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Abstract

This thesis argues that there is a modern, broad and growing need for programming
languages and tools supporting highly concurrent complex systems. It claims tradi-
tional approaches based on threads and locks, are non-compositional and do not scale.
Instead, it focuses on occam-pi, a derivative from classical Transputer occam whose
process oriented concurrency model is based on a combination of the formal algebras of
Hoare’s Communicating Sequential Processes and Milner’s pi-calculus. The advent of
hybrid processors such as STI’s Cell Broadband Engine, which consists of a PowerPC
core and eight vector co-processors on a single die, NVidia’s graphics-processor based
CUDA architecture and Intel’s upcoming Larabee require new programming paradigms
in order to be used effectively. occam-pi’s compositional concurrency model simpli-
fies the management of complexity of concurrent programs and is capable of filling the
technological gap that the new processors are creating in terms of the lack of expressive-
ness of concurrency in current programming languages. occam-pi’s formalised basis
allows reasoning about programs using formal methods techniques and avoids common
concurrency errors though compile-time verification.

The Transterpreter, a new portable runtime for occam-pi reduced the cost of porting
occam-pi to new platforms to a minimum. Further extensions to the Transterpreter
enable hardware-specific enhancements to the support library, making it possible to
implement and evaluate occam-pi on new platforms in a relatively short time.

The work reported in this thesis makes use of this ability and presents implemen-
tations of the Transterpreter on new and interesting processors, evaluating the use of
process oriented concurrency as a programming model on such processors. Additional
infrastructure that is required to make occam-pi useful on such architectures is pre-
sented, such as interfacing with legacy languages, thereby providing support for ex-
isting libraries and device drivers. Furthermore techniques for making use of vector
processing capabilities that are offered by these new architectures are described.

This thesis claims that the work presented makes a useful contribution to simpli-
fying the design and construction of complex systems through the use of concurrency.
By enabling both the language and the runtime to support new architectures through
libraries, device drivers and direct access to hardware, it enables that contribution for
learners and advanced engineers working with novel hardware.
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Chapter 1

Introduction

This thesis demonstrates that the occam-pi programming language provides a set of

abstractions that are well suited to modern parallel processors and provide a path for

the parallelisation of existing programs. This is achieved using the Cell Broadband

Engine and the Transterpreter as its primary case study.

occam-pi [BW04] builds on the formal algebras of CSP [Hoa85] and the pi-calculus

[Mil99, MPW92] to create a novel concurrent programming language. The language

encourages concurrency as a design methodology — process oriented programming —

by providing explicit support for concurrency as part of the language’s syntax and se-

mantics. occam-pi is a superset of the occam2.1 language [INM84c] and continues

the tradition of providing safe, composeable and lightweight concurrency for program-

mers. occam2.1, initially designed for use on the Transputern [INM88, Wik07] and

later adapted for other processors [DHWN94, Bar01, WW96], was used in numerous

applications ranging from embedded control to large computationally intensive appli-

cation [RWW91, DBB+93].

Previously occam-pi has focused on the use of the language on desktop-class com-

puters and commodity clusters and supported only Intel platforms resulting in a nar-

rower application area for occam-pi. To broaden application support the Transterpreter

runtime and virtual machine [JJ04, JJ05] for occam-pi was created, which enabled

the language to be used, for example, on embedded platforms with limited amounts

of memory [JJ05, SJJ06]. The Transterpreter is written in C and relies on the general

1
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availability of C compilers for most platforms. This enables the occam-pi developer to

concentrate on exploring applications of the language on new and interesting platforms

by simplifying the process of porting the runtime.

1.1 A Portable Runtime for occam-pi

One of the original motivating platforms for which the Transterpreter was developed is

the LEGO Mindstorms RCX [Gro04]. The RCX is an inexpensive robotics set, consist-

ing of a 16-bit microprocessor with 32KB of RAM and three sensor inputs and three

motor outputs, providing the facilities required to build small robots. This platform

was chosen as it provides a compelling vehicle for the teaching of concurrency using

the occam2.1 programming language. Even though the Transterpreter’s design was

motivated by a small embedded device — the RCX — it also provided a means to run

occam-pi on previously unsupported platforms. On a 16-bit platform, such as the RCX,

the Transterpreter binary is around 11KB in size and 6KB of the total 32KB being used

by the RCX firmware, leaving approximately 15KB of RAM available for program byte

code and memory required for execution of the program. This opens new application

areas for the occam-pi language, including sensor networks and small-scale robotics.

The Transterpreter executes a concise byte code based on the Extended Transputer

Code (ETC) instruction set, a superset of the original Transputer instruction set, first

described by Michael Poole in [Poo98]. OCC21 — the occam compiler — generates

ETC as an intermediate step in the compilation process. Previously ETC was translated

to a processor’s native assembly by tranx86 and linked with the CCSP runtime library

which provided the necessary environment for an occam-pi program execution. The

Transterpreter replaces tranx86 and CCSP in the compilation process, and due to its

design, allows for relatively quick retargetting of occam-pi to new platforms. This

thesis explores usage of the Transterpreter on new platforms where the availability of

occam-pi can prove to be a compelling alternative compared to the currently available

languages.
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1.2 Controlling C

While the Transterpreter simplifies occam-pi’s cross-platform portability, and makes

the language available on embedded devices, giving it a broader range of uses, it does

not facilitate the re-use of existing software libraries. The ability to re-use software

is key a key factor ensuring that a language is both useful and extensible. occam-pi

has support for interfacing with such libraries; however the process of creating such an

interface requires a large amount of manual effort. To facilitate the reuse of existing

software and decrease the amount of effort required to interface with new libraries and

hardware, a less labour intensive approach is needed. An automated approach is also

invaluable for the maintenance of interfaces to evolving libraries and APIs.

A popular library interface generator framework — SWIG — [Bea96] has been

extended to support occam-pi as part of this thesis. This broadens the scope of ap-

plications for the occam-pi language enabling it to be used as a control language for

existing libraries as well as interfacing with new platforms. The occam-pi wrapper

generator provides a reusable mechanism for interfacing with such libraries, allowing

a programmer to migrate existing code to be used with a safe and robust concurrent

language. This supports the motivations for this thesis by promoting reuse of existing

libraries and code to bootstrap and speed development of occam-pi on new and existing

platforms.

1.3 The Cell Broadband Engine and occam-pi

As the primary case study for parallelising existing software, occam-pi is used as a

control language on the Cell Broadband Engine. The Cell Broadband Engine [Pha05,

KDH+05] (which will be referred to as the CBE or Cell), a processor developed by

Sony, Toshiba and IBM, is a good example of a processor that benefits from a language

that supports concurrency. It was developed for multimedia/streaming purposes focus-

ing on high levels of vector processing capability and high sustained memory band-

width. At its core lies a Power5 [RSJ04] (PPC) based processor which is combined



CHAPTER 1. INTRODUCTION 4

with eight SPUs [Fla05, Mue05] — dedicated vector processors that each have 256KB

programmable caches, all on a single die. The SPUs, the PPC processor and the system

memory controller are interconnected by a high speed on-chip ring bus, known as the

Element Interconnect Bus (EIB) [KPP06].

The Cell is used in applications that are computationally demanding such as multi-

media, games [Ent06] and scientific computation [WSO+06]. It is available in high-end

blade servers and also found in the widely available Playstation III games console. At

the Cell’s launch a common criticism by the developer community was that it would be

difficult to program because of its complexity [SVP07]. The cited reasons were diffi-

culty of partitioning work across the processor, having to deal with 9 distributed mem-

ory spaces and their synchronisation, and having to deal with two different instruction

sets on a single chip as the SPU processors have their own ISA [Sha06].

The Cell provides a compelling platform to use as a case study for the occam-pi

language and the Transterpreter runtime. The runtime is small enough to be able to

execute in the limited 256KB memory of the SPU processors while still providing full

support for the occam-pi language. When adapted for the Cell the Transterpreter is

able to provide language-level support for safe synchronisation and copying of data

between processes and processors which would help in addressing some of the issues

identified above.

1.4 Contributions

The central contribution presented in this thesis is an evaluation of a process oriented

programming approach to solving problems of parallel decomposition and distribution

on the Cell Broadband Engine. An implementation of the Transterpreter for the Cell is

described and programming examples are given. These are then compared to current

options for programming the Cell and their relative merits are described in Chapter

4. To support the thesis a number of further contributions which build on the ideas of

using the Transterpreter and occam-pi as a control language are presented in Chapter
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3, where the automated C interface generator is described. Finally, following the moti-

vation to expand the availability and utility of occam-pi, the development of support

for hardware based vector processing as well as ports of the Transterpreter to other

platforms are described Chapter 6. Further minor contributions discussed in this thesis

include:

• A proposal for an extension to the languages syntax to support vector processing

implicitly.

• Extensions to the Transterpreter runtime to support faster floating point calcula-

tions and adding support for newer occam-pi language features including some

of the mobile pi-calculus features and barriers.

• An experimental multi-pass1 occam-pi compiler, “42”, for the purpose of rapid

prototyping of new language features. The ideas developed in this compiler led

to the development of the Tock compiler which expanded and improved on “42”s

achievements.

• A port to the Transterpreter to the ARM based Nokia S60 and Gameboy Advance

platforms as candidates for robotic controllers using occam-pi. An evaluation of

this work is provided.

1.5 Publications

The authors key contributions are described in a number of publications which are

referred to throughout this thesis. The work on automated foreign function interfaces

is described in [DJ05]. The publication [DJJ06] describes the authors initial work on

the Cell BE. [JDC06] describes the work on the “42” compiler and the results of the

experiment. A further publication to which the author contributed is [JJD06] which

describes the use of the Transterpreter in sensor networks. Additional contributions

1Each transformation of the parse tree is a separate pass
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where made in [JJ07] which describes an environment for teaching concurrency and

paralellism through robotics simulation.

1.6 Organisation

Chapter 2 provides background information about the occam-pi language, its develop-

ment history, the current state of the tools and environments surrounding the language.

It also gives details about the Transterpreter’s implementation. The implications of us-

ing occam-pi on a distributed memory system are discussed and some background

about commonly used methods for programming parallel and distributed memory sys-

tems are presented. Chapter 3 describes the SWIG-occam-pi module for automatically

generating C bindings for occam-pi and its use. Chapter 4 details the internals of the

Cell Transterpreter, its use and how it compares to other methods of programming the

Cell. Chapter 5 describes a cross-platform vector processing library and other findings

that arise as a result of the work performed for this thesis. Other contributions such as

the “42” compiler, occam-pi on robotics platforms as well as other experiments con-

ducted during this thesis are described in Chapter 6. Finally, conclusions and future

work are described in Chapter 7.



Chapter 2

Background

The occam family of languages are based on the Communicating Sequential Process

[Hoa85] calculus (CSP), a formal algebra that can be used to describe concurrent, com-

municating processes, and allows one to reason about them mathematical. occam pro-

cesses, like CSP processes, can be run either sequentially or in parallel. When run in

parallel processes must communicate over well defined channel interfaces. The seman-

tics of the occam languages permit compile-time analysis of programs which detect

and prohibit many common problems faced in concurrent programming.

The occam1 [INM84b] programming language was first released in 1983. An up-

dated version of the language occam2 [INM84c] was released in 1986, followed by

occam2.1 [INM95] which was released in 1988. occam2.1 became the de-facto stan-

dard way of writing occam programs and was the preferred version of the language,

containing many features expected in a modern language at the time that occam1 did

not have. occam-pi [BW02], first introduced in 2001, is a source-compatible succes-

sor to occam2.1. occam-pi underwent a number of extensions and had new features

added over time. It is the most modern variant of occam, and as such is the primary

language used in this thesis.

Originally occam was compiled for the Transputer, a processor developed in tan-

dem with the occam language. As the availability of the Transputer processors dimin-

ished in the 90’s, occam2.1 was retargetted at processors such as the PowerPC, Sparc,

IA32, SHARC DSP and Alpha [SARW98, WW96, Bar01, BOS+96, WP97] through

7
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the KRoC compiler, OCC21, created as part of the occam-for-all (OFA) project. Two

approaches to retargetting occam existed. The first approach modified OCC21 to di-

rectly generate binary code for each new target architecture. The second and currently

used approach, first proposed in [Poo96], created a version of OCC21 which outputs

an intermediary representation, which is translated to binary using a separate tool. The

intermediary representation initially used was Transputer assembly, and later an ex-

tended transputer assembly (ETC) [Poo98] as the compiler evolved. ETC in turn would

be translated to native assembly by an architecture-specific translator then no longer

requiring modification of the compiler and significantly reducing the time it takes to

port the compiler to a new architecture. Shortly after the release of the first Trans-

puters in 1984, occam1 was made available through the Portakit [INM84a, Bra85].

This occam1 interpreter ran on a variety of systems, however it was said to contain

errors in the occam model and was not compatible with future versions of the lan-

guage. After the demise of the Transputer in the early 1990’s a Transputer emulator

[Hig97] was created for the purpose of running native transputer binaries which al-

lowed for the execution of occam1 and occam2.1 programs. More recently however

OCC21, evolved to compile the occam-pi language which contains many features not

supported on the original Transputers. OCC21 only targets the extended transputer as-

sembly (ETC) which is not binary compatible with the original instruction set. Another

compiler, SPoC [DHWN94], took a different approach and generated target indepen-

dent C code instead of translating occam2.1 programs into native assembly. The SPoC

compiler has not been actively maintained and is not able to compile the newer occam-

pi language.

More recently the Transterpreter, a virtual machine, enables almost direct execution

of the ETC that Poole’s OCC21 produces leading to a greater degree of hardware inde-

pendence for both the occam and occam-pi languages. This enables the language to

be used and evaluated on new types of hardware/platforms avoiding the need to write

a new translator, further reducing the time and effort required for porting. In particular,

at the time of the Transterpreter’s inception, all but the support for the IA32 platform

had fallen into disuse, due to the overhead required in maintaining the native compiler
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translators.

In particular, the Transterpreter allowed occam-pi to be used for educational pur-

poses on platforms such as the LEGO Mindstorms a small robotics platform that pro-

vides a compelling environment on which students can explore and learn about concur-

rency. Teaching concurrency on an engaging platform like the LEGO Mindstorms was

one of the primary motivations for creating the Transterpreter.

2.1 Key occam Concepts

This secton presents key occam syntax, and is inteded to give an overview of the oc-

cam languages features before going on to explain how the Transputer hardware and

occam are related. For a more in depth guide to the occam2.1 language please refer

to the freely available Jones’ “Programming in occam 2” [JG88] or Burns’ “Introduc-

tion to the Programming Language Occam” [Hyd95], both of which are relevant to

occam-pi as it shares and extends occam2.1’s syntax.

2.1.1 Going Parallel

Everything in occam programs is a process. occam syntax uses the PARallel and

SEQuential keywords to denote whether a list of processes should run in parallel or

in sequence. Implicit barriers at the end of PAR blocks ensure that parallel processes

are synchronised upon completion, which on their own result in entirely determinis-

tic programs because updates on shared data are disallowed. For example, in Listing

2.1, process1 executes first and on completion, process2 and process3 execute

in parallel, only continuing on to process4 once both processes complete. Starting

multiple processes in occam has very low start-up and shut down costs and, when

running, the cost of a context switch is very low. In stark contrast to operating sys-

tem processes or even threads, occam processes are extremely light-weight and use

co-operative scheduling.
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SEQ

process1

PAR

process2

process3

process4

Listing 2.1: Mixing sequential and parallel.

2.1.2 Channel Communication

occam channel communication is unidirectional, blocking and point to point. Because

of these properties each communication is also a synchronisation point, and the system

is in a known state. Non-determinism must be introduced explicitly using a specific

syntax. These properties, based on the rules of the CSP calculus, are what enable for-

mal reasoning about concurrent systems created with occam. They allow the compiler

to check for many common concurrency errors at compile time, and permit run-time

deadlock detection. For example, Listing 2.2 shows a deadlock scenario which would

be detected at compile time, and the corrected version in Listing 2.3 which would pass

the compilers checks. Syntactically channels in occam are defined with the CHAN key-

word, and communication on channels is denoted using the send ! and receive ? sym-

bols. Processes wishing to communicate through channels must be run in parallel, oth-

erwise deadlock would occur because of the blocking nature of channels.

CHAN BYTE a:

BYTE var:

SEQ

a ! ’a’

a ? var

Listing 2.2: Channel communication resulting in Deadlock.
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CHAN BYTE a:

BYTE var:

PAR

a ! ’a’

a ? var

Listing 2.3: Channel communication not resulting in Deadlock.

2.1.3 Introducing non-determinism

The ALTernate construct is used to introduce non-determinism in to parallel programs.

The ALT keyword allows the arbitrary selection of input from a set of channels, and

hence allows for explicit non-determinism to be introduced into the language. This

is useful as it allows a process to monitor multiple channels simulataneously, and is

desirable to design complex systems of processes.

2.1.4 A simple occam program

In the occam languages syntax scope is determined by indentation. A program will

typically start with a single top level process, with keyboard (keyboard input), screen

(stdout) and error (stderr) channels channels which provide the interface to a terminal

on the users computer. These are special channels in that they are runtime dependent

and can be specified arbitrarily by the languages implementation to suit the target ar-

chitecture. An occam program running on a non-desktop device may not need console

I/O, and could therefore have a different default set of channels available to it for in-

terfacing with the system. The starting process is, by convention determined by being

the last process specified in the compiled file and is not specified by name as in many

other languages. Listing 2.4 shows a “Hello world” program in occam-pi. This pro-

gram demonstrates, PROCess, CHANnel and VAL ... IS ... (constant) declaration

as well as SEQential replication and channel communication. The program begins by

declaring an array of characters, i.e. a string constant. It then iterates over all of the

values in the array and sends them through the scr channel using the write — ! —
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operator, printing each character to the terminal.

PROC hello(CHAN BYTE kyb?, scr!, err!)

VAL BYTE str IS ’Hello world∗n’:

SEQ i = 0 FOR SIZE str

scr ! str[i]

:

Listing 2.4: A “Hello world” program in occam-pi

2.1.5 occam and the Transputer

The design of the occam language and the inception of the Transputer processor family

are closely related as the Transputer processors were designed with hardware support

for executing and scheduling very lightweight concurrent processes. This permitted

very fast context switching and supported occam’s parallel and channel communica-

tion constructs.

Transputers also had the ability to interconnect with other Transputers to form net-

works of Transputers enabling true parallelism as shown in Figure 1. To support this,

each Transputer had four unidirectional high speed links which where used as processor

interconnects, and would allow the creation of networks of arbitrary topologies, within

the constraints of the available links. The occam language was designed to support net-

works of Transputers such that processes, or groups of processes could be statically as-

signed to individual processors. Processes would communicate with each other through

occam channels which could either be mapped in memory for intra-processor commu-

nication or, bound to the hardware links allowing both interprocess and interprocessor

communication using the same communication syntax.

Transputers could be configured through software to act as routers to enable any

given processor/process to communicate with any other processor/processes. The lat-

est version of the Transputer, the T9000, also supported connectivity to other proces-

sors through a hardware router, allowing arbitrary inter-processor communication. The

T9000 also permitted multiple channels to be mapped onto a single link and the runtime

was able to multiplex these automatically.
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Transputer Transputer

Transputer

Transputer

Transputer

Host pc

....

........

Figure 1: An example network of Transputers.

Each Transputer had its own memory in which to store data and programs, and

all communication, including bootstrapping, to the outside world occurred through the

high speed links. The nature of the links, and the Transputers main application area,

embedded computing with limited memory, meant that occam had to be a very static

language, with predictable memory and interconnectivity requirements. The interoper-

ation of the occam language and the Transputer are relevant as their hardware-software

co-design background forms the basis of the ideas discussed in Chapter 4.

2.2 Introducing occam-pi

occam-pi’s development was motivated by the desire to build large computational
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models, consisting of millions of fine grained processes. occam-pi introduces a num-

ber of features making the language more dynamic and modern and targets current

general purpose processors where the original memory and interconnect constraints

of the Transputer no longer apply. The addition of mobility features such as dynamic

memory allocation, mobile data, mobile channels, process forking and parallel recur-

sion to occam-pi, stemming from the Pi-Calculus [MPW92], allow for the creation of

large dynamic networks in contrast to the purely static networks possible in occam2.1.

Other extensions to the language include support for user defined operators and a num-

ber of new synchronisation primitives such as shared channels, extended rendezvous

and barriers and their mobile equivalent, mobile barriers. These developments are de-

scribed in detail in a series of papers mainly by Barnes and Welch [WB05, BWS05,

BW04, BW02, BW03a, WB01, WM99] and in Barnes’s thesis [Bar03a].

The latest versions of occam-pi on KRoC execute on IA32 compatible single and

multi-core systems, allowing one to write programs that scale with the availability of

additional cores. This has redefined the way occam-pi programs are written, as one

does not need to consider the network of processors and their interconnects when de-

signing programs, merely splitting the tasks into small enough chunks to allow them

to execute concurrently without requiring that the programmer specify the location of

execution. When clusters of such machines are used however, programs must be writ-

ten with some thought regarding the underlying architecture, as interconnect bandwidth

and data locality need to be considered.

The occam-pi compiler goes to great lengths to help the programmer in designing

correct concurrent programs, not only by performing syntax checks but also by attempt-

ing to enforce necessary parallel safety rules at compile time. The compiler enforces

strict aliasing rules, disallows parallel use of variables and channels, enforces direc-

tional channel communication, as well as performing type checks and warning when

undefined variables are used. Issues of deadlock, live-lock and starvation are not ad-

dressed by the compiler, but the runtimes are able to detect deadlock at execution time.

Deadlock, live-lock and starvation can be addressed by using certain design patterns

[JW92] when writing occam-pi programs or by model checking them using a tool



CHAPTER 2. BACKGROUND 15

such as FDR [For00].

The following sections outline the language features in occam-pi relevant to this

thesis.

2.2.1 Dynamic memory and dynamic replication

The addition of dynamic memory support to the occam-pi language has allowed the

language to become useful on more modern systems with larger amounts of available

memory. The FORK keyword for example allows new processes to be spawned at run-

time. This is useful in scenarios such as servers, where new processes can be spawned

and terminated dynamically to deal with incoming requests. FORKed processes only al-

low shared channels, mobile channels, mobile data or constants (VAL) as parameters in

order to prevent parallel access to resources, as it is not possible to determine correct

parallel usage of data passed to forked processes at compile time.

occam-pi’s MOBILE data types permit variables to be allocated dynamically at run-

time. MOBILE data provides flexibility in program design as well as performance in-

creases. Using mobiles, it is possible to pass references where data would previously

have been copied, reducing the amount of copying required, for example, when send-

ing arrays through channels. occam-pi’s strict aliasing rules ensure safe parallel usage

— references to mobile data are lost by the originating process when MOBILE data are

passed as a parameter to a FORKed process or sent across a channel. In effect the pro-

grammer is unaware that they are dealing with pointers and are not exposed to any of

the dangers associated with them in other languages.

Furthermore, features such as process recursion, dynamic (run-time determined)

replication counts in PAR blocks and MOBILE channels — where channel ends may

be passed between processes through channels — allow occam-pi more flexibility in

program design than its static precursor occam2.1.
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Binary
+ − ∗ / \ AND PLUS TIMES <= >=
/\ \/ >< OR MINUS AFTER = <>

Unary − MINUS ~ NOT

Table 1: Standard occam-pi operators.

Binary and Unary
?? @@ $$ % %% && <% %> <& &>

<] [> <@ @> @ ++ !! == ^

Table 2: Extended occam-pi operators for user defined operations.

2.2.2 User Defined Operators

User defined operators allow occam-pi’s standard operators to be redefined to work

with user made data-types, such as STRUCTures. Tables 1 and 2 show all the operators

available to a developer for use in user defined operators. The extended operators were

added to supplement the standard set of operators should they be required for more

complex data types defined by the user program or a library. User defined operators are

discussed further in Chapter 5.

2.2.3 Extended Rendezvous

The extended rendezvous allows a reading process control of when it releases the send-

ing process by extending the completion of channel communication until it is ready.

During normal communication both processes are made runnable once they have syn-

chronised and exchanged data. While this is sufficient in most cases, there are synchro-

nisation patters that can be difficult to implement using normal communications. For

example, the extended rendezvous allows a listening process to be inserted between two

processes for monitoring purposes without changing the semantics of the program. An

example of a logging process using extended rendezvous is shown in Listing 2.5. While

the same program using normal communications would have introduced buffering —

thereby changing the behaviour of the channel into which it was inserted, using the
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extended rendezvous prevents the buffering from occurring by deferring the release of

the in channel until the following process completes (in this example, the SEQ blocks

following any input). This design pattern is useful for debugging purposes or logging of

data in a running system, as well as other situations and is illustrated further in Chapter

4.

PROC log(CHAN INT in?, out!, VAL []BYTE filename):

WHILE TRUE

INT input:

in ?? input

SEQ

write.to.disk(filename, input)

out ! input

:

Listing 2.5: An sample process demonstrating extended rendezvous.

2.2.4 Clustering workstations in occam-pi

Pony [SBW03] is a clustering system that was developed for occam-pi as part of the

KRoC tool-chain. Pony builds on many of the ideas that were present in the T9000

Transputer. A cluster, composed of x86 nodes connected by ethernet, is essentially

transformed into a network of occam-pi “transputers”. An advantage of such an ap-

proach is that each node is able to communicate with every other node directly, over-

coming the Transputer’s restriction of four links. While this permits arbitrary topolo-

gies, the physical interconnect performance will vary depending on the actual topology

of the networks and needs to be taken into account if performance is important.

In order to support arbitrary channel communication between nodes, a server node

provides an inter-node channel creation and routing service. All nodes connect to this

server and can request channel connections to other nodes from it. When the server

receives such a request, it creates a mobile channel and returns the channel ends to the

two nodes that wish to communicate. Once each of the nodes has received its end of
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the mobile channel, they are able to communicate directly using occam-pi’s channel

communication semantics. Once a network channel is set up, the channel’s end points

can be passed to other nodes, allowing the network of occam-pi nodes to be adjusted

dynamically.

2.3 The Anatomy of an occam-pi Program

The occam-pi language’s tool chain currently has two runtimes and three compilers.

While other compilers for occam2.1 exist, they are no longer of interest to this thesis

as they do not support the new occam-pi language. This section gives an overview

of the currently available runtimes and compilers. A diagram depicting the possible

compilation processes of an occam-pi program can be see in Figure 2.

OCC21

Source Files

TCE's

Tock CIF Sources

Tranx86

CCSP

gcc

IA32 
Binary

TBC 
Binary

TVM
Linker

C or assembly is
compiled and linked

asm

TCE is converted to 
transterpreter bytecode

Figure 2: A graphical representation of the occam-pi compilation process.

2.3.1 Runtimes

The two runtimes currently available for occam-pi are CCSP [Moo99] and the Transter-

preter [JJ04], which is described in detail in Jacobsen’s thesis [Jac08]. The runtimes

for occam-pi provide the execution environments that occam programs require such

as scheduling and memory allocation. The runtimes contain some features commonly

found in operating-systems and have been used as a basis for the formation of small

concurrent operating-systems and operating-environments [BJV03, SJJ07].
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2.3.2 CCSP

CCSP is a runtime for occam-pi written using a mix of C and assembly, currently

only available for IA32 based machines. The first versions of CCSP were written for

SPARC and Alpha, and where only ported to IA32 based architectures much later. In

the meantime the IA32 architecture has become the only platform fully supported by

CCSP as the ubiquity of IA32 based computers increased.

CCSP currently has good support for single-core as well as multi-core and SMP sys-

tems. It has a sophisticated scheduler [RSB09, Vel98] that dynamically creates batches

of concurrent occam-pi processes which are split across operating system processes,

enabling them to execute in parallel on multiple processors. The occam-pi processes

are load-balanced dynamically by determining process locality based on frequency of

communication between processes and by work “stealing”.

CCSP has support for CIF [Bar05] — a novel way for interfacing occam-pi and

C. CIF allows occam-style processes to be written in C and provides ways to commu-

nicate on channels with other C or occam processes. CIF on its own comes with the

usual dangers of programming in C, and does not allow for the checking of any possible

concurrency errors at compile time.

CCSP also offers very high levels of performance in terms of context switching, and

execution as occam and CIF programs are compiled to the processors native assembly,

and critical parts of CCSP are hand optimised for performance. CCSP is currently used

for research in the modelling of complex systems (such as TUNA [tun05], CoSMoS

[WSST08] and as the core of the RMoX [BJV03] operating system).

2.3.3 The Transterpreter

The Transterpreter, whose name is derived from “a Transputer Interpreter”, is a virtual

machine designed to run the extended transputer instruction set (ETC). The Transter-

preter was designed to be a portable runtime for the occam-pi programming language.

The choice of byte code was not difficult, as OCC21, the occam-pi compiler already

targeted this virtual assembly language. ETC is well documented as it was based on the
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Transputer instruction set which is described in detail in “Transputer instruction set:

a compiler writer’s guide” [INM88]. Changes and additions to the original instruction

set are documented in the source of the IA32 translator for ETC in the form of C code

as well as Barnes’ and Jacobsen’s theses [Bar03a, Jac08]. The runtime is written to

include support for all of occam-pi, but is configurable to allow various features of

the language to be disabled in the runtime, predominantly to save memory on small

platforms, or to exclude them should they not be necessary for a given application.

For example, support for dynamic parts of the language can be disabled, removing

the need for a memory allocator reverting the language to its static occam2.1 roots. It is

also possible to disable support for barriers or the support for floating point instructions

when floating point is not required. As an example, the first version of the Transterpreter

that was built for the LEGO Mindstorms platform needed to execute in a footprint of

less than 32KB memory. The virtual machine as well as user program and data needed

to fit into this memory space. In this case, all extraneous features where removed to

save on memory, thereby limiting certain features of the language and restricting it to

features only available in occam2.1. A version of the Transterpreter also exists with a

customised scheduler that allows multiple Transterpreters instances to schedule occam

processes across multiple processors using POSIX threads to take advantage of SMP

machines where all of occam-pi’s features are desirable.

The Transterpreter is written in strict ANSI-C and consists of a core library which

contains the interpreter and scheduler, and a platform dependent wrapper which needs

to provide the abstraction for the Transterpreter to execute and interact with the plat-

form it is running on. To date the Transterpreter has been ported to at least ten systems

including Windows, OSX (PPC and x86), Sparc/Solaris, Linux (Sparc/Mips/x86/Arm),

usually only requiring one to two weeks to port. Depending on the platform, additional

time needs to be spent writing support libraries, such as in the case of the LEGO Mind-

storms robotics kit, where interface code was required to control the robots motors and

receive input from sensors. Other experimental ports have been prototyped including

Symbian-based mobile phones and the Gameboy Advance both with the intention of

using them as control platforms for robots. These were deferred for later completion in
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favour of a more interesting platform that became available at the time, IBM’s Cell BE

processor.

The Transterpreter also provides the means of using C libraries from occam-pi

through its foreign function interface (FFI) [Woo98]. The FFI can simplify the low-level

control of hardware on embedded platforms, but more generally allows the language to

make use of existing C libraries. The C interface and an automated tool for generating

interfaces to C libraries is described in Chapter 3. The Transterpreter currently lacks

support for CIF, however a CIF compatible interface for it is planned.

One of the more interesting aspects of the Transterpreter is that it is able to provide

an execution environment for occam-pi programs that is itself written in occam-pi.

A small “operating system” in the form of a network of occam-pi processes is com-

piled into the runtime and provides services to the user’s program. For example, the

POSIX compatible wrapper for the Transterpreter implements the runtime’s deadlock

detection, keyboard input and stdout/stderr functionality. This execution environment

is adapted to target platforms as part of the porting process to provide any services rel-

evant to a platform as part of the runtime. The idea of a rich operating environment is

discussed in Chapters 3 and 4.

Newer versions of the Transterpreter have been modified to allow dynamic loading

and unloading of occam-pi programs, as well as the execution of multiple occam-

pi programs on the same virtual machine [RS08]. This is implemented using a richer

occam-pi execution environment and is loaded instead of the usual “operating system”.

This has numerous applications, such as adding the ability to debug parallel programs

by inspecting or logging the state of a running program and allowing real-time visual-

isation of program execution. Applications of this are discussed further in Chapter 4.

The Transterpreter is primarily used in education and for research in robotics and visual

programming [SJ08].
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C CIF Multiprocessor Availability Memory
interface interface scheduling requirements

Trans-
Yes No Experimental

Most
16kbterpreter platforms

CCSP Yes Yes Yes IA32 70kb

Table 3: An overview of the occam-pi runtimes.

2.3.4 Summary of Runtimes

CCSP and the Transterpreter both provide reasonable choices for use as runtimes for

occam-pi programs. The choice of runtime for a user will mostly be dictated by the

application requirements. An overview of the runtimes is shown in Table 3.

2.4 Compilers

Three compilers are currently available for occam-pi, in various stages of completion

and maturity. OCC21 and Tock [SB08b, SB08a] can be considered as stable, the third

compiler NoCC, while interesting, is still too experimental to be considered further.

2.4.1 OCC21

OCC21 is based on the original occam2.1 compiler that was written for the Transputer.

As such, the output that it produces is a superset of the assembly that Transputers used

to execute, first described in [Poo98] as Extended Transputer Code or ETC. The TCE

output from OCC21 can either be run through a specialised linker to be translated into

a format that the Transterpreter can execute or translated into IA32 assembly using

Tranx86 [Bar01].

When used in conjunction with the CCSP runtime Tranx86 is used to translate the

ETC byte code to IA32 assembly. The combination of the components OCC21, CCSP

and Tranx86, as well as the Transterpreter is commonly referred to as KRoC. KRoC

also provides the necessary infrastructure for compiling CIF and occam-pi programs

when used with CCSP.
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KRoC also comes with an extensive compiler test suite, CGTests, which is used

to ensure that OCC21 does not deviate from its original specification. The same test

suite can also used to test the correctness of a runtime’s implementation, such as the

Transterpreter or CCSP.

OCC21 not only performs syntax checks, but also goes to great lengths to enforce

parallel safety rules. Compile time verification includes banning shared access to vari-

ables and channels, ensuring that channels are used in the correct direction, verifying

that a program is free of variable aliasing and providing warnings when variables are

used with undefined values. These compile time checks ensure that a program is free

of aliasing errors and race hazards, helping a programmer create correct programs by

removing a range of common errors.

2.4.2 Tock

Tock is a new nanopass [SB08a] compiler written in Haskell, and is based on the ideas

in the experimental 42 compiler that are described in 6.2. Like OCC21, Tock passes

the all of the CGTests [INM10], the extensive occam-pi compiler test suite. occam-pi

programs compiled by Tock are translated to the CIF syntax following a series of syntax

and parallel safety checks, and then compiled using a C compiler and linked against the

CCSP runtime.

Tock has advanced verification features built in that can detect a number of common

concurrency errors at compile time, including all of the checks that OCC21 performs. In

addition to OCC21’s verification features, Tock is able to determine parallel usage cor-

rectness for dynamically sliced arrays, where the size of each array slice is determined

at runtime. This is done through the use of the omega test [Pug92]. This is a compelling

feature that makes Tock an interesting candidate for adding a Transterpreter compatible

back-end to the compiler, to ensure a higher quality of code generation.

The advantages of using CIF as a back-end are performance and portability. In order

to port the Tock tool chain, only CCSP needs to be ported to the new architecture, as
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the C code that Tock generates is portable. Tock also has a strong performance advan-

tage over OCC21 compiled programs since C compilers produce much more optimised

assembly than Tranx86 for straight-line computation. Because no ETC byte code is

produced, Tock currently has no support for the Transterpreter as a back-end, and as

such is not used throughout this thesis, although it is considered in future work.

2.5 Motivating occam-pi usage today

occam-pi is a language designed for running on multiprocessor systems, and has strict

rules about concurrency built into the language. These rules allow for compile time

checking of common concurrency problems. The language can also be formally rea-

soned about using CSP.

The Cell BE processor, in particular the SPU processors bears a resemblance to

the Transputer — they have isolated local memory and form a Multiple Instruction,

Multiple Data (MIMD) “network” of processors interconnected by high speed links.

SPUs are bootstrapped by loading programs onto them using a host processor (the PPC)

and the host processor is used for handling any operating system related tasks. While

there are differences in architecture, such as main memory being accessible to all of the

Cell’s processors — to the host processor as part of its memory map and to the SPU via

through DMA controllers — some of the Cell’s interconnect features make it possible,

and potentially desirable, to bring occam-pi to it.

The Transputer provided hardware support for many of the services occam re-

quires, which have now been replaced by software in the form of CCSP and the Transter-

preter, such as scheduling and interrupts on inter process communication. Adding these

features to SPUs in software in the form of a micro-kernel like the Transterpreter would

allow the Cell BE to function like a network of Transputers.

The advantages of such an approach are:

• Programs written in occam-pi have the benefit of compile-time checking for

concurrency, making it potentially safer to program for the Cell.
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• Work and communication can be overlapped on an SPU. By having concurrent

processes executing on each SPU computation and communication can be exe-

cuted in parallel making full use of the bandwidth of the Cell.

• Programs written for the Cell should be portable to other systems and vice versa.

Programming modern multi-core systems like the Cell is an ongoing concern. An-

nouncements of current and future processors by the world’s largest vendors indicate

that processors are developing towards “a multiple-small cores with local memory”

model similar to the Cell, such as in today’s graphics processing units.

Current limitations in memory bandwidth is the primary stumbling block to high

performance computing. The Cell’s architecture is the first step in solving this prob-

lem. The need for providing software developers with alternatives to today’s program-

ming languages based on single-threaded paradigms is clear. This thesis explores such

a language, along with the environment surrounding the language which will make it a

compelling tool for future software development.

There are three key aspects which need to be addressed in the occam-pi language in

order to make it a better general purpose programming language for modern computer

systems, particularly for the Cell. First the language has to have a reliable and reusable

means for interfacing with existing software and libraries, as presented in Chapter 3.

Second better support for the underlying hardware needs to be provided both in the

language (presented in Chapter 5) and third the Transterpreter runtime (presented in

Chapter 4). There is a strong overlap between these aspects. Libraries are often consid-

ered as part of a language itself. A language’s functionality also depends on services

provided by the runtime that cannot come in the form of a library. These three aspects

are discussed over the course of this thesis.



Chapter 3

occam-pi as a control language

This chapter presents a tool for rapid and automated wrapping of C libraries for occam-

pi. It provides both a valuable tool for the end user as well as important support for the

work presented in this thesis. The tool has also been used in new occam-pi research

and development, which is detailed further in Section 3.10.1.

The tool presented in this Chapter builds on the existing foreign function inter-

face (FFI) [Woo98] that exists in occam-pi. By automating the wrapping of foreign

libraries, access can be provided to a large existing code-base from within occam-pi

without a prohibitively large investment in time. Both language developers and users

will benefit as both will be able to add support for new libraries easily.

SWIG (Simple Wrapper and Interface Generator) [Bea96] is a multi-language for-

eign function interface generator, providing the infrastructure needed for automatic li-

brary wrapping. Support for the generation of wrappers for individual languages is

provided by self-contained modules, which are added to SWIG. The remainder of this

chapter deals specifically with the occam-pi SWIG module1 created as part of this

thesis work.

1The occam-pi module is not at the time of writing part of the official SWIG distribution, it is
however available from http://projects.cs.kent.ac.uk/projects/swigoccam/trac/ as source.

26
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3.1 Background and motivation

It is not always feasible to program an entire solution to a problem in occam-pi. Appli-

cations needing to deal with file I/O, graphical user interfaces, databases or operating

system services, are not possible unless a very large existing code-base is rewritten in

occam-pi or made available to occam-pi through existing foreign libraries implement-

ing such services.

Therefore occam-pi’s foreign function interface exists to enable programmers to

reuse existing C code or write certain portions of an application in C. It does, however,

require a large amount of wrapper code to interface a library with occam-pi. This may

not be a big problem when dealing with small amounts of code, but writing a wrapper

for even a relatively modest library can quickly become time-consuming and tedious,

and therefore, error-prone. This becomes a further problem when one considers that

the library being wrapped can evolve over time, and the wrappers must be updated to

reflect changes in the library in order to be useful.

As an example two GUI frameworks using hand-wrapped C bindings for occam-pi

where started and brought to proof-of-concept stages without automated tools to assist

in the wrapping process. Sadly these framework where never completed. Both projects

indicated the excessive time and effort required to provide a complete library wrapping

as reasons for only implementing a subset of the libraries functionality. The first library

was GTK [GTK05], a popular open source GUI toolkit, which was used as the basis

of an occam2.1 library wrapper and drawing manager [Whi00]. The other was for the

X11 Window Gadgets toolkit [Bar03b, Sto03] that, in addition to generating occam-

pi wrappers, implements an advanced rendering manager using occam-pi’s mobility

features. While more effort was put into creating powerful programming models for

the graphics systems than creating wrappers, the time taken to create interfaces to the

subset of functionality that was made available could have been better spent developing

the frameworks further.

Without better access to existing libraries and code, it may be difficult to argue
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that occam-pi is a better choice for developing large, complex systems than other lan-

guages. In order to leverage the large amount of existing work and infrastructure that

is provided through operating system and other libraries interfacing with C must be

simplified. It is imperative for the success of occam-pi that it is able to make use of the

large amount of existing work, in the form of system, graphical, database, and highly

optimised scientific libraries which are readily available, and which will add important

functionality to occam-pi.

occam-pi is a language suited to the parallelisation of existing programs. A number

of other high level languages (such as Python or Java) are used as control or infrastruc-

ture languages for legacy C code, allowing the user to combine the ability to express

concepts more concisely than would be possible in C, while still harnessing the speed

and power of the existing C code. The existing C code may be in the form of libraries,

legacy applications, or new code specifically written for an application to speed up key

parts. High level languages are able to provide features not found in C such as pattern

matching and higher order data structures. In addition occam-pi provides a powerful

set of concurrency primitives that are not available in C and hence can be used to solve

problems that would otherwise be difficult to express in C.

Software written in higher level languages is often considered to be simpler to main-

tain than lower level programming languages in terms of the infrastructure that one is

able to create with them. Beazley [Bea97] stated that the overall quality of software,

including that of the faster, lower level code was improved through the use of a stricter,

more structured control language, Python, as the legacy code is adapted to work better

with the control infrastructure. The intent is to achieve a similar result with occam-pi.

3.2 Integrating libraries into occam-pi

C libraries are usually written for sequential, event driven programs and often lack

support for parallel paradigms. When used from occam-pi it is desirable to have an

occam-pi-like framework built around them which is more in line with a process-

oriented programming model.
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In contrast to the more commonly used event model, which languages such as Java

or C use, the process oriented programming model arguably encourages a more realistic

description of real world events by allowing processes to react to specific events on

distinct event channels, as opposed to having a single event-queue for all events.

The commonly used event model tends to use potentially hard to track callback

mechanisms for processing events. For example, Java’s SWING has a single very large

event loop which, on receiving an event, triggers a call-back and runs a function or

method assigned to deal with that event. Programs written using this type of single-

event driven model end up being structured in a manner that only allows one event

to be processed at a time. A program’s flow is then traceable back to a single event

and runs into problems if more events occur while the previous event is still being

processed. The single-event model is arguably an oversimplified representation of the

real world, in which multiple events can occur simultaneously. A single event loop is

unable to deal with simultaneous events and often lacks the means to assign priority to

events should there not be enough resources to process them simultaneously. In terms

of concurrency, these are pitfalls that can lead to programs that are difficult to write

and maintain and which can suffer from race conditions and deadlock. Arguments have

also been made suggesting that concurrency should not be implemented in the form

of libraries [Boe05], giving further support for languages like occam-pi which have

concurrency primitives.

occam-pi’s equivalent “event model” is implemented using occam-pi’s channel

communication which permits mapping, as well as prioritising of specific events. It

is possible to set up a system which can either have separate processes (independent

‘event loops’) always ready to intercept events or to have a system which is able to

prioritise on multiple simultaneous events. This type of a system is arguably better

suited to describing and processing events in the real world than the sequential event

models implemented by languages such as Java or C as it can mimic concurrency in the

real world.

occam-pi’s compiler and concurrency primitives provide a degree of security and

error checking that C or Java cannot. Being able to make use of existing C code from
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a programming language that is able to provide such guarantees is likely to reduce the

scope for common concurrency errors.

When creating occam-pi interfaces to C libraries which use an event loop or call-

back based mechanism it is possible to abstract over the common event model by having

separate processes or channels which respond to specific events. As well as enabling

wrapping of C libraries for occam-pi it would be beneficial to integrate the wrapped

libraries to fit better with the occam-pi programming model. Being able to abstract

control logic into separate independent components can allow a programmer to create

software in a more structured manner. Such abstraction can be built faster with the help

of automated tools by generating an interface to existing libraries, which can then be

used as the foundation for a process oriented framework for using these libraries.

3.3 Interface Generators

The work presented is not the first attempt to provide automatic wrapping of foreign

library code for occam-pi. The occam to C interface generator Ocinf [Lew96] was the

first widely available interface generator for occam. Ocinf generates the glue code to

wrap C functions, data structures and macros so that they can be used from occam2.1.

Since the occam-pi syntax is a superset of occam2.1 and they share the same FFI

mechanisms, it would still be possible to use Ocinf to generate interfaces for occam-pi.

Ocinf, however, has not been maintained since 1996 and relies on Lex and Yacc [JL92].

It has proven difficult to get Ocinf to work, since Lex and Yacc have evolved and no

longer support much of the old syntax. Making the Ocinf code base work with the

current versions of Lex and Yacc would require rewriting significant portions of 7,000

lines of Lex and Yacc source. With the emergence of SWIG as the de facto standard in

open source interface and wrapper generation, upgrading the Ocinf tool to work again

did not present itself as a viable option.

The SWIG framework is a general purpose code generator which has been in con-

stant development since 1996. It currently allows more than 11 languages to interface

with C and C++ libraries, including Java, Perl, Python and Tcl. SWIG is a modular



CHAPTER 3. OCCAM-PI AS A CONTROL LANGUAGE 31

framework written in C++ that by implementing a new language specific module pro-

vides the means for adding interface generation support for virtually any programming

language with a C interface. Additionally, SWIG comes with good documentation and

an extensive test suite which can help to ensure higher levels of reliability.

Uses of SWIG range from scientific computation using Python [Bea97] to an online-

business such as Google [Ste05]. While other interface generators exist, they are gener-

ally language-specific and not designed to provide wrapper generation capabilities for

other languages. SWIG was from the outset designed to be language-independent, and

this gives it a wide and active user base.

3.4 SWIG Module Internals

SWIG itself consists of two main parts; an advanced C/C++ parser, and language spe-

cific modules. The C/C++ parser reads header files or specialised SWIG interface files

and generates a parse tree. The specialised interface files can provide the parser with

additional SWIG specific directives which allow the interface file author to rename, ig-

nore or apply contracts to functions, use target language specific features or otherwise

customise the generated wrapper.

The language specific module inherits a number of generic functions for dealing

with specific syntax. Functions are overloaded by the modules and customised to gen-

erate wrapper code for a given language. The actual wrapper code is generated after

the parse tree has undergone a series of transformations. Each transformation may be

handled by SWIG’s core or may be overridden by a language specific module. Library

functions are provided to allow easy manipulation and inspection of the parse tree. The

parse tree consists of a set of nodes which are essentially hash-tables. The SWIG docu-

mentation [Bea05] provides more detail about how SWIG functions and how one would

go about writing a new language module.
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3.5 An Overview of the occam-pi FFI

The occam-pi FFI requires that foreign C functions be wrapped up in code that informs

the occam-pi compiler OCC21 [WMBW00] how to interface with a given foreign

function. This is required as the calling conventions for occam-pi and the C code differ.

The wrapper essentially presents the arguments on the occam-pi stack to the external C

code in a manner that it can use. The wrapping process is illustrated with the following

C function:

int aCfunction(char ∗a, int b);

Listing 3.1: A C function prototype

occam-pi performs all FFI calls as a call to a function with only one argument, using C

calling conventions. The argument is a pointer into the occam-pi stack, in which actual

arguments reside, placed there by virtue of the external function signature provided to

the occam-pi compiler. The arguments on the stack are all one word in length, and

the pointer into the stack can therefore conveniently be accessed as an array of ints.

In order to correctly access an argument, it must first be cast to the correct data-type,

and possibly also dereferenced in cases where the argument on the stack is a pass by

reference argument — a pointer to the actual data.

void _aCfunction(int w[]) {

(int ∗)(w[0]) = aCfunction((char ∗)w[1], (int)w[2]);

}

Listing 3.2: Converting occam-pi pointers for use in C

The code 3.2 defines an occam-pi callable external C function with the name

_aCfunction which takes an array of ints and always has a void return type. This

function’s job is to call the real aCfunction with the provided arguments, which then

performs the actual work.

The array passed to _aCfunction contains pointers to data or in some cases the

data itself, which is to be passed to the wrapped function, as well as a pointer used to

capture the return value of the called function. While a function in C may have a return
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value, external functions in occam-pi are presented as PROCs which may not return

a value directly. Instead references (addresses) of variables can be used for this task.

In cases where a function has no return value one simply omits the use of a reference

variable to hold the result of the called external function.

In essence, the wrapper function just expands the array int w[] to its sub compo-

nents and type casts them to the correct C types that the wrapped function expects. The

occam-pi components that completes the wrapping are defined as follows:

#PRAGMA EXTERNAL "PROC C.aCfunction(RESULT INT result,

BYTE a, VAL INT b) = 0"

INLINE PROC aCfunction(RESULT INT result, BYTE a, VAL INT b)

C.aCfunction(result, a, size)

:

Listing 3.3: Calling C from occam-pi

The first component is a #PRAGMA compiler directive which informs the compiler of

the name of the foreign function, its type and parameters. The #PRAGMA EXTERNAL

directive is similar to C’s extern keyword. Function names are prefixed with one of

“C.”, “B.”, or “BX.” for a standard blocking2 C call, a non-blocking C call and an

interruptible non-blocking C call respectively. This prefix is used to determine the type

of foreign function call, and is not used when determining the name of the external C

function, which should in fact be prefixed with an underscore instead (regardless of its

type): the PROC C.aCfunction will call the C function called _aCfunction as will

the “B.” and “BX.” PROC’s.

The second PROC is optional and serves only to provide a more convenient name to

the end user by presenting the wrapped function without the call type prefix. While this

is not strictly necessary, it enables the wrapper to provide an interface which follows

the wrapped library closer.

2by blocking, we mean blocking of the occam-pi runtime kernel.
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From the example above it should be clear that manually producing wrapper code

for a small number of functions is not a problem. However writing such code for larger

bodies of functions is laborious and error prone. The OpenGL [MWS99] library is

prime example of a library where automation is preferred, as the library consists of

over five hundred functions and is constantly growing.

More information on how to use KRoC’s foreign function interface and various

types of system calls can be found in Wood [Woo98]. Details of performing non-

blocking3 system calls from KRoC can be found in Barnes’ [Bar00].

3.6 SWIG and the occam-pi FFI

3.6.1 Using SWIG to Generate Wrappers

The wrapper code generated by SWIG is much the same as one would generate by hand

as demonstrated above. This section provides more detail on how the occam-pi SWIG

module performs the mapping from the interface file to the generated wrapper.

3.6.2 Generating Valid occam-pi PROC Names

In order to allow C names to be mapped to occam-pi, all ‘_’ characters must be re-

placed by ‘.’ characters. This is done as the occam-pi syntax allows ‘.’ but not ‘_’

characters in identifier names. A function like int this_func(char a_variable)

would map to PROC this.func(RESULT INT r, BYTE a.variable). The only

real effect this has is on function and struct names since parameter names are not

actually used by the programmer.

3.6.3 Auto-generating Missing Parameter Names

SWIG needs to generate parameter names automatically for the occam-pi wrappers

should they be absent in function definitions. Consider a function prototype such as:

3they execute in a separate os-thread, not blocking the occam runtime.
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int somefn(int, int);

SWIG will automatically generate the missing parameter names for the PROCs which

wrap such functions. This does not affect the user of the wrappers, as the parameter

names are of no importance, other than possibly providing semantic information about

their use. Parameter names are however necessary in order to make the occam-pi wrap-

per code compile.

The code listed in above would map to a PROC header similar to:

PROC somefn(RESULT INT ret.value,

VAL INT a.name0, VAL INT a.name1)

The occam-pi module for SWIG generates unique variable names for all auto-

generated parameter names in PROC headers, ensuring that there is no parameter name

collisions.

3.6.4 Data Type Mappings

The mapping of primitive C data types to occam-pi are straightforward, as there is a

direct association from one to the other. The mappings are based on the way parameters

are presented on the occam-pi stack during a foreign function call. For example an

occam-pi INT maps to a C int∗ (that is, the value on the occam-pi stack is a pointer

to the pass-by-reference INT and dereferencing is needed to get to the actual value).

The complete set of type mappings can be found in [Woo98].

3.6.5 Structures

C’s structs can be mapped to occam-pi’s PACKED RECORDs. Ordinary occam-pi

RECORDs cannot be used, as the occam-pi compiler is free to lay out the fields in this

type of record as it sees fit. PACKED RECORDs on the other hand are laid out exactly as

they are specified in the source code, leaving it up to the programmer (or in this case

SWIG) to add padding where necessary. As an example, the following C struct:
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struct example {

char a;

short b;

};

would map to the following PACKED RECORD on a 32 bit machine:

DATA TYPE example

PACKED RECORD

BYTE a:

BYTE padding:

INT16 b:

:

This handling of structs is somewhat volatile as it makes assumptions about the

layout of C structs and generally assumes the layout generated by current GCC com-

pilers. A structs memory layout may change depending on the compiler or archi-

tecture and may also be dependent on word-size and endianess. This makes the use of

structs a potential hazard when it comes to the portability of the generated wrapper.

Currently padding is only supported for 32 bit architectures. Support for architectures

with different word sizes can be added in the future, however as this is dependent on

matching the memory layout of a structure that could change in future compilers, this

option should be used with caution, and only in cases where the added performance is

absolutely necessary.

While the above approach permits very fast (direct) access to data in structs, in

order to ensure portability it is better to use to use the set of C accessors and mutator

functions automatically generated by SWIG for structures. These can be used by the

occam-pi program to access and mutate a given structure. The command line parameter

"-structpointers" generates get and set functions for all members of a structure and

stores pointers to a structure in an occam-pi INT. For example, the get PROC for the

member a in the structure example would be:

DATA TYPE example IS INT:

PROC get.example.a (RESULT BYTE result, example name)
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where example name is the pointer to a structure of type example and result is

where the value of the member ‘a’ will be stored.

It should even be possible for SWIG to produce code to automatically convert from

an occam-pi version of a structure to a C version (and vice versa), in order to provide

more transparent struct access to the end user. This would of course be significantly

slower than mapping the structures directly into occam-pi PACKED RECORDs.

3.6.6 Unions

A C union allows several variables of different data types to be declared to occupy

the same storage location. Since occam-pi does not have a corresponding data type,

a workaround needs to be implemented. The occam-pi RETYPES keyword allows the

programmer to assign data of one type into a data structure of another. As an example,

a struct that is a member of a union could thus be retyped to an array of bytes. This

is useful since the PROC wrapping a function that takes a union as one of its arguments

can take an array of BYTEs which are then cast to the correct type in the C part of

the wrapper. This means that any data structure which is a member of a union can be

easily passed to C. Functions which return unions can return a char ∗ which can then

be retyped to the corresponding structure in occam-pi. The remaining difficulty with

this approach is that occam-pi programmers need to make sure that they are retyping

to and from the correct type of data, as it is easy to assign the BYTE array mistakenly to

the wrong data structure and vice versa. The occam-pi compiler, like the C compiler,

is unable to check for the correctness of such an assignment.

The SWIG occam-pi module generates create and delete wrapper functions for

unions, which return a pointer to the union. This can then be used with functions that

take such a union as a parameter. Currently it is not possible to manipulate a union

directly, without casting it into a different data type, such as a struct, and then using the

structs accessor methods to manipulate it.
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3.6.7 Pointers and Arrays

In C, an array can be specified using square brackets, int a[], or via a pointer,

int ∗a. It is not always possible to know if a pointer is just a pointer to a single value,

or in fact a pointer to an array. Different wrapping functions are needed in each case.

By default pointers are treated as if they are not arrays, and mapped into a pass by

reference occam-pi parameter. If a parameter actually does refer to an array, it is pos-

sible to force SWIG to generate a correct wrapper for that function by pre-pending

‘array_’ to the parameter name in the interface file. Examples of this are provided

throughout the chapter where appropriate. When the array is declared using the square

brackets syntax, the occam-pi module automatically detects that the parameter is an

array and no annotation is required. Similarly multi-dimensional arrays specified with

square brackets are dealt with correctly as well as arrays with fixed size values, such as

int a[3].

3.6.8 Typeless pointers

The current default behaviour for type mapping void ∗ to occam-pi is to use an INT

data type. Since void ∗ can be used in a function which takes an arbitrary data type,

this restricts the use of void ∗ somewhat to only allowing INT to be passed to a func-

tion. The following example demonstrates the mapping of a typeless pointer to an array

in the OpenGL glCallLists function:

void glCallLists(GLsizei n,

GLenum type,

const GLvoid ∗lists);

Listing 3.4: glCallLists original prototype.

void glCallLists(GLsizei n,

GLenum type,

const GLvoid ∗array_lists);

Listing 3.5: glCallLists prototype modified for SWIG-occam-pi.
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In Listing 3.5 the ‘array_’ string is prepended to the ‘lists’ variable name, to indicate

that it receives an array, in contrast to Listing 3.4 which would result in the wrapped

function expecting a single value. The GLsizei n4 variable tells the function the size

of the data type being passed to it, the GLenum type variable specifies the type being

passed into the GLvoid ∗array_lists, so that the function knows how to cast it

and use it correctly. Since the default type mapping behaviour here is to type map a C

void ∗ to an occam-pi INT, or []INT if it is an array, the ability to pass it data of an

arbitrary type is lost. So, when calling glCallLists from occam-pi one always has

to specify that one is passing an integer to glCallLists, by passing the correct enum

value. Here is an example of calling glCallLists from occam-pi:

PROC printStringi(VAL []BYTE s, VAL INT fontOffset,

VAL INT length)

MOBILE []INT tmp:

SEQ

tmp := MOBILE [length]INT

SEQ i = 0 FOR length

tmp[i] := (INT (s[i]))

glPushAttrib(GL.LIST.BIT)

glListBase(fontOffset)

glCallLists(SIZE s, GL.UNSIGNED.INT, tmp)

glPopAttrib()

:

Listing 3.6: An example of glCallLists used to render text in occam-pi.

It is possible, by manually writing some C helper functions, to allow the end users

of a library to pass a greater range of data types to functions taking void ∗ parameters.

This can be done by writing proxy PROCs for every type of data that the original function

accepts. Each proxy PROC then calls one of the auto-generated PROCs that will always

expect []INT data, with the appropriate parameters. In this way it would, for example,

4GLsizei, GLenum and GLvoid are simply C typedef declarations, mapping them to int,
enum and void types respectively. These are used to enable more architecture independent code,
should types work slightly differently on other platforms.
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be possible to provide a PROCess which accepts REAL32 data, as shown in Listing 3.7,

but converts it to the type that the automatically generated wrapper function requires by

using the RETYPES syntax.

Access to PROCs accepting other types can be provided in a similar manner. It may

even be possible to let SWIG automate much of this work by using its macro system,

although it is likely this would need to be customized on a per-library basis.

PROC glCallLists.R32(VAL INT n, []REAL32 lst):

[]INT intlist RETYPES lst:

glCallLists(n, GL.FLOAT, intlist)

Listing 3.7: Data-type aware wrappers for functions that take void parameters.

3.6.9 Enumerations

C enums allow a user to define a list of keywords which correspond to a growing integer

value. These are wrapped as series of integer constants. So for an enum defined as:

enum myenum {

ITEM1 = 1,

ITEM4 = 4,

ITEM5,

LASTITEM = 10

};

Listing 3.8: An example C enum.

the following occam-pi code is generated:

−− Enum myenum wrapping Start

VAL INT ITEM1 IS 1:

VAL INT ITEM4 IS 4:

VAL INT ITEM5 IS 5:

VAL INT LASTITEM IS 10:

−− Enum myenum wrapping End

Listing 3.9: Code generated by SWIG for an enum.
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If several enumerations define the same named constant, a name clash occurs when

the wrapper is generated. If this is a problem, it is possible to change the names of the

enum members in the interface file (while not affecting the original definition). This

will in turn affect the names of the generated constants in the wrapper, thus making it

possible to avoid name clashes.

Should enum name clashes be a regular occurrence, it would be possible to imple-

ment an option of naming the enums differently to ensure that the wrapped constants

have unique names. For example, the wrapped constant names on the preceding page

could be generated using the enum’s name as a prefix to the constants name. The pro-

grammer using the wrapped code would have to be aware of the convention used in the

names of enum constants. This, second option is now implemented in the latest version

of the SWIG occam-pi wrapper.

3.6.10 Preprocessor directives

C’s #define preprocessor directives are treated similarly to enums. Any value defini-

tions are mapped to corresponding constants in occam-pi. More complex macros are

currently ignored, although there may be a way to wrap them correctly using occam-pi

preprocessor directives. Listings 3.10 and 3.11 show how some #define statements

map to occam-pi. Currently only preprocessor directives that declare constants are

mapped to occam-pi as it may not make sense to map more complex directives to

occam-pi as C macros permit the developer to do many transformations that are not

permitted in occam-pi.

#define AN_INTEGER 42

#define NOT_AN_INTEGER 5.43

Listing 3.10: Sample preprocessor directives in C.

VAL INT AN.INTEGER IS 42:

VAL REAL64 NOT.AN.INTEGER IS 5.43:

Listing 3.11: Preprocessor directives translated to occam-pi.
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3.6.11 Wrapping Global Variables

SWIG’s default behaviour for wrapping global variables is to generate wrapper func-

tions, which allow the client language to get and set their values. While this is not an

ideal solution in a concurrent language, as one could be setting the global variable in

parallel leading to race conditions and unpredictable behaviour, it is the simplest solu-

tion. occam-pi itself does not normally allow global shared data other than constants.

There are plans to address this issue by adding functionality to the SWIG occam-

pi module, which will allow the usage of a locking mechanism, such as a semaphore,

to make sure that global data in the C world does not get accessed in parallel. The

wrapper generator could generate two wrapper PROC’s for getting and setting the global

variable, as well as a third PROC, which would need to be called by the user to initialise

the semaphores at start-up. occam-pi provides an easy to use, lightweight semaphore

library, and it would therefore be easy to manage access to global data from occam-pi.

If a library is not itself thread safe, the end user of the library currently needs to be

aware of the dangers presented by global shared data, and use an appropriate locking

mechanism. There is currently no way of determining such danger automatically.

3.6.12 Non-blocking C calls

Non-blocking foreign function calls can be automatically generated by calling SWIG

with the command-line parameter "-gen_blocking", which generates three PROC’s pre-

fixed with “C.”, “B.”, or “BX.” respectively for each function, providing all wrapped

functions with a non-blocking interface. Using only this command-line option provides

the user with the usual prefixless PROC wrapper which calls the “C.” prefixed PROC by

default. In order to provide a clean interface to functions which should be non-blocking,

the SWIG interface file can be annotated to specify which type of call (blocking/non-

blocking/altable-blocking) should be used in the prefixless, proxy PROC that is gener-

ated. For a function which needs to be non-blocking one can annotate the interface file

using SWIG’s %feature directive:
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%feature("blocking") itakelong(int) "B"

void itakelong(int a);

The %feature directive annotates the parse tree for the function itakelong with the

key “blocking” which has the value “B”. The SWIG occam-pi module checks for the

blocking key and when found, generates the following occam-pi code:

#PRAGMA EXTERNAL "PROC B.itakelong (VAL INT a) = 3"

INLINE PROC itakelong (VAL INT a)

B.itakelong (a)

:

Specifying the value “BX” instead of “B” as the value for the “blocking” %feature

directive will create a “BX” prefixed PROC. Using the %feature directive to specify

if a function should be non-blocking is independent of, but can be used in combination

with, the “-gen_blocking” command-line parameter. It should be noted that at the time

of writing neither of the two blocking functions are implemented in the Transterpreter

runtime and should not be considered supported there.

3.6.13 Wrapper Documentation

The SWIG module for occam-pi also automatically generates OccamDoc [occ09] doc-

umentation for all of the code that it generates. This can be parsed by the OccamDoc

program and made available on-line in the form of web pages.

3.7 Using SWIG

By running a command on the command line you can generate wrappers from a C

header file that describes the functions and data-structures exposed by a library. This is

done by running the command:

$ swig −occampi −module myheader myheader.h
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where myheader.h is the C header file that contains the function definitions that you

would like to make use of from occam-pi.

In many cases it is enough to simply point SWIG at a C header file and have it

generate a wrapper for occam-pi from that header file. However it is generally better

to take a copy of the C header (.h file), and copy that to create a SWIG interface (.i)

file. For example, when wrapping the OpenGL library, gl.h, the OpenGL header file,

would be copied to gl.i. SWIG specific directives can then be added at the head of

the file, such as defining the name of the module, which will determine the names of

the generated wrappers. Continuing with OpenGL as an example, we might add the

following code at the top of the interface file:

%module gl

%{

#include <GL/gl.h>

%}

This names the SWIG generated wrappers “gl” and tells SWIG to include the code

surrounded by parentheses #include <GL/gl.h> in the generated wrappers, so that,

when compiled they are able to reference the targets original header files. To have

SWIG generate a wrapper for occam-pi from the newly created .i, interface file the

following command is run:

$ swig −occampi gl.i

Note, that the “-module” command line option shown in the first example is no longer

needed, since the module name is specified by the %module gl in the interface file.

As an example of what might be changed in an interface file, the wrapping of

OpenGL’s glCallLists function is illustrated below. As the previous section already

mentioned, the occam-pi module’s default behaviour is to typemap pointers to INT’s in

occam-pi and in order to correctly wrap pointers to arrays, an interface file must spec-

ify which pointers are pointers to arrays. This can be done by modifying the name of

the variable that is to be typemapped by prefixing it with ‘array_’. The glCallLists

function call takes an int, an enum and an array of void ∗. To generate a correct
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wrapper for the function one would modify the function declaration from:

void glCallLists(GLsizei n,

GLenum type,

const GLvoid ∗lists);

to the following:

void glCallLists(GLsizei n,

GLenum type,

const GLvoid ∗array_lists);

Once appropriate modifications are made to the .i files, SWIG is used to create the

appropriate wrappers. When SWIG is run, it generates three files: module_wrap.c,

module_wrap.h and occ_module.inc, where “module” is the name that the in-

terface file specifies with the %module directive. The generated C files can then be

compiled and linked into a shared library. On Linux one would run the commands:

$ gcc −I. −g −Wall −c −o module_wrap.o module_wrap.c

$ ld −r −o liboccmodule.so module_wrap.o

To use the generated wrapper from occam the .inc file needs to be included in the

occam-pi program with the following directive:

#INCLUDE "occ_module.inc"

The newly created shared library needs to be linked with the KRoC binary as shown

in the command below. This command may need to be modified to include the correct

library include and linking path.

$ kroc myprogram.occ −I. −L. −loccmodule −lwrappedlibrary

SWIG has many other features which are not specific to the occam-pi module,

designed to aid the interface builder in creating more advanced interfaces between

higher-level languages and C. These are fully documented in the SWIG documenta-

tion [Bea05].

Updating an existing wrapper (.i) file is generally done by recreating the .i file from

scratch. Any functions written to enhance the wrapper file can be kept in a separate .i

file that includes the modified copy of the header file.



CHAPTER 3. OCCAM-PI AS A CONTROL LANGUAGE 46

3.8 Examples of automatic library wrapping

This section will introduce two examples which demonstrate the relative ease with

which SWIG can be used to wrap C library code to make it available to occam-pi.

The first example is a fictitious maths library, followed by the real world example of

the OpenGL library which shows that these concepts scale to large libraries.

3.8.1 A Simple Math Library Demo

This example uses a fictitious floating point library called “calc” which contains a range

of standard floating point arithmetic functions. The following shows the header file

“calc.h” for this library. For the purpose of wrapping the library, the contents of the

“calc.c” file are of no importance other than in generating an object file.

float add(float a, float b);

float subtract(float a, float b);

float multiply(float a, float b);

float divide(float a, float b);

float square(float a);

Listing 3.12: Example C header file calc.h

To begin the wrapping process an interface file for SWIG is created from the calc.h

header file. In order to create the interface file, the calc.h header file is copied to a new

file named calc.i. This file is then modified to look like the Listing 3.13. The names

of the generated wrapper files are indicated by the %module line in the interface file.

The next three lines inform SWIG that it should embed the #include "calc.h"

statement into the generated C header file. It is in the interface file that any additional

information, such as whether pointers to data are arrays or single values must be in-

cluded. In this case the only modifications to the interface file that are needed are the

four lines of code added at the start of the file.

The C and occam-pi portions of the wrapper are generated by calling SWIG on the

command line:

$ swig −occampi calc.i
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%module calc

%{

#include "calc.h"

%}

float add(float a, float b);

float subtract(float a, float b);

float multiply(float a, float b);

float divide(float a, float b);

float square(float a);

Listing 3.13: Example SWIG interface file calc.i.

The occam-pi program “main” in Listing 3.14 demonstrates the use of the C func-

tions, the file occ_calc.inc included at the start of the listing is the interface file

generated by SWIG.

#USE "course.lib"

#INCLUDE "occ_calc.inc"

PROC main (CHAN BYTE kyb, scr, err)

INITIAL REAL32 a IS 4.25:

INITIAL REAL32 b IS 42.01:

REAL32 result:

SEQ

add(result, a, b)

out.string("Result of addition: ", 0, scr)

out.real32(result, 0, 3, scr)

square(result, a)

out.string("∗nResult of squaring: ", 0, scr)

out.real32(result, 0, 3, scr)

out.string("∗n∗n",0,scr)

:

Listing 3.14: Example program using SWIG generated code.

It is often convenient to crate a build script such as the one shown in Listing 3.15.
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#!/bin/bash

gcc −c −o calc.o calc.c

gcc −c −o calc_wrap.o calc_wrap.c

ld −r −o libcalc.so calc.o calc_wrap.o

kroc calculate.occ −L. −lcalc −lcourse

Listing 3.15: A build script for swig-occam-pi.

That is all that is required for a simple set of functions to be wrapped.

3.8.2 Wrapping OpenGL

The development of the SWIG occam-pi module is motivated by a need for the broader

availability of scientific, and system libraries on platforms such as the Cell. It is also

motivated by the need for a robust graphics library for occam-pi in order to provide

visual feedback which coincides with the overreaching goal of making occam-pi better

suited to modern hardware. The OpenGL library is a good choice for wrapping since

it is based on an industry-standard which is supported on most modern platforms, of-

ten with hardware acceleration. The OpenGL standard itself contains no window man-

agement functionality or support for GUI events and therefore requires the support

of a different library to provide the functionality needed to open a window, establish

an OpenGL rendering context and handling input. For window management, the SDL

[Lan05] graphics and user interface library is used, due to its simplicity and high level

of cross-platform compatibility. While GLUT [Kil96] — The OpenGL Utility Toolkit

— is considered as an alternative, its call-back based model is more difficult to interface

with than SDL’s polling model. SDL also provides a wider range of features such as

window management, input, sound and networking functionality. A subset of the SDL

library is wrapped to allow the user to create and control windows as well as creating a

rendering context for OpenGL.

In order to create the wrapper for OpenGL the header files gl.h and glu.h were

copied to gl.i and glu.i respectively. The newly created .i files have the code shown

in Listing 3.8.2 added to their headers (for gl.i and glu.i).
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%module gl
%{
#include <GL/gl.h>
%}
...

%module glu
%{
#include <GL/glu.h>
%}
...

Table 4: GL/gl.h and GL/glu.h interface files for occam-pi

Subsequently a third file called opengl.i, shown in Listing 3.16, was created

which linked the two previously created modules into one.

%module opengl

%include gl.i

%include glu.i

Listing 3.16: OpenGL interface file for SWIG.

Finally, the SWIG occam-pi was invoked on the command line to generate the OpenGL

wrappers:

$ swig −occampi opengl.i

This generated three files, opengl_wrap.c, opengl_wrap.h and occ_opengl.inc.

To make the OpenGL library accessible to an occam-pi program, the generated C

wrapper files were compiled into a shared library and the occ_opengl.inc file was

#INCLUDEed in a program. A copy of the generated wrappers along with more detailed

instructions on how to recreate them, as well as the SWIG-occam-pi module source

code can be found at [Dim05].

A demostration of the OpenGL library wrappers can be seen in Sampson’s occam-

pi Game of Life implementation as described in [SWB05]. Figure 3 is an image of the

running application, depicting a cellular automaton written in occam-pi. While some

customisation is required in order to get the most out of a wrapper, it is still much less

effort than creating such a wrapper by hand.
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Figure 3: Lazy simulation of Conway’s Game of Life.

3.9 Possible pitfalls when using C with occam-pi

A number of issues arise when interfacing with C functions from occam-pi. C, being

a sequential language, lacks the built-in support for concurrency of occam-pi, such

as freedom from parallel aliasing and race-hazards. A programmer using C libraries

in occam-pi may have to keep track of C-specific state between calls to foreign func-

tions, which, if not used carefully, may result in unwanted race conditions. Further-

more, interfaces which translate C’s imperative programming paradigm to occam-pi’s

process-oriented paradigm must be created to leverage all of occam’s benefits. The fol-

lowing sections describe scenarios where such situations can arise, and discusses how

incompatibilities in the models can be approached.

3.9.1 Ensuring ordering of foreign function calls

When running occam-pi in a multi-threaded environment such as CCSP, care needs

to be taken when using foreign libraries as these may rely on thread-local state. Using
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a library that has thread-local state from multiple threads may result in unexpected

behaviour and pose a race hazard. The SWIG-generated language bindings to OpenGL

are used to demonstrate such a scenario.

It is possible that an occam-pi program that makes calls to OpenGL from multiple

occam-pi, or operating system processes will result in incorrect behaviour. OpenGL is

a state-machine, and many library calls will behave unexpectedly if the machine is not

in the correct state. For example, OpenGL’s glBegin(), glEnd() commands denote

the start and finish of a rendering block. Rendering commands in such a block, as shown

in Listing 3.17, must be executed in the correct order. Commands specifying vertex

locations, such as glVertex3f, used outside of a start and end block, or called in the

wrong order, may lead to incorrect rendering of items and result in visual artefacts. In

the example below, vertexes specified using glVertex3f are joined together by lines,

drawing two lines connecting three points, resulting in a right angled line. If called in

the wrong order, or if other rendering commands where inserted while processing an

different image would appear. It is up to the programmer to ensure that any operations

that rely on OpenGL’s state are serialised correctly with other processes that render

graphics to the screen.

SEQ

glBegin(GL.LINE)

glVertex3f(1.0, 1.0, 2.0)

glVertex3f(2.0, 1.0, 2.0)

glVertex3f(2.0, 2.0, 2.0)

glEnd()

Listing 3.17: A section of OpenGL code that needs to be executed serially.

In order to help ensure that this does not occur, a GUI framework based on the

ideas discussed in the GTKoccam and WGoccam frameworks [Sto03, Whi00] could

help enforce order on rendering commands so that they do not execute when OpenGL

is in the wrong state, or in the middle of accepting rendering commands from another

process. In the context of libraries that are not POSIX thread safe, a rendering manager

could ensure that a graphics library is only called from the same operating system
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thread. This could work providing the programmer is careful not call to use the graphics

library directly, outside of such a framework.

For example, a ‘drawing manager’ process could control the rendering order using

a barrier. Processes needing to draw to the screen would only do so while subscribed

to the barrier. Since only one process would be allowed to do so at a time a draw-

ing order would be enforced, ensuring thread safety. Alternatively, a “rendering token”

could be passed to processes wishing to render, much like in a token ring network, only

permitting one process to execute drawing commands at a time.

It is possible to build a drawing manager of this type into the Transterpreter, or

CCSP, as part of its execution environment. By defining a new standardised top level

interface5 for graphical applications, all drawing commands could be serialised by en-

suring that a programmer only uses such an interface for drawing to an application.

For example, channels can be added to the top level process which give a programmer

access to a drawing canvas, or a configuration channel which configures the windowing

system appropriately.

3.9.2 Mapping external events to occam-pi channels

A single event-queue model is commonly used in C libraries, similar to Java’s Event

Queue. This single event model needs to be adapted to occam’s distributed event model

in order to provide an interface that is more suited to occam-pi’s programming method-

ology. Such an abstraction can use occam-pi channels as a mechanism to notify pro-

cesses of events. For example, the SDL library intercepts input and system events on

behalf of the programmer and adds them to an event queue which a program is expected

to read periodically to check for new events. To map these events onto a set of chan-

nels, a process can be written that reads these events and translates them into channel

communications for the rest of the application to use.

Two options are viable in this scenario. It is possible to create channels which map

5The interface of the entry process in an occam program.
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to each event type, or a single, shared channel with a defined CASE protocol that spec-

ifies all the possible events that can occur. In either case, an event monitor process

needs to be polling continually for new events and taking them off the event queue and

sending them on. Listing 3.18 shows a simplified event monitor which checks for and

passes on keyboard and mouse events and the UNIX SIGTERM6 signal. All other events

are discarded. The listing splits events of different types into separate channels. Figure

4 illustrates how the event mechanism is implemented. While this code uses polling,

which is undesirable, it is the only way to interface with SDL, barring a rewrite of

SDL’s event handling code.

This approach brings some language specific caveats with it. As in C, care needs to

be taken to ensure that the single-event queue, and the channels leading away from this

queue into the occam application, is serviced regularly, so that the event backlog does

not become too large. Where the event queue cannot be serviced regularly, it is possible

to create event buffers, or depending on the application (such as an interactive game)

use overwriting buffers to ensure that the event queue does not get blocked for too long.

Sdl event
monitor process

Event 
queue

Occam-pi program

Event 
decomposing 

process

Keyboard

Mouse

A process 
network

UI

Figure 4: Interacting with events using occam-pi and SDL. Events are taken off the
queue if available and sent to the remainder of the application.

3.9.3 Working with libraries that rely on callbacks

Certain C libraries implement their own threading solutions, and use a callback mecha-

nism to execute user code. Special care needs to be taken when attempting to use such

libraries with occam-pi programs as the two models of concurrency are not compat-

ible. For example, a library that provides sound support may run a separate buffering

6SIGTERM is aliased by SDL as SDL.QUIT, as seen in Listing 3.18
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process in parallel to the programs main thread of execution in order to ensure sound

events do not get blocked by prolonged computation in a program’s main loop, thereby

ensuring continuous playback. As it is not possible for a C program to modify the

occam-pi stack directly, a C function must be written so that its pointer can be passed

as a parameter for the callback.

PROC sdl.event.monitor(CHAN BYTE keyboard!,
CHAN [2]INT mouse!,
CHAN BOOL quit!)

SDL.Event event:
INT result, type:
INITIAL BOOL run IS TRUE:
SEQ

WHILE run
SEQ

SDL.PollEvent(result, event)
IF

result > 0
SEQ

get.SDL.Event.type(type, event)
IF

type = SDL.KEYDOWN
keyboard ! get.keystroke.value(event, key)

type = SDL.MOUSEBUTTONDOWN
mouse ! get.mouse.position(event, position)

type = SDL.QUIT
SEQ

run := FALSE
quit ! TRUE

TRUE
SKIP

TRUE
SKIP

RESCHEDULE()
delete.SDL.Event(event)

:

Listing 3.18: An event monitor using SWIG and occam-pi

This example examines the SDLSound library as it uses a callback model. When

programming using the SDLSound library in C, the programmer must provide a pointer

to a function which will be used as a callback. This function has to accept the following

three parameters; a pointer to sound sample being played, a pointer to the sound buffer,



CHAPTER 3. OCCAM-PI AS A CONTROL LANGUAGE 55

and the size of the sound buffer. The function is called periodically by the sound pro-

cess and is responsible for copying data into the sound buffer which the sound process

uses to play the sound back asynchronously. The function also needs to detect when

a sound sample is about to end and has to notify the main program that playback is

about to complete. When programming in C, the SDLSound manual recommends set-

ting a status flag to indicate that the sound has completed playing. The sound process

ensures that it does not use the sound buffer while the callback function is being called.

The flag must be set atomically so as not to pose a race hazard, because the flag is

going to be accessed concurrently. Providing the flag variable is aligned to the architec-

tures word-boundary, most modern architectures guarantee atomic writes to memory

for word-sized data, preventing the risk of word-tearing. Therefore it is sufficient to

declare that the flag variable is volatile, to indicate that the variable must always be

fetched from memory each time it is accessed to ensure that an up-to-date copy is used.

Two approaches can be used to map the use of callbacks to occam-pi’s process-

oriented model. In both cases, a callback function is still required. The first option, is

to use a polling loop written in occam-pi that mimics the C solution described above.

Polling, however is considered to be inefficient and error prone, especially if other al-

ternatives are available. The second, more favourable, option is to provide a mechanism

for a C callback to communicate with an occam-pi process over an external channel.

The latter approach was first used in [Sto03], where a C interface to CCSP permit-

ted a C function to manipulate a channel end correctly by invoking a specially crafted

C function which instructed the CCSP runtime that a channel communication had oc-

curred. The first use of this approach, however, was not thread safe and would not

work in a parallel system. The newer CIF interface, formalised in [Bar05], allows spe-

cially constructed C functions to behave like occam-pi processes and the use of most of

occam-pi’s safe communication and synchronisation facilities. Using CIF it is possible

to obtain a reference to a channel end and store it in C’s global memory. It is, there-

fore, possible to write a callback function that uses a previously initialised reference

to a channel to send events to an occam-pi process. Such a solution still poses a risk

of incorrect parallel usage, should the callback function be invoked in parallel by the



CHAPTER 3. OCCAM-PI AS A CONTROL LANGUAGE 56

sound process. It could, however be “safe” providing that the sound process guarantees

that it will not invoke the callback multiple times in parallel. In conjunction with such

a guarantee, and a parallel-aware implementation of CIF, such a system would provide

an elegant solution to an inelegant problem. In the event that a library did not provide

such a guarantee, the callback function would have to implement a locking mechanism

to prevent parallel usage of a channel. Locking would also be necessary in the polling

solution proposed above in order to prevent parallel writes to the flag variable.

It is worth noting that CIF is not yet supported on the Transterpreter, so when con-

structing cross-platform solutions, or using non IA32 platforms the polling mechanism

is the only viable option for the time being. A CIF compatible mechanism is planned

for the Transterpreter and is discussed further in Chapter 7.

SDL 
Sound process

Status
flag

Occam-pi program

Sound 
playing

process(es)

A process 
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Both the SDL Sound and 
the occam-pi programs

need to access the status 
flag.
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Figure 5: Interacting with callbacks using occam-pi. The status variable must either be
polled from occam-pi or the callback function must be instrumented to use CIF.

3.10 Chapter contributions and summary

The SWIG occam-pi module makes it easier to build rich applications in occam-pi.

It makes the language more amenable to designing and developing reactive concurrent

applications which interface with the host system. Evidence for this can be found in

the number of research and teaching projects that now rely on bindings created using

SWIG occam-pi as described below. The following sections also identify several areas

where the SWIG occam-pi module can, and will, be improved and extended.
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3.10.1 Projects that made use of SWIG occam-pi

SWIG occam-pi has helped create a number of bindings to libraries and applications

which has made a number of occam-pi-based projects possible.

An interface to the Player/Stage [BCG+05] robotics simulation and control envi-

ronment was developed using the occam-pi module for SWIG to enable occam-pi to

control both simulated robots and real-world platforms such as the Pioneer III [Mob09].

The ability to generate bindings to this library automatically enabled concurrency teach-

ing and research using occam-pi as a control language. Furthermore, upgrading the

bindings to new versions of the libraries proved to be simple, allowing new features in

the library to be exploited without a substantial time-investment.

As a result of the availability of Player/Stage bindings, Robodeb [DJJS], a Debian

Linux based concurrency oriented robotics programming environment for teaching has

been developed. The freely available environment can be run using the free VMWare

Player or VMWare compatible virtualisation programs and includes the Player/Stage

environment, the Transterpreter virtual machine, and JEdit, a fully featured IDE that

supports occam-pi. The environment allowed students to start programming robotic

behaviour using concurrency as an abstraction of the real world with very little effort.

Programs created by students in this environment are also usable on real world robotics

platforms such as the Pioneer. Robodeb and the use of occam-pi in robotics for educa-

tion and research are described in more detail in Section 6.1 on page 119.

Sampson’s Game of Life implementation in occam-pi, using the OpenGL library

is described in [SWB05]. Figure 3 on page 50 is an image of the running applica-

tion, depicting a cellular automaton written in occam-pi. Sampson’s Occade [Sam09a,

Sam09b], an arcade game development framework for occam-pi, was created for use

in the University of Kent’s concurrent programming course. Occade is an extention of

a simulation environment used for modelling complex systems as part of the CoSMoS

Project [WSST08]. CoSMoS is also investigating the modelling of robotic swarms by

making use of the Player/Stage bindings for occam-pi.

Finally, wrappers to OpenMPI [ANL09, BDV94] compatible libraries have been
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made enabling the Transterpreter to be used in a networked environment. A library

for vector processing has also been made available with the aid of SWIG, enabling

the use of the vector processing hardware commonly available on desktop and server

processors. This is described in more detail in Chapter 5

3.10.2 Future Improvements to the SWIG Module

A number of improvements and extensions are planned for the SWIG module. It be

desirable for SWIG to be able to generate code for functions using typeless pointers

automatically, so that they can be passed a range of data types. Further investigation of

the SWIG macro system, which implements a similar feature for malloc and free,

would be needed.

While the initial goal of the occam-pi module was to support the wrapping of C

libraries, there is nothing preventing it from supporting the wrapping of existing C++

code. SWIG is capable of parsing and generating C code and target language wrappers

for most C++ code. A future extension to the SWIG occam-pi module would be to add

support for wrapping C++ classes. Some work has already been done to support the

wrapping of C++ code in the occam-pi module for SWIG, but it is not yet complete.

Completion of support for C++ would result in a further increase to the code base that

is currently accessible for occam-pi programmers.

3.10.3 SWIG and CIF

The occam-pi C-interface, CIF [Bar05], could help extend SWIG built interfaces.

Since C code can be embedded into SWIG interface files, it is desirable to extend SWIG

to support annotations for callback functions, or global variables and shared data to pro-

vide an automatically generated, and safe(er) interface to these. For example, libraries

which make use of callbacks can have customised PROCs written in CIF which are run

on program start-up. The PROC(s) can have a channel interface which can notify an

occam-pi PROC of callback events such as keyboard and mouse presses. Exploring the

possibility of embedding CIF into SWIG wrappers is part of the planned future work.



Chapter 4

occam-pi on the Cell BE

Multi-core processors are becoming commonplace in desktop computers, laptops and

games consoles [Rat05, BDK+05, KAO05], and this trend is being steadily pushed to

10s of cores by industry leaders such as IBM, NVidia, Sun Microsystems and Intel

[KAO05, LNOM08, Van08, SCS+09]. Traditionally, the programming of such concur-

rent systems has been considered difficult and unreliable when using languages that

lack compiler support for concurrency [Lee06, Boe05]. The Cell Broadband Engine,

and its successor the PowerXCell 8i, generally referred to as the Cell processor, are

examples of a readily available and affordable multi-core processor.

The Cell processor contains two different processor types, and nine independent

processor segments. Programs wishing to exploit all processors have to be written as

two or more separate programs due to the difference in architecture between the proces-

sors. A master program is compiled for and executes on a PowerPC compatible “master

processor” and is used to launch and control the programs compiled for the SPU’s. The

SPU’s are the Cell’s secondary processors which provide most of the Cell’s compu-

tational power. These separate programs must be able to synchronise and share data.

Combined with the need for explicit memory management on the SPU, as these have

their own dedicated memory spaces, makes software development on the Cell more dif-

ficult than programming traditional processors. The Cell requires a different approach

than the currently used threading models to software development if it is to be used

successfully. This chapter describes a new approach to programming the Cell using the

59
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occam-pi programming language. It also goes on to compare existing approaches to

software development on the Cell with the proposed occam-pi solution, along with

details on how the Cell processor works and what features it has.

4.1 An Overview of the Cell Broadband Engine

The Cell consists of a PowerPC [RSJ04] core and up to eight SPUs [Fla05], vector

processing units, connected via a high speed bus on a single chip. The Cell processor is

widely available in high-end blade servers from IBM, as add-in PCI Express cards or,

more cost effectively, in Sony’s Playstation 3, or for free in the form of cycle accurate

simulator provided by IBM [IBM06]. This section presents background information on

the Cell architecture which should help clarify some of the Transtepreters implementa-

tion details given in Section 4.3.

4.1.1 PowerPC Core (PPC)

The Cell’s PowerPC core was designed to be binary compatible with existing POWER

architecture based processors, allowing the execution of pre-existing binaries on the

Cell’s PPC core without modification. The core has built-in hardware support for simul-

taneous multi-threading, allowing two threads to execute in parallel on the processor.

An AltiVec [DDHS00] Single Instruction Multiple Data (SIMD) vector processing unit

is also present. One of the main differences between the Cell’s PPU and other POWER

based processors is the lack of a branch prediction unit (resulting in a smaller/simpler

processor), and some of the more esoteric POWER instructions, which are implemented

in software (microcode) on-chip.

4.1.2 Synergistic Processing Units (SPU)

The SPU processors are dedicated vector processing units. They are what allows the

Cell BE to achieve its high level of computational performance, and are also the most

interesting part of the processor from a programming perspective. They were designed
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to provide optimal 32-bit floating point vector calculations and lack the scalar and inte-

ger instructions commonly found on main system processors. The much simplified ISA

results in a physically small, low power, processor that compromises general purpose

performance for high performance vector processing. While the SPU is still able to ex-

ecute general purpose code, and this does not require specialised coding, this will not

make good use of processor resources. Optimal coding for the Cell will make explicit

use of the processor’s vector processing units.

Each SPU is equipped with a very high speed 256KB local store for program and

data, and each unit has a dedicated built-in DMA (Direct Memory Access) controller.

The memory controller, and hence memory access, is programmed explicitly from the

SPU to manage data flow between system memory and the local store. The memory

controllers are able to DMA chunks of data up to 16KB in size to and from SPU local

stores from system memory without interrupting computation. Larger chunks of data

can be queued into multiple DMA requests up to a maximum of 128KB at any given

time.

The memory controllers also co-ordinate most of the inter-processor synchroni-

sation. Synchronisation and communication are achieved by reading from and writ-

ing to special-purpose memory-mapped registers designated for this task. Each SPU is

equipped with a set of three 32-bit mailboxes (registers) for communication/synchro-

nisation with the PPC. Two are outbound, blocking mailboxes, one of which interrupts

the PPC when a message is sent. The third, inbound mailbox, is for receiving messages

from the PPC. Each SPU is also equipped with two inbound 32-bit registers, called

SigNotify1 and SigNotify2, which any SPU or PPC can write to, with either over-

writing or blocking behaviours.

The SPU has 128 general purpose registers that are each 128-bits wide. The SPU

instruction set is designed to operate on these registers as quads of 32-bits, and has

practically no instructions for scalar operations. Instead, when a scalar operation is

required, in many cases data must be masked out of a 128-bit segment in memory,

operated on, and then copied back to the local store with another masking operation.

It is possible to designate scalar variables that occupy an entire 128-bit segment of
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memory to avoid the need for masking — this can provide a significant performance

boost for scalars that are accessed often at the cost of some wasted memory.

In line with the processors small design, the SPU also has no branch prediction hard-

ware which is common in larger processors that have long instruction pipelines. The

SPU also has a relatively deep instruction pipeline resulting in equally high penalties

when branches are missed in code because the instruction stream needs to be flushed

and refilled with the appropriate code before the processor can continue computation.

Therefore when writing code for the SPU it is better to avoid branching where possible.

256kb 
Local Store

Memory Management Unit

SPU 
Vector Processor

Figure 6: A diagram of an SPU.

4.1.3 The Cell’s Element Interconnect Bus

A key component of the Cell Processor is the high-speed Element Interconnect Bus

(EIB) through which all of the processing units and main memory are connected. The

EIB is an on-chip bus which allows all the processing units to communicate with each

other directly with very low latency because it avoids having to access main memory.

A diagram of the Cell processor and how the Cell interconnects all of the elements can

be seen in Figure 7.

4.2 Current approaches to programming the Cell

A number of approaches to simplifying or automating parallelisation of programs for

the Cell are being developed. The approaches can be categorized into automated par-

allelisation, message passing approaches or approaches which use a virtual machine or
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Figure 7: A diagram of the Cell BE.

scheduling library to implement lightweight multi-threading on the SPU and provide

facilities for inter processor communication.

Programming the Cell is currently mostly restricted to C, C++ or Fortran due to

the availability of compilers for the SPU. More recently there have been attempts at

creating a native JVM for the Cell [WNGG, NF08], but in most cases, use of the SPU’s

from most languages is restricted to writing small C or C++ programs that are launched

through calls to C libraries for the Cell [IBM05]. This is partly because C and C++’s

native compilation and support for vector operations and direct access to the memory

management units is able to provide superior support for the SPU than other languages

currently have. Popular languages, that rely on virtual machines for execution also have

memory requirements that exceed the available memory on an SPU and are therefore

more limited on the Cell.

This section presents an overview of programming language implementations avail-

able for the Cell. It is not intended to be exhaustive, however, as only the implemen-

tations relevant to this Chapter are included. Commonly used programming paradigms

are discussed and their Cell-specific implementations are described. The languages and
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techniques described are predominantly constrained to C/C++ and CSP related lan-

guages. Of the solutions presented, OpenMP, Microtasks for MPI and CellSs all have

a form of automated call graph dependency tracking which is used to determine the

order of execution for the tasks that they generate. One of the key optimisation factors

for these solutions is ensuring that their call dependencies are worked out efficiently, so

that swapping is reduced.

4.2.1 OpenMP

Probably the simplest approach to parallelising existing programs is to use a com-

piler that supports OpenMP [DM98] on the Cell such as IBM’s commercial XLC

[IBM09] compiler. This approach is commonly used for parallelisation of existing,

single-threaded code and is available for C, C++ and Fortran. It allows a program-

mer to exploit the concurrency that is inherent in loops to split CPU-intensive portions

of programs into processes for execution across multiple processors through the use of

preprocessor directives that instruct the compiler about safe transformations to generate

parallel code. Some complexity of parallelisation is pushed into the compiler, making it

do the harder work of generating the appropriate SMP code for a given section of code.

This process is not automated and the programmer has to supply the compiler with

hints as to what a programs variables relations and dependencies are. Furthermore, the

compiler is also unable to tell if a programmer has correctly annotated their code.

To denote a section of code that is to be execute in parallel the omp parallel

directive is used. For example, Listing 4.1 shows an omp parallel block where vari-

ables var1 and var2 are thread-local and var3 is a shared variable. A typical OpenMP

program will follow an execution pattern similar to the one illustrated in Figure 8.

SEQ
PAR

SEQ

OpenMP's model of concurrency

FO
R
K

JO
IN

PAR
SEQ

FO
R
K

JO
IN

Figure 8: A model of how concurrency is achieved using OpenMP.
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#pragma omp parallel private(var1, var2) shared(var3)

{

Parallel section executed by all threads

...

All threads join master thread and disband

}

Listing 4.1: OpenMP fork-join parallel example

Using OpenMP however, it is easy to specify a directive incorrectly, leading to

race conditions or incorrect parallel usage as the following example demonstrates.

For example, in order to instruct the compiler to split a for loop into N concurrent

processes a parallel section is annotated with a #pragma as shown in Listing 4.2. A

for num_threads(N) directive inserted in front of a for loop will result in the com-

piler generating code that will start a team of N processes, sharing the work of the

for loop. The programs main thread of execution will only resume once all processes

complete, due to the implicit barrier at the end of each omp parallel block.

Listing 4.2 demonstrates the use of OpenMP’s parallel for num_threads di-

rective that will result in a race condition, due to parallel access of the variable shared.

The listing will compile without warning because the compiler alone will not be able to

determine that parallel access is occurring and will result in the variable shared hav-

ing an incorrect value once the threads complete. While it is possible to specify which

variables are shared in an OpenMP block as shown in Listing 4.3, in this case by spec-

ifying the reduction keyword and informing OpenMP to sum the combined results

shared once the parallel section ends, it is up to the programmer to ensure correctness

of any parallel sections that have been written and the compiler is of little help when it

comes to verifying the correctness of parallel programs created using OpenMP. While

there are tools which attempt to assist the programmer in writing correct code using

OpenMP such as the C/C++ only, commercially available, VivaMP [Sys09], there is

no guarantee that such a tool will be able to catch all cases of incorrect parallel usage

because of the lack of formal specification for concurrency in the C language.
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double IncorrectOpenMP(int a)

{

double shared=0;

#pragma omp parallel for num_threads(2)

for (int j=1; j<=a; j++) {

shared += j ∗ a;

};

return shared;

}

Listing 4.2: Race hazard example using OpenMP.

double CorrectOpenMP(int a)

{

double shared=0;

#pragma omp parallel for num_threads(2) \

reduction(+: shared)

for (int j=1; j<=a; j++) {

shared += j ∗ a;

};

return shared;

}

Listing 4.3: Race condition free OpenMP example.

OpenMP also allows more fine-grained control over program distribution through

use of the omp section directive. The directive is used inside a omp parallel

section and can be specified repeatedly to denote multiple parallel sections. All omp

sections declared in an omp parallel block must complete in order for the pro-

gram to resume its main thread of execution. The same, if not greater risks apply when

using omp section as when using a omp for directive as the scope for incorrect

specification of variable dependencies increases.

In practice what happens on the Cell is that a C program which has been annotated

with OpenMP directives can be compiled to have the threaded sections of a program
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execute on the SPUs. When an omp parallel section is reached, the main process

suspends execution and the shared tasks are loaded on the SPUs. When there are more

tasks than SPUs, unallocated tasks are queued until an SPU become free to process

them. Once all tasks are completed, the main thread of execution resumes on the PPC.

XLC’s OpenMP implementation does not allow hand-written, SPU specific SIMD code

to be used in OpenMP sections, and a programmer must rely on XLC’s automatic SIMD

transformations to make use of SPU’s SIMD capability.

Newer versions of the IBM Cell SDK support code overlays on the SPU, where only

the code is replaced, leaving the data on the processor, and bringing the executable to

the data. When a user program has large binaries, it may be possible for OpenMP to

replace executable code only, leaving the data on the processor, both allowing larger

binaries to be used, and reducing some of the latency resulting from swapping.

4.2.2 The Octopiler

IBM’s Octopiler [Eic06] is an auto-parallelising compiler for the Cell based on the XLC

compiler and it builds on and extends OpenMP concepts. In addition to providing sup-

port for OpenMP, IBM have added additional features to the compiler which allow for

further automation and more involved transformations of existing code. These include

compiler optimised partitioning for data and code to run on both the PPC and SPUs

in the system, automatic generation of SIMD code through loop unrolling, and other

specialised optimisations for processor elements in the Cell architecture.

Unfortunately not all code can be modified or annotated easily to gain performance

advantages from auto-parallelising compilers. Alternative methods to automatic par-

allelisation and OpenMP could provide the ability to make use of the Cell without

requiring expert programming.
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4.2.3 Stream Programming for the Cell

Stream processing is a programming model that allows amenable applications to take

advantage of a limited form of parallel processing by taking advantage of SIMD com-

patible data-parallelism. A stream — an array of data — can be automatically split

across multiple computational units, such as the processing units on a GPU or in the

Cell’s case, its SPUs. Streams are programmed without explicit memory allocation,

synchronization, or communication between processing units. A stream program will

generally consist of a software kernel, that describe the operation to be performed on

one or more arrays of data, and where the result should be stored. A procedural pro-

gram, which contains all the program logic, will invoke stream-kernels to perform com-

putation on arrays. Kernels can be chained together, combining a set of operations that

a programmer may want to perform on a set of data, resulting in a “stream of com-

putation”. Stream programming is reminiscent of functional programming due to its

semantics, where a kernel (function) is applied to a stream (list) recursively.

Stream programming languages include Brook [BFH+04], CellSs [PBBL07] and

OpenCL [Gro08]. Of these only CellSs has a freely available implementation for the

Cell, but the concepts are generally applicable to an architecture like the Cell. CellSs

uses preprocessor directives to extend C, in a way not dissimilar to OpenMP directives,

in order to annotate code sections that can benefit from vector parallisation. A sample

stream kernel which calculates factorial is defined using CellSs as shown in Listing

4.4. The css task directive informs the compiler that n is the input parameter for this

kernel and result will hold the output values. Because the task pragma syntax is

closely bound to the functions parameter list, it is quite easy to ensure that all the input

and output variables are well defined.

Invocation of the kernel occurs inside a css start and css end block. To com-

pute the factorial for each member of a list of values the factorial function is invoked

from inside a loop. The size of a work unit is defined by the programmer, in the exam-

ple, a unit consists of 3 values. The factorial kernels are loaded onto two SPU’s and

executed. An implicit barrier synchronises the running kernels on completion.
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#DEFINE UNIT 3

#pragma css task input(n) output(result)

void factorial(unsigned int n[UNIT], unsigned int result[UNIT]) {

for (int i = 0; i < UNIT; i++) {

result[i] = 1;

for (; n > 1; n−−) {

result[i] = result[i] ∗ n;

}

}

}

Listing 4.4: A sample factorial function in CellSs taken from [PBBL07].

int factorme[SIZE] = [128, 256, 362, 411, 501, 666];

#pragma css start

for (int i = 0; i < SIZE; i += UNIT) {

factorial(factorme[i], result[i]);

}

#pragma css end

Listing 4.5: Invoking a CellSs kernel.

The primary difference between CellSs and OpenMP is that CellSs allows for a

more fine-grained control of work load distribution. When using the css task syn-

tax, which is comparable to OpenMP’s for sytax, it is possible to manually determine

the work-size of each segment. In the example above, the workload is not evenly dis-

tributed, as the computation of a factorial value for larger numbers is more compute in-

tensive than for smaller values. Where OpenMP automatically partitions work, CellSs

permits the programmer to specify how sets of data should be partitioned across pro-

cesses/streams. Therefore, it is possible to rewrite the example above to balance the

work better between SPUs by, for example, allocating the first four values to the first

SPU, and the last two to the second. Finally, CellSs permits the use of SPU intrinsics

inside kernel functions, giving a programmer explicit control over SIMD level paral-

lelisation on the SPUs.
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A nifty feature of CellSs is that it has a built in trace function, which measures

DMA execution. This makes it easier to measure the amount of DMA calls that result

from running a program, and optimise it accordingly.

4.2.4 MPI Microtasks for the Cell

A subset of the MPI specification [ANL09, SO98] has been implemented for the Cell

Processor, known as MPI Microtask programming [OIS+06]. MPI is often the frame-

work/API of choice used for developing software on distributed and multi-core systems.

The MPI Microtask compiler converts, through the use of a pre-processor, an MPI pro-

gram into many small tasklets. Microtasks are defined by communication at the start

and end of a task, with any computation being performed between communications.

As there will typically be more microtasks than SPUs, a static, compile-time defined

scheduler performs context switching of the microtasks at runtime as it is not possi-

ble for more than one task to execute on any given SPU at a time. As the overhead

of context switching for SPUs is quite high, the compiler attempts to determine com-

munication dependencies at compile-time to minimise the number of context switches

required in a program. A program compiled using this technique will produce many

small computational kernels resulting in a system that resembles the stream program-

ming model, but is different as taskelets may contain logic which decides where the

results of a computation are communicated to next.

Programs written using MPI Microtask may result in many SPU context switches

as there is no mechanism for interleaving computation from multiple kernels on an

SPU. The overheads of context switching may result in significant performance penal-

ties for programs that communicate arbitrarily with many microtasks. Furthermore no

provisions are made for preventing or detecting deadlock. While race hazards can be

avoided through careful programming, it is entirely up to the user to ensure this.
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4.2.5 Trancell — an occam-pi translator for the Cell

A prototype in-place replacement for tranx86, targeting the Cell Trancell [JS07] which

can produce SPU binary code directly from ETC assembly was created in 2007. This

translator allowed a small subset of occam-pi to compile and run on a set of SPUs.

Interprocessor communication was performed by sending messages to the PPU which

routed messages to their destinations.

The developers of Trancell concluded that channel communication implemented by

using the PPU as a router quickly became a bottleneck for interprocessor communica-

tion as messages could only be passed 32-bits at a time. Furthermore, the complexities

of code translation and debugging on the Cell proved difficult and the project has since

been abandoned.

4.2.6 CellCSP

A more recent development is the CellCSP library. CellCSP is a C++ library developed

by Kristiansen [Kri09, Kri08] which exposes a CSP-inspired API for the Cell, featur-

ing co-operative scheduling of CSP processes, support for channel communication and

alternation. In practice, the library loads small C kernels on each SPU. These provide

facilities for loading and storing processes from main memory, as well as handling

communication. The kernels permit up to two concurrent processes to execute on each

SPU. Processes are co-operatively scheduled across all the SPUs, and are switched out

of the SPUs into main memory by a co-operative scheduler running on the PPU. The

PPU sends scheduling instructions to the SPUs using the Cell’s mailbox registers. The

system attempts to mitigate DMA-latency, caused by switching processes in and out

of main memory, by permitting continued execution of a second process during the

switch, thus ensuring SPUs are not left idle.

The library is still considered a prototype by its author. Kristiansen’s initial focus

was on creating a scheduling mechanism for the SPE-cores. Kristiansen also concludes

that the library has scope for improvement in terms of process scheduling efficiency

and suggests using system memory for the purpose of scheduling processes.
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4.2.7 Bandwidth/Optimisation Techniques on the Cell

One of the key issues when programming the Cell is ensuring that processing time to

data ratio is kept high — programs optimised for the Cell, much like other multi-core

processors, need to be bandwidth-aware. The only way to achieve and sustain high per-

centages of processor occupation is to ensure the memory bus is not overloaded so that

processors do not spend a large proportion of time waiting for data. Ideally programs

can be written so that results of a computation or new data are transferred between

the SPU local store and system memory while the SPU is carrying out computation on

other sets of data.

Further optimisations can be made by avoiding the use of conditional instructions.

For example, loops which can be “unrolled” can perform much better than a looped

version of the same code. The downside of this optimisation is that it leads to larger

binaries taking away some of the already limited space on the SPU.

Where possible all data should be stored as and operated on as 128-bit aligned quad-

words, by making use of the SPU native SIMD instructions. Scalar values, that are used

regularly, should be stored in their own quad-words (not using the remaining 96-bits) to

avoid the need for masking individual values in and out of a quad word before operating

on it. As with loop unrolling, this optimisation comes at the expense of SPU local store

space.

Finally, when making larger transfers data should be copied in 16KB segments

between the local store and system memory, as this is the maximum size available

for each DMA request. For smaller data-sets, smaller amounts should be used, as these

will copy faster. Larger copy operations should be broken into 16KB segments where

appropriate.

When only small amounts of data, such as individual 32-bit values need transfer-

ring, the SPU mailboxes may be used. Some care needs to be taken, as it is possible to

overwrite these prior to reading. A special non-overwriting mode must be set for the

mailboxes to prevent this from occurring.
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4.3 The Transterpreter on the Cell Broadband Engine

The Cell port of the Transterpreter addresses architectural issues, such as program dis-

tribution, and support for safe interprocessor data synchronisation and communication.

The Transterpreter, being a highly portable interpreter for occam-pi, provides a means

for running occam-pi on a new platform in a short amount of time. This circumvents

the need to write, and later maintain, a separate compiler back-end for the platform.

Furthermore the port of the Transterpreter to the Cell is used to explore occam-pi in

the context of the Cell processor to gain an understanding of what would be required in

order to port the language to the Cell processor using the Tock compiler.

The core of the Transterpreter is portable across platforms, it has no external de-

pendencies and it builds using any ANSI compliant C compiler. For the Transterpreter

runtime to be useful on a given architecture, a platform specific wrapper needs to be

written which provides an interface to the underlying hardware. In the case of the Cell

two separate wrappers where needed, one for the PPC core, and one for the SPU.

While porting the Transterpreter to the Cell two mechanisms, with differing per-

formance characteristics depending on the scenario,for channel communication were

developed. Both approaches maintain occam-pi semantics while relying on different

features of the underlying hardware. As the underlying hardware does not map directly

to the semantics of CSP/occam-pi channels, software to manage channel communi-

cation needed to be implemented. Furthermore, the Transterpreter scheduler needed to

be extended to support the handling of interrupts generated by the Cell such as those

generated by the SPU time functions.

4.3.1 Program Distribution

The Transterpreter for the Cell consists of customised PPC and SPU executables. The

PPU Transterpreter is programmed to load SPU Transterpreter executables onto the

SPU when it is run. Once the PPC and the SPUs are all running, the program bytecode

designated for execution is loaded into main memory. A pointer to the program byte-

code is passed to all the SPUs which then copy the program bytecode into their local
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stores from system memory. Once the copy is complete all the Transterpreters synchro-

nise and begin executing the byte code. Currently all Transterpreter instances execute

the same bytecode. Given this setup, in order for program flow to differ on processors,

a program must query the Transterpreter about its location in order to determine which

processes to execute. A programs location can be determined by the unique CPU ID, a

number from 0 to 8; Zero is assigned the PPU and 1-8 to the SPUs. Each Transterpreter

instance gets its CPU ID assigned at start up.

4.3.2 Inter-Processor Communication

occam-pi channels are unidirectional, blocking, and point-to-point. The individual

SPUs of a Cell processor are not so restricted in their communications; therefore, both

the compiler and the wrappers must provide support for making the mapping from

occam-pi to the Cell hardware consistent and safe.

The blocking nature of channel communications provides explicit synchronisation

points in a program. While the compiler provides checks for correct directional usage

of channels when compiling, the Transterpreter wrappers must ensure such that chan-

nel communications between processors are blocking and unbuffered. Two methods of

communication are presented using different approaches and hardware.

4.3.3 Communication using specialised registers

The first method uses specialised registers on the Cell which enable the sending of

small messages between processors over the on-chip EIB bus. Communication options

using these registers are described here.

SPU to PPC Communication

The SPU-to-PPC mailbox registers are 32-bit, unidirectional, non-overwriting buffers.

When empty, a mailbox can be written to and execution can continue without waiting

for the mailbox to be read. When a mailbox is read, it is emptied automatically. When a

mailbox is full, the writing process will stall until the previous message has been read.



CHAPTER 4. OCCAM-PI ON THE CELL BE 75

The SPU can receive soft interrupts when one of its mailboxes is read from or written

to.

The mailbox registers are used to implement channel communications in occam-pi

between the PPC and the SPU. In order to preserve the channel semantics of occam-pi,

a writing process is taken off the run queue and set to wait for the “mailbox outbound

read” interrupt to occur. The communication only completes when the mailbox is read

by the PPC. The SPU is able to pass short messages quickly by continuously writing

to the mailbox while the PPC continuously reads. The PPC does not receive interrupts

when its outbound message is read and must poll the mailbox to check if the read has

occurred.

Inter-SPU Communication using SigNotify

For SPU-to-SPU communications two inbound registers are available on each SPU,

named SigNotify1 and SigNotify2. The registers can be programatically config-

ured to be non-overwriting and, like the SPU-to-PPU mailbox registers, can only be

cleared by a read.

Using these registers is efficient for sending word-sized messages or synchronising

SPUs. This capability is useful since it allows for communication and synchronisation

without taxing the memory bus. In this case the SigNotify2 register is used for send-

ing data and SigNotify1 for the sender CPU ID. Where messages are longer than

32-bits the length and type of the data being sent must be determined at compile-time.

A limitation of this implementation is that safe communication is limited to pairs of

processes — when a pair of processes is communicating across SPUs, no other pro-

cesses residing on these SPUs should communicate with that pair as the hardware is

unable to distinguish where a given message is coming from.

It would, however, be possible to interleave multiple channels using the SigNotify

registers provided there was compiler-level support for creating such an interleave.

Inter-processor channels could have additional meta-data such as global process or

channel identifiers which could be communicated along with the data. This would al-

low the incoming/outgoing data to be matched with specific channels and permit the
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runtime to multiplex these appropriately. There would be a practical limit to the num-

ber of channels that could be used via this mechanism, due to the mailboxes 32-bit size,

only permitting so many channels to exist globally. Additional support would have to

be added to the runtime to support encoding and decoding of channel communications

to ensure that messages arrive at the correct destination.

4.3.4 Using DMA for communication

While the mailbox and SigNotify communication facilities are suited to small mes-

sages, it becomes more efficient to use system memory for large messages which is

what the second method uses. In order to reduce contention on the word-sized regis-

ters, programs that send large messages do so by copying from local store to system

memory. This removes the need for multiplexing channels on the SigNotify regis-

ters, as it is possible to allocate space for multiple channels in memory that do not

interfere with each other. Different strategies can be used for letting other processors

know when a message has been copied into memory for retrieval. For example, when

a large-message copy completes, a value can be set in one of the SigNotify registers,

providing these are not already in use, letting the destination SPU know that it has data

waiting for it. Alternatively an atomically set ‘ready flag’ can be used in memory for

controlling when messages are ready.

The current implementation uses a ready flag to notify a reader that the data has

copied successfully. When the Transterpreter starts up, space is pre-allocated in system

memory for sending large messages. Eight 16KB chunks of memory are allocated for

each SPU, and one for the PPU for receiving data — one chunk for every other proces-

sor to send data to. Each SPU then receives a list of pointers to the memory locations

that they can write to. For example, SPU 2 will receive pointers to the second 16KB

chunk of memory of each SPU’s/PPU receiving memory. This ensures that when two

processors are sending data to a third processor, no portion of memory is overwritten

unintentionally as they have separate, pre-allocated memory segments.
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When a write to another SPU is initiated, the data to be sent is DMAed into the ap-

propriate 16KB chunk of memory. Once the copy completes, a ready flag is set atomi-

cally by the writing SPU to notify the destination SPU that it is safe to read the channel’s

data. The writer process on the sending SPU is then moved to the interrupt queue in the

scheduler and waits for the ready flag to be reset, confirming the completion of the read.

The reading SPU can detect when a process is waiting on input from an external

channel and begins to poll the ready flag in system memory. Once the SPU detects that

the ready flag is set, it DMAs the channel’s data to its local memory and resets the flag

to indicate that communication has completed.

SPU communications comparison

There are some advantages and disadvantages to the above communication methods.

Direct communication between processors using mailbox registers is very fast for small

messages, but becomes inefficient for exchanging larger amounts of data as the send-

ing processor needs to stall until the receiving processor reads from, and clears, the

SigNotify mailbox so the next message can be sent.

When using the first scheme it is difficult to send more than one 32-bit value at a

time efficiently as one of the mailboxes has to be used for specifying where a message

is coming from. The receiver has to assemble a message being received a word at a

time as other processors could be sending messages to the same processor, resulting

in messages being interleaved. Using this kind of system for large amounts of data

would constrain transfer rates quickly, and using the registers becomes a bottleneck for

communication.

Alternatively, it is possible to use a combination of the SigNotify registers and

mailboxes for notifying processors when data is available to them in memory. This

approach may prove to be the best solution. However, there is a risk that, with large

numbers of channel communications, the registers could become a constraining factor.

As both the PPU and the SPU’s are able to atomically read and write 32-bit words

in system memory, the most general solution, which supports an arbitrary numbers of

channels, will use flags in memory for synchronisation. This is the approach used in the
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prototype presented; other channel communication methods will be evaluated in future

work.

4.3.5 Scheduling

The Transterpreter uses a co-operative scheduler with three queues: the run queue, the

timer list and the interrupt queue. Process rescheduling only occurs at well defined

points during execution. This implies that the interrupt queue is only checked when

the scheduler is active and, if interrupts are ready, processes waiting on them are made

runnable by moving them from the interrupt queue to the back of the run queue.

This behaviour strongly encourages programmers to make use of occam-pi’s con-

currency features so as not have a processor stalling whenever a process needs to wait

on an interrupt. occam-pi processes have a very low memory footprint and context

switching cost which encourages the development of programs with many concurrent

processes, so that a program can have processes waiting on external communication to

complete overlapping with processes that are performing computation.

Should a programmer wish to write programs using a more sequential paradigm,

buffer processes could be used to handle communications. Figure 9 illustrates how a

writing buffer process can be used when communicating with another processor. This

way, only the buffer process stalls while waiting for communication to complete, allow-

ing other processes to continue executing. Similarly, a dedicated reading buffer process

can ensure that data is read in as soon as it is available reducing potential stalls in the

network and keeping all the processors busy. This can be made particularly effective by

running the buffer processes at higher priority than other processes.

One SPU

Write
Buffer

Another SPU

Read
Buffer

Network of
Processes

Network of
Processes

Figure 9: The read/write buffers allow computation to continue with less interruption.
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4.3.6 Timers on the Cell

Measuring time on an SPUs involves setting and reading an instruction counter that

decrements the value in the ‘time’ register at a regular interval. The interval is deter-

mined by the SPU clock speed and is converted to microseconds/seconds. When the

counter reaches, or nears zero, it needs to be reset to a high value again by the runtime

in order to continue measuring time correctly. This needs to be taken into account when

calculating elapsed time on the SPU for the purpose of processes that are waiting on

time outs.

For this to work, the scheduler must regularly check the current value of the in-

struction counter, and adjust its value as needed. If the scheduler is not entered for long

enough, there is a danger that the counter will run out and timings will be incorrect.

More recently, IBM have released an updated API which makes using timers on

the SPU much easier, through the use of a callback mechanism that is triggered on an

interrupt. The API also ensures that the timer does not overrun. A future version of the

Transterpreter can make use of this new functionality.

4.4 The Cell Transterpreter API

The Transterpreter exposes a built-in C-API for occam programs which is used as the

basis for implementing support for higher level occam features. The Transterpreter

API is tailored to support the specific needs of occam programs, and should only be

used as the basis for building an occam based ‘firmware’ for inter-processor channel

communication. The ‘firmware’ is dynamically loaded on startup by the Transterpreter

and exposes a pure occam API to the programmer. The firmware can be updated inde-

pendently of the Transterpreter, and it is possible to have different firmwares depending

on the requirements. An implementation of a firmware is described in Section 4.5. The

following gives an overview of the API that the Cell Transterpreter exposes to support

channel communications and programming.
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4.4.1 Determining execution locality

The Transterpreters that are executing on the SPUs are each assigned a unique CPU

ID. A native function call mechanism in occam-pi allows the programmer to call C

functions that are part of the Transterpreter. Using the native call TVM.get.cpu.id,

the program can determine on which processor it is executing. A CPU ID value of 0 is

returned if the byte code is running on the PPC and a value between 1 and 8 if it is on

one of the SPUs. An example of how an occam-pi startup process on the Cell could be

written is shown in Listing 4.6.

PROC startup(CHAN BYTE kyb, err, src)

INT id:

SEQ

TVM.get.cpu.id(id)

IF

id = 0

... −− execute PPC code.

id > 0

... −− execute SPU code.

:

Listing 4.6: An example of a start up process on the Cell Transterpreter.

Currently the only way to determine where an occam program is running on the

Cell is to explicitly call the TVM.get.cpu.id function. The long-term plan, however,

is to have the compiler generate code as above, from annotations in the code similar to

the PLACED directives that were available on the Transputer versions of occam. This

is discussed further in Chapter 7.

4.4.2 The Channel API

The Cell Transterpreter provides seven C native function calls which can be used as a

basis for channel communication shown in Listing 4.7. These are in place to support

the second — in memory communication method — and are not intended to be used
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by developers directly, they are intended to provide an interface to the Cell on which

channel interfaces can be built, as described in Section 4.5.

−−Reading helpers

TVM.read.check(INT pid, INT check)

TVM.read.chan(INT pid, MOBILE []INT data)

TVM.read.completed(INT pid, INT check)

TVM.read.finish(INT pid)

−−Writing helpers

TVM.write.check(INT pid, INT check)

TVM.write.chan(INT pid, MOBILE []INT data)

TVM.write.completed(INT pid, INT check)

Listing 4.7: The channel API

The two check functions use atomic1 DMA commands to check the channel word,

a place-holder in memory which is used to indicate whether a read from or, write to

channel has occured. A non-null value indicates that data is present in the channels data

block, meaning a reader can safely read the data and a writer must wait until the read

has completed. A null value indicates that the data block may be written to, and is not

ready for reading. The value stored in the channel word, when it is not null, indicates

the size of the data segment copied into memory and lets the reader know how much

data needs to be copied.

The read.chan and write.chan functions copy data between a channel’s data

block and SPU’s local store. The read.finish function uses atomic DMA commands

to reset the status word to a null value, indicating that a read has completed. Finally,

the completed functions are used to query the DMA controller if a copy to or from

system memory has completed. Figure 10 illustrates how a channel is laid out in system

memory.

1On the Cell 128-bit word reads and writes are atomic.
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Channel 
Word

Data 
size Padding

32 
bits 128

bits

Data

128 bits to 16kb

Memory is aligned on 128 bit boundaries

Figure 10: The layout of a channel’s data in memory.

4.4.3 Using Mailboxes

It is possible to use the mailbox functions in lieu of the read and write functions

described above, however the mailbox functions are limited to 32-bit message sizes

and are not used in further examples. They are considered in future work as they could

be used to improve channel communication performance, as such they are described

here.

In order to send and receive small messages between processors, the native func-

tions TVM.read.mbox and TVM.write.mbox are provided. The functions are de-

signed such that their behaviour is consistent across the PPU and SPU processors.

These native functions behave similarly to occam-pi channels in that they block until

the communication has completed.

An example of their use is shown below in a program where nine Transterpreters

are running concurrently and are connected in a ring. Each processes in the pipeline

increments an incoming value and sends it on. The resulting value is printed each time

it arrives back on the PPC.

The process run.on.spu in Listing 4.8 reads values from the previous processor

in the pipeline. The value is then incremented and sent on to the next processor. The

use of the modulo operator (\) ensures that when the value reaches the last processor

in the ring, CPU ID 8, the value is sent to zero, the CPU ID of the PPC.

The process run.on.ppu in Listing 4.9 is executed only on the PPC core. The

process header denotes that a CHAN BYTE must be passed to it as a parameter. This is

a channel of type BYTE, the equivalent of a char in C. In this program it is connected

to the screen channel that is used as a method of displaying output to the user. The “!”
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is used to denote a write to a channel, where the RHS contains the value to be written,

and the LHS denotes the name of the channel to write to. It starts propagating a value

down the pipeline by writing to the first SPU. It waits for the value to complete going

through the pipeline and outputs the modified value followed by a return character, by

writing to the scr channel.

VAL INT stop IS 95:

VAL INT NR.SPUS IS 8:

PROC run.on.spu(VAL INT cpuid)

INITIAL INT value IS 0:

INT status:

WHILE value < stop

SEQ

TVM.read.mbox((cpuid − 1), value, status)

value := value + 1

TVM.write.mbox((cpuid + 1) \ NR.SPUS, value)

:

Listing 4.8: A process running on an SPU.

PROC run.on.ppc(CHAN BYTE scr!)

INITIAL INT value IS 65:

INT status:

WHILE value < stop

SEQ

TVM.write.mbox(1, value)

TVM.read.mbox(8, value, status)

scr ! (BYTE value)

scr ! ’∗n’

:

Listing 4.9: The process which runs on the PPC and outputs data to the screen.

Listing 4.10 shows the startup process, startup. This gets the CPU ID using the

TVM.get.cpu.id function and runs the appropriate process depending on the value
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of cpuid. In this process, the kyb, scr and err channels are obtained ‘magically’

by the starting process much like command line parameters are obtained in a C main

function. When the run.on.ppu process is started, the scr channel is passed to it as

a parameter so that it can output to the screen. The run.on.spu process receives the

CPU ID as a parameter.

PROC startup(CHAN BYTE kyb?, scr!, err!)

INT cpuid:

SEQ

TVM.get.cpu.id(cpuid)

IF

cpuid = 0

run.on.ppu(scr!)

cpuid > 0

run.on.spu(cpuid)

:

Listing 4.10: A startup process which starts other processes depending on program

location.

4.5 occam-pi channel communication for the Cell

A mechanism for channel communications across multiple processors was implemented

by compiling a set of occam-pi processes into the runtime. These form part of the ex-

ecution environment for occam on the Cell and they expose a set of channels for inter-

processor communication to the programmer. The execution environment provides one

read and one write channel for every processor in the system. This allows a program-

mer to write programs that can communicate using occam-pi channels with processes

on other processors. The complexity of inter-processor channel communication on the

Cell is hidden from the programmer.
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4.5.1 A microkernel for channel control

The channel implementation described here relies on the PPC portion of the Transter-

preter to allocate channel words and data segments for each channel on start up. By

providing, occam channels, a higher level interface for communicating with other pro-

cessors it is possible to abstract over the C API used for communication.

In this instance all communication occurs via system memory, where data to be

sent between processors is first copied by the sending processor from its local store into

system memory, and then copied by the reading processor into its local store. Com-

munication to and from the PPC is achieved by a read or write (memcpy) to system

memory as the PPC has direct access to system memory, as opposed to the SPUs which

must use DMA commands.

On Transterpreter start up, the microkernel creates processes to manage interpro-

cessor communication. These processes are scheduled alongside the user program, and

are connected to it through a top level interface that is exposed to the programmer.

Using the Transterpreters API for the Cell, the microkernel implements channel com-

munication that enforces occam-pi’s rules on channels and allows long-running reads

and writes to be interleaved with computation.

VAL INT NOT.PROC.P IS 0:

PROC in.chan (CHAN MOBILE []INT in!, VAL INT pid)

MOBILE []INT tmp:

INT in.value, complete, size:

WHILE TRUE

SEQ

ASM

LD in −− Load the address of the ’in’ channel

LDNL 0 −− Load the status of the ’in’ channel

ST in.value −− Store the channel word in ’in.value’

IF

(in.value = NOT.PROC.P) −− No proc waiting on ’in’

RESCHEDULE()
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TRUE

SEQ

size, complete := 0, 1

WHILE size = 0

SEQ

TVM.read.check(pid, size)

IF

size = 0

RESCHEDULE()

TRUE

SEQ

tmp := MOBILE [size]INT

TVM.read.chan(pid, tmp)

WHILE complete <> 0

SEQ

RESCHEDULE()

TVM.read.completed(pid, complete)

in ! tmp

TVM.read.finish(pid)

:

Listing 4.11: A reading process using DMA.

Listing 4.11 shows how the reading of a channel is implemented for interprocessor

communication using helper functions written in C (prefixed with TVM). The outer part

of the WHILE loop begins with an ASMembly section that checks if a process is waiting

for input on the in channel. This ensures that the runtime only begins polling system

memory if a receiving process is awaiting input, potentially saving many accesses to

system memory. If a process is waiting on input from in, a second loop is started which

polls memory to check the availability of data. The TVM.read.check function polls

the channel word in system memory to check for non-null values which indicates the

availability of data. If the channel word contains a null pointer, no data is available for

reading and the process issues the RESCHEDULE command, relinquishing the processor
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for other processes in the queue.

If the channel word contains a non-null value, then the write has completed and the

value of size indicates the size of the data in memory. An appropriately sized mobile

is allocated and assigned to the temporary variable tmp after which the data is read

into it. The TVM.read.complete function is used to ensure that the DMA transfer

has completed. If the read does not complete immediately, the process yields using

the RESCHEDULE command, and is scheduled for retry later. When the DMA com-

pletes, the value is sent to the waiting process on the in channel. When the in channel

has been read the process continues and sets the channel word back to null by calling

TVM.read.finish signifying that the read is complete.

PROC out.chan(CHAN MOBILE []INT out?, VAL INT pid)

MOBILE []INT tmp:

INT checkdma, checkread:

WHILE TRUE

checkdma, checkread := 1, 1

out ?? tmp

SEQ

TVM.write.chan(pid, tmp)

WHILE checkdma <> 0

SEQ

RESCHEDULE()

TVM.write.completed(pid, checkdma)

WHILE checkread <> 0

SEQ

RESCHEDULE()

TVM.write.check(pid, checkread)

:

Listing 4.12: A writing process using DMA.

Listing 4.12 shows the implementation of the writing end of a channel. The ??

syntax is an extended rendezvous, which results in the writer process being blocked on
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the write until the end of the SEQ block that begins on the following line. On receiving

data on the out channel TVM.write.chan is called to initiate the DMA copy of tmp

into system memory. TVM.write.completed queries the DMA controller to check

if the copy has completed, and if so it sets the channel word to indicate that data is

available for the remote SPU to read. Finally TVM.write.check is called to check

if the read has completed on the other end by reading from the channel word. The

out channel is only released once a null value is set in the channel word, and the last

while loop completes. The RESCHEDULE commands ensure that other processes can be

scheduled while the writer process polls for communication to complete.

The whole process of channel communication is illustrated in Figure 11.

System 
Memory SPU 2

SPU 1 System 
MemoryCopy

and
Set

System 
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Copy
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Set

SPU 1 System 
Memory

Test

Test

Figure 11: A visual representation of the steps taken during channel communication.

A small optimisation is possible for small packets of data, these could be packed

into the second half of the 128-bit channel word when it is copied. This would reduce

the number of DMA requests for each communication by two when sending one or two

32-bit words of data. This can be added to a future version of the firmware and API.
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4.5.2 Limitations of the current implementation

The current implementation taxes the memory subsystem quite heavily. During commu-

nication both the reader and writer processes poll system memory to check for the chan-

nel word until reading or writing completes. While ETC assembly is used to minimise

polling on the reading end, by ensuring that a reading channel is ready by checking the

channels state (something that is not supported explicitly in occam) alternative solu-

tions to polling system memory may be examined. By using the mailbox/SigNotify

hardware available on the Cell for notification of completed reads and writes to chan-

nels or using the PPC to help manage channel communications it would be possible to

reduce memory bandwidth contention.

Currently available channels between processors are statically defined at compile

time. It would be possible to extend the Transterpreter so that inter-processor channels

could be created dynamically. A ‘new channel’ call could request that the PPU allo-

cate memory for a new channel at runtime and inform the two processors that wish to

communicate of the location in memory for this. An initial implementation would re-

quire a break from occam’s normal semantics, much like the KRoC [SBW03] network

channel implementation, to differentiate between interprocessor and local channels. It

is possible to add explicit support for such channels to a compiler which would al-

low inter-processor channels to be transparent by automatically generating the required

code for inter-processor communications.

One final limitation of the current implementation is that messages are limited to

16KB blocks. This boundary was chosen as it is the maximum data size that can be

copied in a single DMA command. This, in itself, is not a difficult issue to overcome,

the channel implementation can be extended to copy multiple blocks of data per channel

communication as the DMA engine supports queueing of multiple data blocks. It has

not been implemented until now as the need for larger messages has not arisen.
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4.6 An evaluation of Mandelbrot algorithms for the Cell

In order to support the claim that occam-pi provides a good solution to problems of

parallel decomposition and distribution, a Mandelbrot set generator using occam-pi

on the Cell Transterpreter is presented, and the solution is compared to other program-

ming models. The Mandelbrot set is a good example, because different sections of a

Mandelbrot set require varying amounts of time to compute. This presents an interest-

ing case for examining computational load balancing across the Cell. Two algorithms

for distributing workload across SPUs are discussed and compared to similar solutions

using OpenMP, MPI Microtask programming and CellSs. The general structure of the

occam network as shown in Figure 12 does not change in the examples.

Server

Client

Client

Client

Client Client

Client

Work data

Calculated mandelbrot segments

Calculated mandelbrot segments

OpenGL

Figure 12: Parallel Mandelbrot on the Cell.

4.6.1 Overview

In the example occam-pi is used to provide the mechanism for distributing the work,

while the computationally intensive portions of the program are written in C, for per-

formance reasons. The Transterpreter provides all the communication facilities required



CHAPTER 4. OCCAM-PI ON THE CELL BE 91

for the program and executes the occam portions of the program. The PPC runs a mas-

ter process which handles workload distribution, the assembly of completed units and

graphical rendering. Graphical rendering is accomplished using the SWIG generated

bindings to SDL and OpenGL. The SPUs are assigned work by the PPC and compute

sections of the Mandelbrot set for rendering. When computation of a work unit com-

pletes, it is sent back to the PPC and the SPU waits for the next work unit. Once an

entire frame has been computed, the PPU draws the generated fractal to screen and

assigns the work units for next frame.

4.6.2 A Simple Implementation

The first implementation mirrors an OpenMP-like behaviour, where the algorithm mim-

ics the use of an omp parallel for directive. Work is distributed to all of the SPUs.

Once all the SPUs complete computation, the results are collected and assembled into

a frame that can be rendered. After the frame is rendered, the next parallel sequence of

computation begins.

#define size 600

#define processors 6

#define stride size/processors

float frame[size][size];

while(true) {

#pragma omp parallel for num_threads(processors)

for (int x = 0; x < size, x += stride)

calculate_mandelbrot(&frame, x, size);

render_frame(frame);

}

Listing 4.13: OpenMP implementation of Mandelbrot pseudo code.

Listing 4.13 results in a division of the Mandelbrot into six slices of 100*600 pixels,

each of which is computed on a single SPU. The rendering time for a single frame is

bound to the thread with the largest amount of computation, leaving SPUs that com-

plete their calculations faster idle. In order to mitigate this issue, it is possible to reduce
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the work-unit size and allocate more processes to do the computation. If this is done,

more threads are scheduled than there are SPUs, and an additional overhead of pro-

cess context switch time is added. At a small enough granularity the overhead created

through the cost of context switching SPU processes will outweigh any benefit pro-

vided through parallelisation. Such an implementation is inefficient as it requires that

processes are continually started and stopped on the SPUs, further increasing overhead.

An algorithm implemented in occam-pi that tries to simulate the behaviour above

will need, due to the languages and runtime design, a server process to farm and col-

lect the work units, and client processes to perform the work. An advantage of such

an approach is that it does not suffer from the start up and shut down time for SPU

processes as the client processes run continuously. An algorithm mimicking OpenMP’s

behaviour is presented in Listing 4.14. The workload is first distributed to all the SPUs.

Once work units complete, they are collated and rendered.

VAL INT PROCESSORS IS 6:

PROC svr([PROCESSORS]CHAN MOBILE []INT to.SPU, from.SPU)

VAL INT IMAGEWIDTH IS 600:

VAL INT stride IS IMAGEWIDTH/PROCESSORS:

WHILE TRUE

SEQ

SEQ px = 0 FOR IMAGEWIDTH / stride STEP stride

to.SPU[px/stride] ! [IMAGEWIDTH, px]

SEQ

SEQ i = 0 FOR PROCESSORS

MOBILE []INT data:

SEQ

from.SPU[i] ? data

copy.data.to.rendering.buffer (i, data)

draw.graphics.buffer()

:

Listing 4.14: Simple server for a Mandelbrot set generator in occam-pi.
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The client awaits work units and sends completed units back to the PPU. While

awaiting new instructions from the server the end remains idle.

PROC client(CHAN MOBILE []INT from.ppu, to.ppu)

MOBILE []INT data, work:

VAL INT x IS 0:

VAL INT y IS 1:

WHILE TRUE

SEQ

from.ppu ? work

data := MOBILE [work[x] ∗ work[y]]INT

calculate.mandel (work[x], work[y], data)

to.ppu ! data

Listing 4.15: Client end of a simple Mandelbrot set generator in occam-pi.

4.6.3 Making use of explicit concurrency

A better implementation makes use of occam-pi’s ability to explicitly control where

data flows. This implementation supports the claim that occam-pi is a suitable language

for developing concurrent programs and has a number of advantages over the pure C

implementations of concurrency support such as OpenMP. occam semantics permit

direct control over execution locality and provide safe mechanisms for inter-process

and inter-processor communication, making the solution presented below difficult or

inefficient to implement using a language with poorer concurrency support.

Listing 4.16 shows a better implementation of the server algorithm. It permits work-

ers to receive new work units as soon as their current units have been completed. Each

SPU has two worker processes; so that while one is sending a completed result, the

other can commence work on the next set of data. By reducing the work units into

smaller slices, processors do not have to wait for the entire set of units to complete

prior to beginning the next set.
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VAL INT PROCESSORS IS 6:

PROC svr([PROCESSORS]CHAN MOBILE []INT to.SPU, from.SPU)

VAL INT IMAGEWIDTH IS 600:

VAL INT PROCESSORS IS 6:

VAL INT stride IS IMAGEWIDTH/PROCESSORS:

WHILE TRUE

PAR

PAR py = 0 FOR IMAGEWIDTH / stride STEP stride

SEQ px = 0 FOR IMAGEWIDTH / stride STEP stride

to.SPU[py/stride] ! [px, py]

SEQ

PAR j = 0 FOR PROCESSORS

SEQ i = 0 FOR PROCESSORS

MOBILE []INT data:

SEQ

from.SPU[j+1] ? data

copy.data.to.rendering.buffer (i, j, data)

draw.graphics.buffer()

:

Listing 4.16: Server end of an efficient implementation of a Mandelbrot set generator

in occam-pi.

The implementation shown in Listing 4.17 of the client runs four concurrent pro-

cesses which allow computation and communication to overlap. The channels for com-

municating with the PPC are multiplexed on the SPU internally, and two work pro-

cesses are assigned in a round robin manner. Thus computation and communication are

allowed to overlap resulting in a better use of memory bandwidth, a technique which is

known as latency hiding.
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PROC client(CHAN MOBILE []INT from.ppu, to.ppu)

VAL INT num.workers IS 2:

[num.workers]CHAN MOBILE []INT workers, result:

VAL INT x IS 0:

VAL INT y IS 1:

PAR

WHILE TRUE −− send new units to workers

INITIAL INT flip IS 0:

MOBILE []INT work:

SEQ

from.ppu ? work

workers[flip \ num.workers] ! work

flip := flip PLUS 1

WHILE TRUE −− collect and send complete units to ppu

MOBILE []INT data:

ALT i = 0 FOR num.workers

result [i] ? data

to.ppu ! data

PAR i = 0 FOR num.workers −− start worker proc’s

MOBILE []INT data, work:

WHILE TRUE

SEQ

workers[i] ? work

data := MOBILE [work[x] ∗ work[stride]]INT

calculate.mandel (work[x], work[y], data)

result [i] ! data

:

Listing 4.17: Client end of a Mandelbrot set generator with multiple workers.
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Figure 13: A Mandelbrot set rendered on the Cell.

4.6.4 Decoupling work units from SPUs

A third implementation makes another improvement to the Mandelbrot set generator.

This implementation, as seen in Listing 4.18, modifies the server side to assign work

units to all workers on start up. It then proceeds to use a single work queue to assign

all new work packets as soon as processors become available. Work packets are now

sent with annotations about their origin, and are assembled into a complete image once

done.

VAL INT PROCESSORS IS 6:

PROC svr([PROCESSORS]CHAN MOBILE []INT to.SPU, from.SPU)

CHAN MOBILE []INT sendon:

VAL INT IMAGEWIDTH IS 600:

VAL INT PROCESSORS IS 6:

VAL INT stride IS IMAGEWIDTH/PROCESSORS:

VAL INT workunits IS PROCESSORS ∗ PROCESSORS:
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VAL INT x IS 0:

VAL INT y IS 1:

[workunits][2]INT worklist:

SEQ

−− precompute coordinates

SEQ py = 0 FOR IMAGEWIDTH / stride STEP stride

SEQ px = 0 FOR IMAGEWIDTH / stride STEP stride

[worklist[py/stride] FROM 0 FOR 2] := [px, py]

WHILE TRUE

SEQ

−− Send first work units

PAR i = 0 FOR PROCESSORS

to.SPU[i] ! worklist[i]

INITIAL INT workposition IS PROCESSORS:

SEQ j=0 FOR workunits

MOBILE []INT data:

ALT i = 0 FOR PROCESSORS

from.SPU[i] ? data

SEQ

copy.data.to.buffer (data[x],

data[y],

data FROM 2 FOR SIZE(data)])

to.SPU[i] ! worklist[workposition]

workposition := workposition + 1

−−Reset and draw

draw.graphics.buffer()

:

Listing 4.18: Server end of a farming implementation of a Mandelbrot set generator in

occam-pi.

The client end, shown in Listing 4.19, is modified to take into account the additional

coordinate data that needs to be passed around with the work units. This form of the
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program should generally provide the best performance as none of the SPUs are likely

to stall during computation. In the previous examples processors where liable to stall,

should one processor’s work unit take significantly longer than that of another. Because

of the shared work queue, this is no longer an issue, as other processors can take on

remaining work units regardless. The only place this example will stall is when a frame

is completes and drawing to the screen. This could be improved by having the next

frames work units sent out as the work units for the current frame complete.

PROC client(CHAN MOBILE []INT from.ppu, to.ppu)

VAL INT num.workers IS 2:

VAL INT x IS 0:

VAL INT y IS 1:

[num.workers]CHAN MOBILE []INT result, workers:

PAR

WHILE TRUE −− send new units to workers

INITIAL INT flip IS 0:

MOBILE []INT work:

SEQ

from.ppu ? work

workers[flip \ num.workers] ! work

flip := flip PLUS 1

WHILE TRUE −− collect and send complete units to ppu

MOBILE []INT data:

ALT i = 0 FOR num.workers

result [i] ? data

to.ppu ! data

PAR i = 0 FOR num.workers −− start worker proc’s

MOBILE []INT data, work:

WHILE TRUE

SEQ

workers[i] ? work

data := MOBILE [(work[x] ∗ work[y])+2]INT
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−−The first two values of data are

−−assigned to be work[x] and work [y]

calculate.mandel (work[x], work[y], data)

result [i] ! data

:

Listing 4.19: Client end of a farming implementation of a Mandelbrot set generator in

occam-pi.

4.7 Further Work on the Cell Transterpreter

There are a number of further developments planned to the Transterpreter for support-

ing occam-pi programs on the Cell. Support for shared channels, barriers and other

occam-pi features will be added. Further improvements will leverage the vector pro-

cessing capabilities of the Cell BE architecture more effectively, and make better use of

the underlying hardware for inter-processor communication. In the longer term, code

generation and JIT mechanisms using the Transterpreter will be explored to gain sig-

nificant performance improvements. Compiler support for creating arbitrary networks

of inter-processor channels will be added resulting in more transparent and safer use of

channels.

4.7.1 Arbitrary/dynamic channel networks

A method for abstracting the channel connections between processors, akin to the vir-

tual channel implementation in PoNY [SBW03] would allow for multiple channels to

exist between processors. This would enable a much more flexible mode of program-

ming by multiplexing channels automatically.

4.7.2 Vector processing

The majority of the Cell’s computational performance comes from the SPU processors.

These are optimised to execute vector (SIMD) instructions. Adding support for SIMD,
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therefore, would result in very large performance gains. Currently, it is only possible to

make use of the SIMD capabilities of the Cell by writing C and calling it from within

an occam program. Other options for making use of SIMD from occam are discussed

in Chapter 5.

4.7.3 Code Generation

While being able to run occam-pi and the Transterpreter on a platform like the Cell is

interesting [ocml07], it is not necessarily the optimal solution. Even though the runtime

has a small memory footprint in comparison with other virtual machines, the limited

amount of local store available on the SPUs becomes even smaller when it needs to be

shared by byte code and the Transterpreter. Additionally, the current implementation of

the Transterpreter replicates the same byte code to each processor, meaning that unused

code is resident on each SPU, wasting further resources.

Furthermore, the overhead of running a byte code interpreter is particularly large

since the SPU is only capable of 128-bit-sized loads and stores, and a penalty is paid on

all scalar operations due to the masking and unmasking necessary for processing 32-bit

values.

Due to the relatively high memory requirements, and the performance overheads of

byte code interpretation, occam-pi and the Transterpreter can become unattractive to

developers who need the specialised processing power that the Cell offers. In order to

address these issues the idea of generating native code from occam-pi [JDC06] using

parts of the Transterpreter runtime and gcc [GCC06a] is being explored. Such a solution

will combine the speed of C with the safe concurrency that occam-pi has to offer.

A manner of either inferring automatically, or specifying through annotation, which

parts of the code are required on which processor would allow for dead code elimination

and hence, smaller binaries on the SPUs.

The current implementation of the Transterpreter for the Cell provides a basis for

code generation for the Cell. It has shown that a language like occam-pi is usable on

the Cell, and a different experiment has shown that efficient C can be generated from
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occam-pi. Combining the knowledge of these two experiments should make it feasible

to generate fast and safe programs for the Cell.

4.7.4 Efficient interpretation on the Cell

Running a switch-based virtual machine such as the Transterpreter on the Cell is not an

optimal solution. Since SPUs pay high penalties for branching, a switched byte code

interpreter is not the most suitable type of interpreter. In order to reduce the quantity of

mandatory branches the Transterpreter could be modified to use direct-threaded inter-

preting [Bel73]. Such an approach reduces the number of branches per instructions to

one, providing a significant performance boost on an SPU.

4.8 Summary

The long term goals aim to address some of the difficulties of programming the Cell

processor that cannot be addressed exclusively through the use of preprocessor direc-

tives and loop level concurrency. Using the Transterpreter and occam-pi as a starting

point, the language can be extended to provide direct support for modern hardware.

occam-pi can be used to create efficient, parallel algorithms while providing the safety

required for parallel programming without resorting exclusively to loop-level paral-

lelism; this is illustrated in the Mandelbrot examples (Section 4.6). Client-server archi-

tectures can be built with relative ease using safe communication and synchronisation

points. The prototype implementation of the Transterpreter for the Cell has shown that it

is possible to use occam-pi on the Cell and it is a first step to bringing a more powerful

programming model to this architecture.



Chapter 5

Vector Processing in occam-pi

Vector processing extensions that are commonly available on today’s processors are

particularly suited to most multimedia applications, and many scientific applications

and simulations. Many of the desktop/server class processors that are supported by the

CCSP and Transterpreter runtimes have such extensions, for example AltiVec on the

PowerPC, SSE on IA32 based processors and particularly the Cell BE (which contains

both an AltiVec unit as well as the SPUs which are effectively dedicated vector co-

processors).

This chapter describes various ways of implementing support for vector process-

ing using occam and the Transterpreter. The chapter begins by providing background

and motivations for this work, followed by a discussion of previous work in languages

based on the use of vector processing as well as how vector processing has been added

to existing languages. A description of the implementation of vector processing sup-

port for the language and runtime is then presented, along with some of the challenges

involved.

5.1 Vector processing background

Vector processing has been used for high performance computing since the 1970’s

around the time when the Cray-1 — a supercomputer that was capable of both high

speed scalar and vector operations — was introduced. In the late 90’s many desktop

102
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class processors started implementing vector processing extensions to help accelerate

multimedia applications [Int97]. At the same time graphics accelerators became main-

stream and sported dedicated vector units which soon outperformed general purpose

CPUs for vector processing tasks.

Despite the rapidly improving performance of GPU-based vector processing, many

tasks are too large or too complicated to offload onto graphics processors, often re-

quiring specialist programming skills or languages designed for vector processing such

as Brook [BFH+04] or Cg [MGAK03] (C for graphics). The vector processing units

on general purpose CPUs are currently still far more accessible to programmers and

can provide good performance increases with a much smaller learning curve as well as

being more generic and portable.

occam-pi natively has little support for data parallelism and does not provide ex-

plicit support for vector units. occam-pi’s semantics, however, already enforce correct

concurrent access to variables which would be amenable to the generation of vector in-

structions where appropriate, such as in the replicated PAR which can operate on sets of

arrays. The combination of light-weight processes with vector processing built-in ex-

plicitly or transparently would permit simple programming for vector-enabled systems.

5.2 How vector processing is currently used

A number of different programming approaches exist which make use of vector pro-

cessing either through explicit use of in-line assembly or intrinsics, or by language level

support where vectorizable computations are specified through annotations or special

syntax. In the latter case, much of the complexity of vector processing can be pushed

to the compiler.
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5.3 Extensions to GCC for vector processing

The GCC compiler [GCC06a], as of version 3, provides support for vector processing

through intrinsic functions. These are designed to be as hardware independent as pos-

sible (although not compiler independent) and are relatively simple to use. Listing 5.1

shows how to instruct GCC 4 that vector instructions should be used for a given cal-

culation. Since vectors are not a part of the language specification the code needed to

make use of vector processing can be long-winded. GCC provides libraries for proces-

sors which lack either certain features or support for vector processing entirely, making

the intrinsic vector functions more portable. In order for GCC to generate binaries that

make use of vector extensions a command line flag must be provided, such as −sse2

for Intel’s SSE2 extensions or −altivec for a PowerPC’s AltiVec unit.

/∗ Declare vector of four single precision floats ∗/

typedef float __attribute__ ((vector_size(16))) vector4f;

/∗ Create a union type to ease

loading of data into the vectors ∗/

typedef union vector4f_union {

vector4f v;

float f[4];

} vector4f_union;

int main(int ∗∗argc, ∗argv) {

vector4f_union a, b, c;

/∗ Load vectors with data ∗/

a.f[0] = 1.0; a.f[1] = 5.9; a.f[2] = 2.1; a.f[3] = 99.54;

b.f[0] = 0.1; b.f[1] = 9.5; b.f[2] = 9.8; b.f[3] = 2.01;

c.v = a.v ∗ b.v; //Multiply the vectors

return 0;

}

Listing 5.1: Using GCC built-ins for vector processing
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GCC also provides architecture specific __builtin__ functions [GCC06b] which

allow a programmer to make explicit use of hardware features available on a given

processor. These functions are not portable and programs using these must be adapted

for each new processor.

5.4 Stream programming

Moving away from intrinsics and built-in functions, a more concise approach to vector

programming can be seen by looking at the Brook language [BFH+04]. BrookGPU is

a compiler and runtime implementation of the Brook stream programming language

for modern graphics hardware. It aims to simplify programming of GPUs for general

purpose programming and it has a programming model that is amenable to them. Brook

is a superset of the C language, where the primary addition to the language is a new

data type called a Stream. Additionally, special functions are defined which operate on

streams, called Kernels. A kernel function takes Streams as arguments and performs

implicit for-loops on them. For example, Listing 5.2 shows a kernel that will apply the

kernel k to all elements of the stream s.

kernel void k(float s<>, float3 f,

float a[10][10],

out float o<>) {...}

Listing 5.2: Brook vector programming example

Brook divides programs into small computational units and runs them through a

vector processor. This ensures that long pipelines of data can be processed without any

interruptions to computation caused by branching. Vector processors are kept busy and

can come close to achieving their peak performance.

While the tool chain of the Brook language is designed for operating on GPUs,

the model is interesting when applied to vector processing in general and is discussed

further in the next section.
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5.5 Vector processing in occam-pi

While language level support for vector processing was absent in the original occam,

the notion that each operation can be viewed as a separate process has scope for making

use of vector units. For example the replicated parallel PAR keyword allows a program-

mer to express very fine grained concurrency. Furthermore, the language allows for

assignment-level parallelism, in one line of code multiple variables can be computed.

This section explores how occam-pi can be used with vector processing, as well as

describing new implementations for vector support in the language.

5.5.1 Using GCC vector intrinsics from occam-pi

The simplest way to add support for any hardware specific features in occam-pi is

through its foreign function interface [WM99, DJ05]. A number of implementation

specific issues need to be overcome for this to work. For example, the current occam-

pi compiler is not able to align data to quad-words, which most common vector units

require.

The most common vector instruction sets operate on quad-word sized vectors, often

giving the programmer a choice of operating on either two 64-bit, four 32-bit, eight 16-

bit or sixteen 8-bit values in parallel. In order for the vector extensions to be efficient,

the data to be operated on must be pre-aligned to quad-word boundaries so that no

time is wasted in fetching data from memory that is mis-aligned, significantly reducing

potential performance gains.

In order to implement cross platform compatible support for vector processing,

GCC’s processor independent intrinsic vector functions are used. These functions, when

wrapped, can be called from occam-pi to execute vector operations on vectors.

When calling these functions, data must be pre-loaded into a C data type that is

correctly aligned for the vector processor to operate on it. This can be done by using an

alignment aware version of malloc(), such as posix_memalign(). For example, on

OSX, malloc() returns quad-word aligned values by default, but only returns word

aligned memory on Linux, which is why the posix_memalign() call is required since
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it allows memory alignment to be specified as a parameter. Listings 5.3 and 5.4 show

the code required to create a set of vectors that can be used for vector processing from

occam-pi.

Listing 5.3 begins by declaring the prototypes for the C functions that allocate mem-

ory for each of the vectors. It then defines the new DATA TYPE that stores a vectors

memory address (pointer) its size. The example PROC takes two arrays of four single

precision floating point values as parameters, and starts by declaring three vec4f vari-

ables that will store the pointers to the vectors. Finally, three vectors are allocated using

the ‘new’ functions.

#PRAGMA EXTERNAL "PROC C.vec4f.new.scalar (

RESULT vec4f a,

VAL [4]REAL32 b) = 0"

#PRAGMA EXTERNAL "PROC C.vec4f.new.empty (

RESULT vec4f a) = 0"

DATA TYPE vec4f IS INT:

PROC example([4]REAL32 data.a, data.b)

vec4f a, b, c:

SEQ

−− Load the vectors with numbers

C.vec4f.new.scalar(a, data.a)

C.vec4f.new.scalar(b, data.b)

C.vec4f.new.empty(c)

...

:

Listing 5.3: Creating two vectors from scalar values and allocating a third, emtpy vector.

Listing 5.4 shows the C function that is called to allocate a new vector which copies

existing scalar data in to it. The function that is called, defined on the the third line,

is the first PROC prototype in the #PRAGMA EXTERNAL of Listing 5.3. As a parameter

it gets a list of pointers which correspond to the arguments defined by the occam-pi

prototype for that function. The function begins by declaring a counter as well as a
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new variable of type vec4f_union which corresponds to the union type that is de-

fined in the example shown for the generic __builtin__ vector functions in List-

ing 5.1. Memory is then allocated for the vector, for brevity only the OSX malloc()

version is shown. The pointer newvector is then assigned to the first argument of

PROC C.vec4f.new.vector. Finally, the second argument passed to the function,

which contains the values to be assigned, is copied into the newly created vector. The

function corresponding to C.vec4f.new.empty only allocates an empty vector.

void _vec4f_new_vector(int w[])

{

/∗Allocate and assign pointer to vector∗/

int j;

vec4f_union ∗newvector;

newvector = malloc(sizeof(union vec4f_union));

∗(INT(w[0])) = (vec4f_union ∗)newvector;

/∗Copy vector data into vector∗/

float ∗res;

res = (REAL32(w[1]));

for(j = 0; j < 4; j++)

newvector−>i[j] = res[j];

}

Listing 5.4: Creating a vector in C.

Once the memory setup is completed, calculations can be made using native vector

units. Listing 5.5 shows the call to the C function which will perform the operation as

well as the functions prototype at the start of the listing. Listing 5.6 begins by assigning

the pointer arguments passed to the function from occam-pi to C vector data types, and

finishes by performing the actual operation.
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#PRAGMA EXTERNAL "PROC C.vec4f.mul (RESULT vec4f c,

VAL vec4f a, b) = 0"

PROC example([4]REAL32 data.a, data.b)

vec4f a, b, c:

SEQ

...

C.vec4f.mul(c, a, b)

...

:

Listing 5.5: Multiplying vectors in occam.

void _vec4f_mul(int w[])

{

vec4f_union ∗c, ∗a, ∗b;

c = (vec4f_union∗)(∗INT(w[0]));

a = (vec4f_union∗)(VAL_INT(w[1]));

b = (vec4f_union∗)(VAL_INT(w[2]));

c−>v = a−>v ∗ b−>v;

}

Listing 5.6: Vector multiplication helper function.

#PRAGMA EXTERNAL "PROC C.vec4f.free (vec4f a) = 0"

PROC example([4]REAL32 data.a, data.b)

vec4f a, b, c:

SEQ

...

C.vec4f.free(a)

C.vec4f.free(b)

C.vec4f.free(c)

:

Listing 5.7: Freeing previously allocated vectors from occam
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Once all the vector calculations complete, the memory previously allocated for the

vectors must be freed. Listings 5.7 and 5.8 show how the memory previously allocated

for the vectors is freed, in order to prevent memory leaks.

void _vec4f_free(int w[])

{

free((vec4f_union∗)(∗INT(w[0])));

}

Listing 5.8: C helper functions for freeing occam vectors.

5.5.2 Performing more computations in C

While being able to make use of the vector hardware through C is useful, calling C

functions, assigning pointer and freeing individual pointers creates a significant per-

formance overhead. A more efficient solution is to allocate memory, copy data to vec-

tors, operate on vectors and free memory in bulk. In order to do this the functions

C.vec4f.new.array , C.vec4f.array.mul and C.vec4f.array.free can be

used, and are shown in Listings 5.9, 5.10 and 5.11 respectively.

void _vec4f_new_array(int w[])

{

int j, element;

vec4f_union ∗newvector;

int ∗unionpointers = (INT(w[0]));

newvector = malloc(size);

/∗ Create a list of pointers to the unions ∗/

for(element = 0; element < (VAL_INT(w[1])); element++)

unionpointers[element] = (int)&newvector[element];

float ∗res;

res = (REAL32(w[2]));
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/∗ Copy vector data into vector ∗/

for(element = 0; element < (VAL_INT(w[1])); element+=4)

for(j = 0; j < 4; j++)

newvector[element].i[j] = res[element + j];

}

Listing 5.9: A function that allocates an array of vectors and populates it with data.

void _vec4f_array_mul(int w[])

{

int i;

vec4f_union ∗c, ∗a, ∗b;

/∗Assign the arrays∗/

c = (vec4f_union∗)(∗INT(w[0]));

a = (vec4f_union∗)(∗INT(w[2]));

b = (vec4f_union∗)(∗INT(w[4]));

/∗Multiply all the arrays in a tight loop∗/

for(i=0; i< (VAL_INT(w[1])); i++) {

c[i].v = a[i].v ∗ b[i].v;

}

}

Listing 5.10: A function that multiplies two lists of arrays and stores the result in a third

array.

void _vec4f_array_free(int w[])

{

free((vec4f_union∗)(∗INT(w[0])));

}

Listing 5.11: Frees an array of vectors.

These functions allow an arbitrary number of vectors to be allocated with a single

function call, only requiring one call to malloc() for the entirety of the vector array.

When operating on an array of vectors, the vector unit is kept busy operating at full
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speed as its pipeline is kept full, with only the overhead of a single function call. Finally

when freeing the memory allocated, only one free() call frees all of the memory

previously allocated to an array of vectors.

While this is much more efficient, it results in a less consistent implementation.

Having C functions that need to be called explicitly does not provide tight integration

with the language, although it is better suited to the fast computations that the vector

units on the processors provide.

5.5.3 Operator Overloading and Vectors

In order to provide a more consistent interface to the underlying C functions occam-

pi’s operator overloading is used. Operator overloading and its use for a variety of

specialised floating point units on processors such as the SPARC or MIPS is described

in Wood and Moore’s [WM99]. When the KRoC tool chain was migrated to the Intel

platform the support for specialised floating point units was dropped as it was platform

specific.

Operator overloading in occam-pi allows a programmer to overload common op-

erators such as ‘+’, ‘−’, ‘∗’, ‘/’ and other operators as shown in Tables 1 and 2. For

example when operating on matrices, it would be useful to be able to denote whether

one wants to find the cross product or the dot product in a matrix multiplication. Oper-

ator overloading is done by creating specially named FUNCTIONs.

occam-pi FUNCTIONs are not side-effecting. By allowing calls to the C language

inside a FUNCTION it is possible to cause side-effects and extra care needs to be taken

when doing so, in order not to break occam-pi semantics. The values passed to the

function must not be modified in any way, and providing the C function calls are well

behaved, the FUNCTIONs semantics can be preserved.

The initial C implementation described in Section 5.5.1 can be used as part of the

operator overloading mechanism. In order to overload an operator a special FUNCTION

can be declared which tells the compiler how to operate on custom data types. Listing

5.5.3 shows how an operator can be overloaded for the new data type vec4f so that two
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vectors can be divided while still making use of the processors vector extensions. The

listing shows a FUNCTION with a special name that corresponds to the operator that is

being overloaded. Two constants are passed as parameters, and a new vector variable

is declared to contain the result of the FUNCTION. Memory is then allocated for the

resulting vector, and the result is computed.

vec4f FUNCTION "/" (VAL vec4f x, y)

vec4f result:

VALOF

SEQ

C.vec4f.new.empty(result)

C.vec4f.div(result, x, y)

RESULT result

:

Using operator overloading a programmer can write c := a / b and still make

use of a vector processing unit. Because the return value of the divide operation needs

to be declared inside the FUNCTION the programmer must manually free the returned

variables memory. The programmer may forget to deallocate the memory allocated for

this new result, or overwrite the pointer to previously allocated memory, and thereby

loose the reference for it, in either case the memory allocated is irretrievable.

Operator overloading in occam-pi has some limitations. It is not possible to create

arbitrarily sized arrays in functions, since memory allocation is side-effecting. The im-

plications are that one cannot make use of the performance increase that operating on

arrays of vectors simultaneously brings through operator overloading using this tech-

nique.

A possible solution to this problem would be to have a FUNCTION which takes two

arrays of vectors as arguments, and returns a pointer to an array of vectors which could

then be copied into an actual array of vectors. For example Listing 5.12 defines a new

DATA TYPE which is a structure consisting of two elements, namely, a pointer and the

pointers size.
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DATA TYPE vec4f.array

RECORD

INT ptr:

INT size:

:

vec4f.array FUNCTION "/" (VAL []vec4f x, y)

vec4f.array result:

VALOF

SEQ

result[size] := (SIZE x)

C.vec4f.new.array.empty(result[ptr], result[size])

C.vec4f.array.div(result, x, y)

RESULT result

:

Listing 5.12: User defined operator for arrays of vectors.

Inside the user defined operator FUNCTION "/" memory is allocated for the result

according to the length of the parameter arrays. Once allocated, the result of the divi-

sion of the x and y vector arrays can be computed and stored in the result variable.

Should the programmer then wish to manipulate individual elements of the array, a

new supporting function which converts a vec4f.array to a []vec4f can be used. It

would be also be possible to only use vec4f.array data types for arrays of vectors,

although this would make manipulating individual vectors long winded.

5.6 Vector support for current runtimes

This section explores how vector support can be integrated into the existing occam

runtimes directly, providing the programmer with better support for vector processing.
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5.6.1 Automatic vectorisation in occam

Ideally, it should be possible to vectorise scalar code automatically that is inside a

replicated PARallel loop. Listing 5.13 shows an example of such a loop. PROC example

takes three arguments and performs the same calculation on each of the elements in

parallel. In the simplest cases, the compiler already knows that it is safe to perform this

operation in parallel, since it has already checked the operation is valid. Translating

this to vector code would require the compiler to allocate correctly aligned memory,

and then generate the corresponding vector instructions.

PROC example([]REAL32 a, b, result)

PAR i = 0 FOR (SIZE a)

result[i] := a[i] ∗ b[i]

:

Listing 5.13: A PAR that could benefit from automated vectorisation.

This idea is somewhat similar to the annotation that is used in OpenMP, with the

advantage that occam-pi does not permit aliasing and the compiler is able to perform

compile time checks for parallel usage correctness inside a PAR block. No further an-

notation is required in this case in order to infer that such a PAR is safe to vectorise.

By aligning all variables to quad-word offsets the compiler could be written so that it

always generates vector instructions for the above.

An vector specific extension to occam-pi based on these ideas is proposed and can

be implemented to support either explicit or implicit vector operations [Dim06]. For ex-

ample a tool would be created that automatically vectorises ETC code and generates a

new, vector extended ETC equivalent. These new vector instructions could be added to

the Transterpreter to prototype such a system, and eventually also added to the tranx86

tool. Alternatively, explicit support for using vector operations could be added to cur-

rent occam-pi compilers to permit finer grained control over when vector operations

should or should not be used.
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5.7 Benchmarks

In order to evaluate the utility of the developed vector libraries and to indicate how a

full implementation of vector support would perform in occam-pi the vector imple-

mentations that were discussed in this Chapter were benchmarked. The values given in

the last column of Table 5 are relative values of the total time, the cost of initialisation

of a large array of vectors, the time the actual calculation took and the time taken to

free the memory after the calculation.

All of the tests perform the same calculation, two vectors are multiplied, and then

divided one hundred thousand (100,000) times in each test. The operation shown in

Listing 5.14 illustrates the type of calculation performed. All tests where performed on

the Transterpreter running on a 3.4 Ghz Pentium 4 with SSE3 instructions.

−− loop.len is 100,000

−− vec.len is 4 (4 ∗ 32−bit values,

−− which fit into the 128−bit wide SSE)

SEQ i = 0 FOR loop.len

SEQ j = 0 FOR vec.len

SEQ

c[i][j] := a[i][j] ∗ b[i][j]

c[i][j] := b[i][j] / a[i][j]

Listing 5.14: Vector calculation benchmark pseudo code.

Test nr 1 is a pure occam-pi implementation of the problem and is used as the

reference point for our calculations. Initialisation and freeing are free as all data is

statically allocated on start up. Tests 2 and 3 both perform all calculations in C, and

only differ in how the data is initialised. In test 2, the data is loaded into C vectors by

passing four values from occam-pi to C as shown in Listing 5.15.

C.vec4f.new.scalar(a[i], 1.0, 5.0, 10.0, 15.0)

Listing 5.15: Allocate a vector in C from four values.

Test 3 assumes pre-loaded arrays in occam-pi (such as when data may have been

loaded from a file), and passes a pointer to each occam-pi vector as shown in Listing
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5.16.

−− "avector" is defined at an earlier stage in

−− the program, ie. by loading data from a file.

C.vec4f.new.scalar(a[i], avector)

Listing 5.16: Allocate a vector in C from an occam array.

The tests 2 through 4 make use of vector processing units while tests 5 and 6 only

make use of scalar operations in C and occam are are included for reference.

Test 4 shows the time taken for initialisation and freeing when it is done in large

blocks. The calculations in this test are also done in bulk, resulting in only two calls to

C in order to multiply and then divide the entire vector array. This very large relative

speed up shows the cost of repeated foreign function calls, multiple calls to malloc and

free, as well as the overhead of interpreting byte code.

Test 5 shows the amount of time it takes to compute the data when operator over-

loading is used. The cost of pre-loading the occam-pi arrays of data that are copied into

the vector memory is not included to show only the cost of a single malloc(). While this

method is probably the easiest to grasp, it is also the slowest.

The 6’th test performs the same operations simply using occam-pi arrays of four

floating point numbers which are passed to C and are computed on the normal floating

point unit. It has lower initialisation overhead as no calls to malloc need to be made

and no additional cost is paid for freeing the memory as this is done automatically. It is

also faster than methods 2, 3 and 5 as the cost of many additional C calls outweighs the

benefits of using a vector unit.

5.8 Conclusions and future work

The results from the experiment above are encouraging as they indicate that there is a

performance gain to be had from using vector operations from occam-pi. A full imple-

mentation would permit a large speed up for vector operations when used in conjunction

with the Transterpreter or tranx86 and CCSP.
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Test Calculation Total Init/alloc Calculation Free Relative
nr Type in ms in ms in ms in ms Speedup
1 scalar occam 777,885 0 777,885 0 1.00x
2 vector 483,411 216,893 120,544 145,974 1.61x
3 vector array alloc 449,146 183,930 119,782 145,434 1.73x
4 vector pipelined 23,497 7,621 14,842 1,034 31.11x
5 vector overloaded 583,736 167,228 267,571 148,937 1.33x
6 scalar C 191,289 0 191,288 1 4.07x

Table 5: Sample results for vector processing in occam-pi.

Currently Quad-word alignment is being added to the OCC21 compiler and could

be added to Tock. New vector specific instructions will extend the ETC definition and

implemented in the Transterpreter and tranx86. Automated vectorisation support could

then be added to an occam compiler which would make use of these instructions. It

may also be possible to force quad alignment of all MOBILE data on the Transterpreter

by modifying the instructions for allocating and de-allocating data.

Tock would be instrumented to use aligned memory/vectors for variables or arrays,

and then automatically generate GCC intrinsics where appropriate. This would make

vector support much simpler, although at the cost of a slight increase in memory foot-

print if an application uses many of simple variables as opposed to arrays. A less naive

implementation could also infer which variables require alignment and align these as

appropriate.



Chapter 6

Further contributions

This chapter describes some of the further contributions made by the author and is

divided into four sections. It begins with a discussion of how occam-pi is used in the

context of the Player/Stage library for robotics education. The chapter continues with

a brief discussion about the prototype occam compiler ‘42’ that was co-developed by

Jadud and the author. Finally, a summary of the additions and extensions that where

made to the Transterpreter by the author is presented, and some of the ports of the

Transterpreter that been investigated.

6.1 occam-pi and Player/Stage

Player/Stage is a robotics simulation and programming environment [BCG+05]. Player

is the robotics programming API part of of Player/Stage, and can be used for control-

ling virtual robots inside Stage, a 2D robotics simulator. Player can also be used as a

standardised API for the robotic platforms that are modelled by Stage, enabling a pro-

grammer to develop programs for a simulated robot inside Stage and then to run the

same program on an actual robot.

Figure 14 shows a model of a Pioneer III robot in a simulated environment created

using Gazebo, Stage’s 3D simulation equivalent. Stage and Gazebo have an accurate

physical model that is used to simulate user-created environments in which one or more

robots can interact.

119
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occam-pi’s parallel constructs can be mapped to a robots actions in the real world.

Channels can be used to describe sensor input and motor output, and processes can

be used to describe concurrent actions that occur in an active, real world environment.

Jacobsen and Jadud also propose that robots provide an intrinsically motivating envi-

ronment for teaching concurrency using occam-pi [JJ05]. On this basis, an interface to

the Player API was created using the tool described in Chapter 3, permitting the control

of both real and simulated robots.

Figure 14: Two Pioneer robots in the Gazeebo virtual environment controlled from
occam-pi.

This interface is used to create a channel and process oriented robotics abstraction

in occam-pi for teaching concurrency and forms the basis of RoboDeb [DJJS, JJ07],

a complete robotics simulation and programming environment for teaching concur-

rency and parallelism. RoboDeb provides a complete IDE for the occam-pi program-

ming language and leverages the Transterpreter along with the Player/Stage to provide

robotics simulation. RoboDeb is built on the basis of the Debian operating system and is

designed to run inside VMWare’s Player [VMw] (a free virtual machine environment)

so it is be easily downloadable and runnable by students.
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RoboDeb has been used in a number of courses such as Extreme Multiprogram-

ming [Vin07] at the University of Copenhagen, CO631 Concurrency Design and Prac-

tice [Wel09] at Kent University, and more recently in Programming in Parallel Peda-

gogically [JSJ08] at Olin College. The Player/Stage bindings have also been used by

Simpson [SJJ06], where the Subsumption architecture is explored in the context of

occam-pi and robotics on a Pioneer III robot.

6.2 The 42 compiler

During the course of this research it became evident that in order to achieve some of

the future goals this thesis presents, it is necessary write a new compiler. The primary

motivations for writing a new compiler were:

• Easy to read - each individual transformation of the syntax tree should be con-

tained in one pass.

• Easy to extend and experiment with new language features - language features

should be easy to add, new features or modifications should be as non-intrusive

as possible, mainly requiring the addition of new passes, and few modifications

to the existent compiler. Many of the Occam Enhancement Proposals (OEP’s)

[Sam06] are non-trivial to implement in the current compiler.

• Error messages provided should be as helpful as possible, with customised error

messages for as many cases as possible so that the language(s) it supports are

better suited to educational contexts.

• The parser should be simple and use a rich parsing framework, so that modify-

ing or experimenting with a new syntax for existent features such as the vector

extensions proposed in Chapter 5 will not be overly time consuming.

• The compiler should be able to support multiple front-ends and, where possible,

multiple variants of occam.
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• The compiler should support multiple back-ends, including transputer bytecode

output and C generation, not too dissimilar to the SPOC compiler [DHWN94].

OCC21 is not considered a good choice as a starting point for our goals as its orig-

inal design goals were to be a compiler for a purely static occam, and it was not de-

signed to be extensible. OCC21 is written in C and designed to run on memory con-

strained systems. As a result parts of the code are difficult to read and maintain. C is

also not the most suited language for writing compilers, which predominantly need to

recurse over large lists (parse trees). It lacks good support for string manipulation, it

lacks modern parsing tools and it is difficult to implement algorithms which check for

parallel correctness. In fact OCC21 had, and to a large degree still has many corner

cases where it fails to detect parallel usage of variables or channels correctly. This can

prevent the compilation of correct programs; In addition it occasionally results in cryp-

tic warnings or errors. C’s lack of good memory management tools also results in the

compiler occasionally suffering from segmentation faults during compilation. While

many of these problems have been corrected, OCC21 is still difficult to work with. It

currently consists of around 113,000 lines of C. Adding a new feature usually requires

the compiler to be modified in multiple places, and required an extensive understand-

ing of its internals to work with reliably. These factors also contributed to the desire to

write a new, cleaner, simpler to maintain compiler in a higher level language with better

parsers.

In order to study the feasibility of a new compiler, an experimental compiler named

‘42’, the precursor to the Tock [SB08b, SB08a] compiler, was written in MzScheme.

MzScheme a concise functional language [Fla01] that made it easier to construct a

nano-pass compiler [SWD05]. MzScheme’s rich macro system and functional nature,

allowed a syntax to be created specifically for parsing, modifying and compiling an

occam-like syntax into transputer byte code. MzScheme has excellent support for re-

cursion, list and string manipulation, rich pattern matching. These high level features

make it a better choice of language for a compiler than the commonly used C. The

choice of MzScheme was enforced by good knowledge of the language in the develop-

ment group, because the Transterpreters linker was already using it, meaning many of
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the people who would be involved with the project would already have some familiarity

with the language.

The ‘42’ compiler is a nano-pass compiler and only performs one type of trans-

formation or check on the syntax tree in each pass, where possible. The nano-pass

architecture allows each transformation or check to be enabled or disabled during com-

pilation. New or experimental passes can be inserted at any point in the compilation

process allowing for new language features to be prototyped or added more rapidly

than before. ‘42’ is able to compile a subset of occam-like syntax to transputer byte

code and forms the basis for the work on occam-pi to C generation [JDC06], where

the use of C as a portable high level assembly for occam-pi is evaluated.

‘42’ is able to parse a subset of occam based syntax in the form of S-expressions,

as shown in Listing 6.1. It supports the SEQ and PAR constructs, as well as PROCess

declaration, CHANnels and the type INTetger. It is able to compile basic programs to C

and transputer bytecode, the latter can then be executed on the Transterpreter.

(module declare−and−add soccam

(proc main ()

(decl ([a int]

[b int]

[c int])

(seq

(:= a 3)

(:= b 5)

(:= c (+ (− a a) b))))))

Listing 6.1: A sample S-expression occam program.

‘42’ has now been superseded by a new compiler written in Haskell named Tock,

whose design and implementation are inspired by ‘42’. Tock started out as a front-end

parser for ‘42’ to translate occam-pi to the S-expression based syntax, and later turned

into a fully standalone compiler of its own, overtaking ‘42’ in its functionality. Tock

is set to become the new occam-pi compiler and may replace OCC21 as it has more

robust test coverage and is able to provide wider coverage for detecting concurrency
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induced error conditions that the current compiler cannot. Tock also supports a new

concurrent language Rain [Bro06, BW03b], building on ideas from occam-pi and C++.

Furthermore, Tock is able to generate CIF code for use with CCSP, or C++ for use

with the C++CSP [Bro07] library. Tock fulfils most of the goals originally set out in

‘42’, barring transputer byte code output. Support for transputer byte code, and the

Transterpreter can be added in future.

‘42’ was developed by Jadud and the Author. The C back-end was co-authored

by Jadud and Jacobsen, and described in more detail in Jacobsens [Jac08]. Tock was

developed by Brown and Sampson.

6.3 Extensions to the Transterpreter

A number of extensions to the Transterpreter runtime have been made by the author dur-

ing the course of this thesis. The Transterpreter originally supported integer hardware,

and lacked native support for barriers and floating point operations in occam-pi as these

required additional instructions to be present. The addition of barriers and floating point

operations to the Transterpreter also provides an accessible reference implementation.

Floating point support was initially available on the Transterpreter only in the form

of floating point libraries written in occam that simulated floating point operations on

integer hardware. While this is useful on hardware without native floating point sup-

port, it does not take advantage of floating point hardware when available. Floating

point support was added to the Transterpreter by the author by studying the “Compiler

Writer’s Guide” [INM88], and incorporating changes to the Transputers original float-

ing point instruction set introduced in the newer transputer byte code (TCE) format. In

order to implement the floating point instructions three new virtual registers, the float-

ing point registers, where added to the Transterpreter. The floating point instructions

rely on the new registers for floating point operations.

Support for barriers was originally also only available through support libraries,

and not directly supported by the runtime. This however was insufficient, as a newer

syntax for barriers was added to occam-pi which required supporting functionality in
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the runtime. The original KRoC implementation, written in IA32 assembly, was used

to implement aa new, more accessible and portable, version in C. This was then built

into the Transterpreter, giving it full support for occam-pi’s barrier syntax.

One of the primary side-effects of the attempted robotics ports was that the Transter-

preter had to become more modular, it is now possible to include or exclude portions of

the available instructions depending on platform requirements. Further improvements

to the Transterpreter include: a number of 16-bit specific bugs that where ironed out,

64-bit floating point calculation support on big-endian platforms along with hardware

floating point support in general.

The author also added support for the conditional compilation of various features of

the Transterpreter runtime. This allowed it to run a subset of the language on smaller,

more memory constrained hardware which did not require all of occam-pi’s features,

such as barriers, mobility or hardware floating point support, and can save a few kilo-

bytes of space.

Initially the Transterpreter also had a limited C interface which required C libraries

to be statically compiled in with the runtime. The author modified the Transterpreter

so it could load dynamic libraries, making the C interface more usable in general. The

dynamic library loader was designed to work on any platform that supported dynamic

libraries and the Transterpreter.

Finally the author ensured correct behaviour of the Transterpreter on big and little-

endian machines. As the Transterpreter byte code is little-endian, care needs to be taken

when running the Transterpreter on big-endian machines such as the Cell or the Lego

Mindstorms. Many instructions had initially assumed both little-endian data and byte-

code, or in the case of 64-bit values, ordering, which resulted in instability or incorrect

behaviour on big-endian machines. The Transterpreter now runs correctly on both little

and big-endian machines, and passes all of the CGTests — the occam-pi compiler test

suite [INM10].



CHAPTER 6. FURTHER CONTRIBUTIONS 126

6.4 occam-pi on other platforms

While exploring viable platforms for robotics control hardware the Transterpreter was

ported to a number of new platforms by the author. Some of these ports are now of

limited utility due to hardware obsolescence, or other practical reasons such as inade-

quately supported compilers, they were, however, useful as tools for the further devel-

opment and debugging of the Transterpreter.

6.4.1 16-bit DOS

This is a port of the Transterpreter capable of running in 16-bit mode on DOS. The

purpose of this port was two fold. It was created to allow people to test programs written

for the LEGO Mindstorms on a 16-bit platform that had text-output and debuggers and

second it allowed the CGTests test-suite on a 16-bit platform to help find any problems

related to the incorrect implementation of instructions in the virtual machine in 16-

bit mode. The 16-bit Transterpreter for DOS was compiled using the Open Watcom

compiler [Ope08].

6.4.2 Symbian S60

A platform that was evaluated in the context of robotics (for use as the controlling por-

tion of a robot) was the “S60” [Nok09] series of mobile phones produced by Nokia.

These widely available devices contain a phone with a GPRS unit, a digital camera,

blue tooth, USB and run the Symbian operating system (version 6 or newer) on an

ARM9 processor. Mobile phones tend to have good battery life and low power require-

ments relative to other portable computing devices, coupled with network connectivity

facilities they are an interesting platform for robotic control.

An S60 based phone also has blue tooth which would allow a robot to connect to

a GPS for navigation. The robot’s servos could be controlled via the USB port using a

controller board with connections for actuators and sensors. The built-in camera could

be used for visual feedback.
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The freely available GCC-based tool chain provided by Nokia makes it relatively

easy to cross-compile for Symbian based S60 mobile phones. A version of the Transter-

preter which connected with Symbian’s C++ API was written, and simple occam pro-

grams could be run on S60 based mobile phones using text input and output. The pres-

ence of a relatively feature-rich operating system simplified the process of porting the

Transterpreter.

Unfortunately the Symbian operating system is written entirely in C++ and no C

APIs are available. The lack of support for generating bindings to C++ libraries in the

occam module for SWIG made the creation of good bindings to Symbian libraries for

any of the hardware prohibitively expensive in time. The port, while feature-complete,

had some issues with larger occam programs as the loading of the byte code would fail

when allocating memory over a few kilobytes, which caused the Transterpreter to hang.

Despite this, a percentage of the CGTests tests passed successfully on the Symbian

phone.

While this platform has potential uses as a robotics controller for occam programs,

the lack of good support for C++ libraries, mean that the implementation could not

be completed within a reasonable time-frame. S60 based devices remain interesting

platforms to pursue from a robotics perspective and, once C++ support is added to

SWIG for occam-pi, development of this platform could resume, as interfacing with

Symbian’s libraries will be greatly simplified.

6.4.3 Gameboy Advance

The Gameboy Advance was evaluated as a potential robotics platform as it has a num-

ber of interesting features, is small and contains a powerful processor. The Gameboy’s

hardware includes wireless communication, a screen and a USB connector as well as

good battery life. It is powered by an ARM9 based processor and has sizeable mem-

ory. It is also possible to get relatively inexpensive memory card interfaces for it that

enable the creation of user software, without requiring an expensive development kit or

a licence from Nintendo. At the time of the evaluation it was relatively easy to compile
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a version of GCC which could cross compile programs for the Gameboy Advances ar-

chitecture. A few emulators are also available making it possible to develop programs

without requiring hardware.

A port of the Transterpreter to the hardware was begun, but due to the lack of good

documentation about the system it was soon abandoned. One of the primary difficul-

ties was getting the simulator to display information on the screen as the open source

Gameboy tool chain did not have a standard library for text/video output. It was also

not possible to use tools such as GDB for debugging programs, as the freely avail-

able simulators where geared towards playing existing games and not developing soft-

ware. Finally, time constrains rendered the porting attempt to be infeasible. In future the

Gameboy Advance, or its successors, may be a more compelling platform for robotics

as the hardware will not only be more affordable, but it may also have substantially

more documentation that is freely available.

6.5 Summary

The additional contributions presented in this chapter provide a basis for future work.

While the individual contributions are mostly small experiments, they provide a basis

on which further developments could be made. As a prime example of this, the Tock

project, now well developed, evolved from the ‘42’ experiment. The following chapter

presents conclusions and future work in greater detail.



Chapter 7

Conclusion

This thesis demonstrates that the occam-pi programming language, combined with the

Transterpreter, provides a set of abstractions that are well suited to modern parallel

processors and provides a path for the parallelisation of existing programs. In order to

demonstrate this claim it addresses three key areas in the language’s tools and syntax

that are likely to impact on the practicalities and further growth of the occam language.

The three areas explored are: interfacing with existing libraries, extending runtime sup-

port for new architectures; and providing compiler and semantic support for hardware

features.

The first area provides an automated, reusable mechanism for interfacing with ex-

isting libraries and software has led to the development of new research and educational

tools that would have not been possible previously. Virtually all new occam-pi appli-

cations benefit directly or indirectly from the creation of this tool.

The second area resulted in the adaptation of the Transterpreter runtime for the

Cell. This resulted in new ways of using modern hardware to support occam-pi chan-

nel communications. It has also resulted in a new platform being available for exploring

parallel algorithms implemented in occam-pi. Furthermore, the Transterpreter was also

evaluated on a number of different platforms, and these experiments have been docu-

mented.

Finally, language extensions that can make occam-pi a stronger choice for soft-

ware development have been identified, and a prototype compiler was developed, whose

129
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ideas form the basis of a new, fully featured occam-pi compiler.

The Transterpreter has proven to be a good platform for developing and testing new

paradigms and porting occam-pi to new hardware.

7.1 Contributions

The contributions that this thesis makes are presented here:

• SWIG occam interface - Automated support for generating language bindings

has made programming in occam-pi more accessible and has helped in the im-

plementation of many new research projects, and is used in virtually all new/re-

cent occam applications.

• The Cell Transterpreter experiment shows that a language like occam-pi is suit-

able for the Cell, and explores techniques for channel communications.

• A comparison of workload distribution on the Cell, comparing the OpenMP, MPI

Microtask approaches to occam-pi and CSP-related approaches, using a Man-

delbrot fractal simulation as an example.

• An evaluation of possible avenues for implementing vector processing support in

occam-pi, including a proposed specification of how vector processing could be

implemented.

• Extension of the Transterpreter runtime to support native floating point opera-

tions and barriers, as well as providing accessible reference implementations for

instructions to support these. Testing was conducted to ensure that the Transter-

preter executes correctly on big and little endian platforms and many endian-

related issues were corrected. More tests where conducted to ensure correct op-

eration on both big and little endian 16-bit platforms.

• Construction of a prototype compiler for occam-pi, proving that it is possible

to build an easy-to-extend and use compiler for the language thereby helping to
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define requirements that a new fully featured compiler would need. The work

presented in ‘42’ has directly influenced the creation of a new, safer and more

extensible compiler for occam-pi.

7.2 Short-term future work

This section presents a number of shorter term plans for future work, which aim to

address more immediate needs for the further development of the occam-pi language

and runtime.

7.2.1 Automatically generating CIF for Callback functions

Adding support for the occam-pi C-interface (CIF) could help extend SWIG inter-

faces. Since C code can be embedded into SWIG interface files it is desirable to extend

SWIG to support annotations for callback functions, global variables and shared data to

provide automatically generated and safe(er) interfaces to these. For example, libraries

which make use of callbacks can have customised PROCs written in CIF which would

be run on program start-up. PROC(s) would have a channel interface which can notify

an occam-pi PROC of callback events such as keyboard and mouse presses. Exploring

the possibility of embedding CIF into SWIG wrappers is also part of the future work

planned.

7.2.2 Support for C++ from occam-pi

The addition of support for C++ will make occam-pi more accessible for platforms

based on the Symbian operating system such as the Nokia S60 series of telephones.

Symbian is written in C++ and, in order to write meaningful programs for it, interfac-

ing with Symbian’s C++ libraries is required. Once C++ support is added to SWIG’s

occam-pi module, it will be possible to resume exploration of the S60 telephone plat-

form as a robotics controller using occam-pi.
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7.2.3 Standardised graphical interface

As occam-pi lacks a standardised graphical interface, a logical enhancement work

would be to try to establish a standard layer for graphical user interface (GUI), that

is part of the languages operating environment. This could be achieved by including a

set of top level channels which deal with graphical input, and keyboard and mouse

input. Such a framework could be based on the work presented in WGOccam and

GTKOccam [Sto03, Whi00], possibly also integrating idea present in Sampson’s “oc-

cade” games programming environment. A new graphical manager could be devised

to enable programming powerful graphical models in occam-pi. This would make the

language more suited to both desktop application programming as well as aid in the

visualisation of scientific simulations written in occam-pi.

7.2.4 Transterpreter Cell enhancements

A number of Cell specific enhancements are planned to the Transterpreter. An outline

of these is given below.

Full interprocessor occam-pi support

While channel communication is now supported by the Transterpreter on the Cell BE, a

number of other features of the occam-pi language still need to be added. Notably, sup-

port for barriers and shared channels across multiple processors as well as distributed

deadlock detection are currently lacking. As algorithms to support these features al-

ready exist in CCSP for multi-processor, shared memory computers, the existent algo-

rithms should be adaptable to the Cell BE with some thought.

Dynamic code loading

The existing operating environment could be extended to support dynamic loading of

code on the Cell. Such dynamic code loading is already in use on embedded platforms

where uploading new byte code is very slow. The embedded platforms only need to

have the Transterpreter and its operating environment pre-loaded once, allowing new
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user space programs to be uploaded without having to re-program the entire machine.

For an SPU the benefit would be that user programs could be swapped out with a

memory-resident Transterpreter, requiring much smaller amounts of program data to

be swapped, overcoming much of the overhead that process swapping currently has on

SPU’s. The operating environment could also be extended to support dynamic creation

of inter-processor channels at runtime, making user programs more flexible by making

it possible to have arbitrary channel configurations between processors.

Replace top level process signature to transparently have interprocessor channels

Newer revisions of the Transterpreter make it easier to modify the top level process

signature. Updating the Cell Transterpreter to use the newer code base will permit in-

tegration of the current occam support environment, currently provided as a library to

be integrated into the Transterpreter. The process of adding support for this is already

under way.

Evaluation of more efficient channel communication methods.

The current channel implementation on the Cell has scope for improvement. Currently,

during channel communication system memory needs to be polled if a channel is await-

ing input, in order to determine whether a channel is ready for reading. An alternative

means could be explored, by for example using the PPC to marshall channel commu-

nications. One option would be to have the PPC poll the channel words to see if any

channel communications have completed, and notify the reader SPUs through the mail-

boxes that they have data waiting for them. This may prove to be more efficient as

it would not involve as many DMA calls to main memory, and may require slightly

less memory bandwidth. Another option would be to evaluate the use the interrupting

mailboxes as a means of notifying the PPC that a message is ready for another SPU.

A key factor for performance and usability on the Cell BE will be support for mem-

ory alignment in MOBILE data. Once MOBILE data is aligned correctly for the Cell,

DMA transfers can be made much more efficient by removing the need for an addi-

tional copy to aligned data, as well as reducing the requirement that twice the memory
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of the packet being sent is needed for each communication.

An optimisation for small data packets could be added to the current channel com-

munication method. Since the channel word only requires 32-bits of memory, and all

DMA requests have a minimum size of 128-bits, it would be easy to pack channel com-

munications that are shorter than three 32-bit words into the same DMA that sets the

channel word. This would reduce the number of DMA requests by two, one on the

writing and one on the reading side, as only one DMA would be required from each

side.

7.2.5 General Transterpreter enhancements

A number of enhancements to the Transterpreter have been identified which could im-

prove it’s performance and functionality both on and off the Cell.

Support for Explicit or Implicit memory alignment

The already mentioned support for specifying memory alignment for MOBILE data

would not only help with channel communication on the Cell. Support for aligning

memory can also be used to implement more efficient support for vector processing,

since MOBILE data that has already been aligned can be operated on directly by a pro-

cessors vector units, without requiring that it be copied to correctly aligned memory.

Memory alignment is already supported through annotation of the code in OCC21 and

CCSP.

Direct Threading

Currently two versions of the Transterpreter exist — a switch based mechanism, and a

jump-table based mechanism. The switch-based version, which consists of a very large

switch statement that is used to decode each instruction, is generally faster than the

alternative because switch statements are compiled efficiently by GCC. It also results

in smaller binaries, which makes it a more attractive option for embedded targets.



CHAPTER 7. CONCLUSION 135

The jump-table mechanism is an array of function pointers which decodes instruc-

tions by using instructions as indices into the array. The jump-table mechanism was

slightly easier to implement to start with, and was able to provide more detailed debug

information at runtime. For example, indices which did not have functions allocated to

them would have functions that notified the user that they where not implemented, or

invalid, depending on the instruction number. This helped in the development of the

interpreter, allowing the developers to determine which instructions where required for

the correct operation of the virtual machine. An added side-effect of using an array

of function pointers meant that, in theory it should be possible to enable, disable or

even replace instructions at runtime. For example, a user program could request that all

channel communication instructions be changed to become networked channel com-

munication instructions, and have the Transterpreter spread itself onto a network via

some mechanism such as MPI. While jump-tables have advantages to debugging in-

structions, and possibly experimenting with new features, they are quite slow as the

additional memory lookups result in worse performance.

A different approach to interpretation, however, supplanting both the switch and

jump-table mechanisms would be to use a direct threaded interpreter. This approach is

advocated by an experimental JVM for the Cell BE [WNGG, NF08]. Direct threading

turns all instructions into function pointers so that each new instruction can be called

directly. This reduces the number of branch instructions by one each time an instruction

is executed. Given the high cost of branching on an SPU, this could provide a signifi-

cant performance boost for the Transterpreter, both on and off the Cell BE. There is a

cost associated with direct threading however. Currently transputer byte code is Huff-

man encoded, and uses either 8-bits for primary instructions or 16-bits for secondary

instructions. Converting each instruction into a function pointer would mean that the

instruction stream would require up to four times as much space in memory. In order

to implement direct-threading, all the jumps in the code would need to be updated to

the new longer offsets. The already existent jump-tables could be used to transpose an

existing instruction stream to a direct-threaded stream, so some of the work required to

achieve this is already in place.
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7.2.6 A more exhaustive comparison of algorithms

Further research is needed into the implementation of common algorithms on the Cell

using process oriented techniques and comparing these with similar algorithms using

traditional techniques for multiprocessing such as OpenMP. A number of classical com-

putational problems have already been solved in occam. Should the sources to these

be available, it would prove interesting to port these to occam-pi and adapt them for

the Cell BE, such as a parallel Jacobi Iterator [CH91].

7.3 Long-term future work

It will be interesting to evaluate the continued use of the occam-pi language as new

computational platforms emerge. According to reports, the microprocessor and graph-

ics processor industries are converging to some degree. New architectures like the Cell

BE, Nvidias CUDA, or in the future Intel’s Larabee, are starting to have more features in

common. Desktop processors are gaining more vector processing/streaming functions

with wider buses and increased concurrency, while graphics processors are getting bet-

ter support for branching and memory management which have been lacking to date.

Extending the occam-pi language to support such features is necessary in the long

run if it is to remain a useful language. As such it is important to continue developing

compiler support for new platforms.

7.3.1 Support for CUDA/GPU/Larabee-like architectures

The Transterpreter is designed to be portable across architectures that support the C

programming language. Using the Transterpreter it may be possible to develop a general

purpose, cross-platform parallel programming system, to support systems ranging from

embedded systems to large NUMA based machines and clusters, as well as specialised

hardware, such as the Cell or CUDA-like and Larabee-like systems. Ideally such a

system would allow different architectures to interoperate, much like the Transterpreter

currently allows the heterogeneous processors of the Cell BE interoperate, not requiring
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separate user programs to be compiled.

7.3.2 Tock support for the Transterpreter as a back-end

With the potential addition of CIF support for the Transterpreter, thereby increasing

compatibility with CCSP, the Transterpreter could become a back end for programs

compiled by Tock. For example, having CIF support in the Transterpreter would allow

Tock to target a wider range of platforms, such as the Cell BE, giving user programs

both the added performance of C as well as the safety that the compiler provides. Al-

ternatively it would be possible to add a transputer byte code back end to the Tock

compiler. This would enable programs compiled by Tock to run on all of the platforms

that the Transterpreter supports.

7.3.3 Compiler support for generating code for the Cell

Compiler support could be added to Tock or OCC21 to make it aware of the underlying

architecture of the Cell BE. The compilers could perform correctness checks on all

inter-processor channel communication. Currently the compilers are not aware of inter-

processor channels, and these are not subject to any safety checks that could otherwise

be inferred by the compiler.

Support for designating processes, or a process networks locality could be added

to Tock, with additional support in the Transterpreter runtime. Similar syntax to the

original Transputer PLACED PROCESS could be used. This could be a useful additional

feature making it easier for a compiler to statically analyse inter-processor channel

communication. This could also enable more efficient compilation of user programs,

resulting in more efficient use of memory on each SPU as only the portions of the byte

code that are required would need to be copied to them.
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7.3.4 Compiler support for SIMD processing

In line with supporting the new features available on modern processors, SIMD code

generation support could be added to Tock. For example, this could be based on loop-

level inference using occam’s PAR syntax as described in OEP 149 [Dim06]. This

would be useful in many common algorithms on most modern CPU architectures and,

at some point in the future, GPUs.
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