner. Communicating and Mobile Systems: the Pi-Calcul@ambridge University Press, 1999.
ISBN: 0-52165-869-1.

[7] P. Andrews, A. Sampson, J. Bjgrndalen, S. Stepney, JmigmD. Warren, and P. Welch. Investigating
patterns for the process-oriented modelling and simulatfospace in complex systems. In S. Bullock,
J. Noble, R. Watson, and M. A. Bedau, editdkgjficial Life XI: Proceedings of the Eleventh Internatan
Conference on the Simulation and Synthesis of Living Sgspames 17-24. MIT Press, Cambridge, MA,
2008.

[8] Frederick R.M. Barnes.Dynamics and Pragmatics for High Performance Concurren®hD thesis,
University of Kent, June 2003.

[9] P.H. Welch and F.R.M. Barnes. Mobile Barriers for occamSemantics, Implementation and Applica-
tion. In J.F. Broenink, H.W. Roebbers, J.P.E. Sunter, P.EIcW and D.C. Wood, editor§ommunicat-
ing Process Architectures 200%olume 63 ofConcurrent Systems Engineering Serigages 289-316,
Amsterdam, The Netherlands, September 2005. IOS Pressl: IEB8603-561-4.

18 F.R.M. Barnes / Mobile Escape Analysis for occam-pi

[10] P.H. Welch and F.R.M. Barnes. A CSP model for mobile c¢teds1 InProceedings of Communicating
Process Architectures 2008DS Press, September 2008.

[11] A.W. Roscoe.The Theory and Practice of Concurrenddrentice Hall, 1997. ISBN: 0-13-674409-5.

[12] F.R.M. Barnes, P.H. Welch, and A.T. Sampson. Barrieckyonisations for occam-pi. In Hamid R. Arab-
nia, editor,Proceedings of PDPTA 200pages 173-179, Las Vegas, Nevada, USA, June 2005. CSREA
press.

[13] F.R.M. Barnes and P.H. Welch. Mobile Data, Dynamic &ftion and Zero Aliasing: aoccam Exper-
iment. In Alan Chalmers, Majid Mirmehdi, and Henk Muller,iteds, Proceedings of Communicating
Process Architectures 200I0S Press, September 2001.

[14] P.H. Welch, F.R.M. Barnes, and F.A.C. Polack. Commatiigy Complex Systems. In Michael G.
Hinchey, editorProceedings of the 11th IEEE International Conference ogigering of Complex Com-
puter Systems (ICECCS-2006ages 107-117, Stanford, California, August 2006. IEESBN: 0-7695-
2530-X.

[15] F.R.M. Barnes and P.H. Welch. Prioritised dynamic caminating and mobile processd&E Proceed-
ings — Softwarg150(2):121-136, April 2003.

[16] J.C.P. Woodcock and A.L.C. Cavalcanti. The SemanticGiiwus. InZB 2002: Formal Specification and
Development in Z and,Brolume 2272 ot ecture Notes in Computer Scienpages 184—-203. Springer-
Verlag, 2002.

[17] S. Schneider and H. Treharne. Communicating B MachineszZB 2002: Formal Specification and
Development in Z and,Biolume 2272 oL ecture Notes in Computer Scienpages 251-258. Springer-
Verlag, January 2002.

[18] F.R.M. Barnes, C.L. Jacobsen, and B. Vinter. 8 a Raw Metaloccam Experiment. In J.F. Broenink
and G.H. Hilderink, editorsCommunicating Process Architectures 2008 TUG-26, Concurrent Sys-
tems Engineering, ISSN 1383-7575, pages 269—-288, AmstefHlae Netherlands, September 2003. 10S
Press. ISBN: 1-58603-381-6.

[19] Carl G. Ritson and Frederick R.M. Barnes. A Process@ei@ Approach to USB Driver Development.
In Alistair A. McEwan, Steve Schneider, Wilson Ifill, and BeiVelch, editorsCommunicating Process
Architectures 200,7volume 65 ofConcurrent Systems Engineering Serigages 323—-338, Amsterdam,
The Netherlands, July 2007. 10S Press. ISBN: 978-1-58@¥33/

[20] Young Gill Park and Benjamin Goldberg. Higher orderase analysis: Optimizing stack allocation in
functional program implementations. Rroceedings of ESOP '9@olume 432 oLLNCS pages 152-160.
Springer-Verlag, 1990.

[21] B. Joy, J. Gosling, and G. Steelélhe Java Language Specificatioddison-Wesley, 1996. ISBN:
0-20-163451-1.

[22] Bruno Blanchet. Escape analysis for Java(TM): Theowy gractice ACM Transactions on Programming
Languages and Systen25(6):713—-775, 2003.

[23] Kyungwoo Lee, Xing Fang, and Samuel P. Midkiff. Praatiescape analyses: how good are they? In
Proceedings of VEE 'Qpages 180-190. ACM, 2007.

[24] Frederick R. M. Barnes and Carl G. Ritson. Checking psseoriented operating system behaviour using
CSP and refinement. IRLOS 2009ACM. To Appear.

