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ABSTRACT

In this paper we analyze potential benefits of using the

Java  programming  language  in  spacecraft  on-board

applications as well as problems with current Real-Time

Java implementations that would have to be solved to

make this possible. We base our experience on porting

the  Ovm  Real-Time  Java  Virtual  Machine  to

RTEMS/LEON2 and also our findings in the Real-Time

Java Assessment Project funded by ESA.1

1 INTRODUCTION

Java is a popular, mature, widely accepted programming

language;  it  features  extensive  library  support,  high

quality implementations, tool support for the complete

software development  cycle,  and it  has the benefit  of

being  familiar  to  a  large  segment  of  the  programmer

population. While Java has traditionally been relegated

to non-safety-critical  software,  the acceptance of real-

time and safety-critical Java technologies is increasing

steadily. The Real-Time Specification for Java (RTSJ)

[4]  has  largely  met  its  promises  –  commercial

implementations  exist,  real  applications  are  being

deployed  (including  the  DDG-1000  Zumwalt  class

destroyer  [9],  multiple  UAVs  [1],  audio  applications

[2,10], and numerous uses for industrial control [13]).

New technologies such as real-time garbage collection

(RTGC) allow for an even easier programming model

than the one originally stipulated by the RTSJ, and are

already implemented and in use.

A natural question thus is: Can Java be used in space?

This question has been asked in the past, but we believe

it  is  valid to ask it  again due to two reasons.  Firstly,

progress has been made in the past years (several RT

Java  implementations  have  been  ported  to

RTEMS/LEON  and  they  also  have  been  evaluated

systematically). Secondly, our reasoning about this issue

is  somewhat  more  practical  and  combines  points  of

view of RT Java VM developers,  spacecraft  on-board

1 Porting of Ovm to the RTEMS/LEON2 platform has

not  been  funded  by  ESA,  however  ESA provided

support to make this effort possible.

software  developers  and  customers.  In  this  paper  we

analyze  potential  benefits  of  using  Java  in  space

applications  and  summarise  our  findings  gathered

during the Real-Time Java Assessment Project. We also

point  out  technical  issues  of  current  Java

implementations  that  have  to  be  solved  to  make  this

possible.

2 HOW CAN SPACE APPLICATIONS BENEFIT

FROM JAVA

Space applications can benefit both from features in the

Java  language  itself and  the  Java  ubiquity.  The  Java

virtual machine lifts much of the burden of unnecessary

low-level details from the programmer. The ubiquity of

Java  leads  to  broader  tool  support  and  a  greater

availability of programmers familiar with the language.

The wide spread of  Java suggests  that  Java is  a  well

balanced environment. Java itself is a simple language –

much  simpler  than  for  instance  C,  C++  or  Ada.  Its

syntax  and  semantics  were  specified  after  decades  of

research  and  practical  experience.  It  is  coherent,  yet

powerful and easy to use for most programmers. Java

has  a  built-in  support  for  class-based  object-oriented

programming, generics (a safer and simpler replacement

for C++ templates), exception handling, and vertically

integrated thread management.  Java has a wide range of

libraries as part of its thorough standard API, making it

unnecessary  for  software  engineers  to  seek  out  third-

party libraries for most tasks. Furthermore, Java allows

dynamic  allocation  and  has  automatic  garbage

collection,  which  takes  even  more  burden  as  well  as

opportunities to make mistakes from programmers. Java

has been proven by experience to be suitable for a wide

range of applications.

The Java language is type safe. Type safety provides a

solid ground for both security and spatial partitioning of

different  threads running in an application.  Thanks to

reference safety each thread can only access its properly

allocated  memory.  Type  safety  is  largely  enforced  at

compile time and partially by the runtime environment –

the  Java  Virtual  Machine.  In  particular,  type  safety



allows  for  the  implementation  of  spatial  partitioning

without  hardware support,  such as a  hardware MMU.

The spatial  separation is not of a great concern when

Java runs on top of a general-purpose OS with memory

protection,  but  it  is  vitally  important  for  real-time

operating  systems  such  as  RTEMS,  which  do  not

support  hardware  memory  protection,  even  when

running  on  hardware  that  provides  it  (i.e.  LEON3).

Moreover, type safety and further bytecode checking of

the Java Virtual Machine makes the Java platform safer

compared to native applications – attacks such as stack

overflow  exploits  are  not  possible  if  the  JVM

implementation is bug free and can afford to perform

on-line bytecode checking [16].

The  Java  Virtual  Machine  supports  dynamic  class

(code)  loading,  providing  a  base  mechanism  for

updating  applications  at  run-time  or  loading  needed

components  at  start-up  time.  Conceptually  this  is  not

different from dynamic linker support present in most

general purpose operating systems, except that safety is

ensured:  whereas a  dynamic linker  for  C applications

will  not  check  the  compatibility  of  various  loaded

modules, the Java class loader will prove that at worst,

compatibility issues will be isolated and will not result

in a failure of the system at large. In the COrDeT project

funded  by  ESA  [6],  support  for  dynamic  updates  of

software components at runtime has been identified as

one of the requirements for future spacecraft on-board

software. Dynamic class loading would therefore be an

important feature, as RTEMS does not support dynamic

libraries  and  it  adds  the  aforementioned  benefits

comparing to dynamic linking. Java on-board software

can thus in principle be updated at run-time.

Since Java programs conceptually all run on the same

platform,  the  Java  Virtual  Machine,  most  of  the

portability issues are taken away from the application

programmers.  This  is  also  known  as  WORA (Write

Once Run Anywhere). In the case of space applications

this has the nice feature that most of the code (except

hardware-dependent  parts)  does  not  need  to  be

developed and debugged in specialized, expensive and

usually slow simulators, but instead in a fairly common

desktop environment. 

The  actual  portability  of  the  Java  applications  then

depends  on  how  well  the  individual  virtual  machine

implementations  follow  the  specification.  The  API  is

part  of  the  specification,  so  the  programmers  cannot

accidentally  use  virtual  machine  specific  features.

However,  it  is  their  responsibility  to  make  sure  they

only  rely  on the  specified  behavior  of  the  API.  With

new Java releases,  issues  affecting portability  in  both

the specification and implementations are being fixed –

specification is being clarified, methods with unfixable

portability  issues  deprecated  and  complemented  by

better ones. As a result, it is in general easier to write

portable programs in Java than in languages like C or

even  C++,  but  still  programs  should  be  tested  on

multiple  virtual  machine  implementations.  Similar

observations apply to the portability of Ada language,

however, as Java is being recently used in more areas,

the progress of portability issues clarification is swifter.

Despite the good supply of Java libraries, applications

sometimes need to interact with native code, mainly to

access low-level  OS dependent functionality or native

libraries. Java provides an interface to native code for

applications  that  need  it.  Spacecraft  on-board

applications  thus  can  potentially  be  formed  by  both

native code and Java code. This could be exploited for

instance in the development of Basic Software (Fig. 1).

According to an experimental study published in [11],

programmers are more productive in Java than in C++

and they also create less bugs in Java than in C++.  We

are not aware of any similar study that would compare

Java and Ada. 

A language-level comparison of Ada and RT Java  in the

context  of  safety  critical  applications  is  given  in  [5].

Unlike Ada, dynamic memory allocation and automatic

garbage collection are integral parts of standard Java.  

 

3 CHALLENGES FOR SPACE READY RT JAVA

In  order  to  provide  suggestions  for  using RT Java  in

spacecraft on-board software, an analysis of this domain

has  to  be  taken  into  account.  This  work  has  been

performed  recently  in  projects  funded  by  ESA,  e.g.

CorDeT [6] and DOMENG [7]. In the Real-Time Java

Assessment Project [14] funded by ESA and carried out

by SciSys with help by Charles University, we took into

account  high-level  considerations  only.  We  provided

suggestions  for  applicability  of  RT Java  for  platform

and  payload  applications  based  on  our  evaluation  of

selected  RT  Java  products,  which  followed  the

guidelines  drawn  in  [12].  We  used  a  high-level

spacecraft  on-board software architecture as  shown in

Fig. 1.
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Figure 1. On-board software high-level architecture

Our benchmarking results in the project suggested that

although RT Java system latencies  on RTEMS/LEON

were above acceptable limits, they were comparable to

C on platforms for which RT Java implementations have

been  better  optimised  (e.g.  Linux/x86).  From  the

perspective of  using RT Java for  particular  spacecraft

on-board  software  applications,  our  summary  was  as

follows:

- Basic Software:

1. Adequate  support  in  RT  Java  to  access

hardware is missing (e.g. interrupt handling);

2. Too  high  system latencies  (on  the  target

RTEMS/LEON platform);

3. It is worth considering using JNI or other

mechanisms to access Basic Software written

in C.  The difference in performance between

BSW written in Java on one side and written in

C and accessed via JNI/other tools on the other

side should be quantified.

- Data Handling:

1. RT Java appears being close to provide all

necessary functionality;

2. Improvements  in  performance  and

predictability are needed on the target platform.

- AOCS:

1. RT Java appears being close to provide all

necessary functionality (attention must be paid

to  implementing  the  trigonometric  functions

with  higher  precision  as  in  the

java.lang.StrictMath library which should use

algorithms  compliant  to  the  Freely

Distributable  Math Library (fdlibm),  but  also

make a faster but less precise implementation

relying  on  hardware  support  in

java.lang.Math);

2. Improvements  in  performance  are  yet

needed.

- OBCP

1. RT Java  dynamic  class  loader  combined

with  an  interpreter  provides  the  necessary

functionality;

2. Doubts  remain  as  to  whether  using  the

Java  interpreter  as  the  OBCP  interpreter  is

actually beneficial;

3. In  our  experience,  dynamically  loaded

interpreted code performs up to two orders of

magnitude worse than the AOT-compiled code

on the target platform. Just-in-time compilation

is not a solution, as it requires huge amount of

computation time and memory.

- Payload Software:

1. No  specific  obstacles  have  been  found;

however all the general observations apply;

2. Improvements  in  performance  and

predictability are needed on the target platform.

We complement these earlier results based on Purdue’s

experience  with  porting  their  Ovm  [1]  RT  Java

implementation to RTEMS/LEON and RTEMS/x86. In

this paper we focus more on memory management, as

this  appears  to  be  a  critical  aspect  for  real-time

guarantees in Java.

In  standard  Java,  the  garbage  collector  could  cause

pause times as large as 100 ms or more. The garbage

collector is however an integral part of Java and cannot

be bypassed. An additional problem is that the base Java

thread scheduler does not fully enforce priorities. Real-

Time  Specification  for  Java  (RTSJ),  an  extension  to

standard Java, provides real-time scheduling features as

well as different modes of using memory that bypass the

garbage  collector:  scoped  memory  and  immortal

memory. The new programming model requires explicit

distinction of these types of memory. Immortal memory

is never released. Scoped memory is similar to stack-

allocated  local  variables  of  a  function:  variables  are

allocated when a function is entered and freed when it is

left. The difference is that in RTSJ a scope is orthogonal

to a function: a scope is entered explicitly as well as it is

explicitly left. To preserve type safety, references from

outside a scope cannot point into a scope, as they would

be turned invalid when the scope is left.

RTSJ  has  been  implemented  both  in  commercial  and

open-source  virtual  machines  (Java  RTS,  WebSphere

Real Time, PERC, Ovm, and JamaicaVM/AeroVM). It

is  known  to  be  used  in  a  battleship  computing

environment  (US  Navy  Zumwalt-class  Destroyer  by

Raytheon/IBM, 5 mil. lines of Java code, Aegis Weapon

System  Open  Architecture  Program  [9,3]),  avionics

(Zedasoft's  Java  flight  simulator,  Boeing  ScanEagle

UAV  [1],  EADS  Barracuda  UAV),  audio  processing

[2,10], industrial control [13], trading and visualization.

However, to the best of our knowledge none of these

systems  uses  scoped  memory  –  in  each  application,

developers opted to use either a provider-specific real-

time garbage collector  or  statically allocated memory.

This is largely due to the fact that scoped memory takes



away  the  simplicity  of  the  base  Java  –  explicit

entering/leaving  the  scopes  and  keeping  the  invariant

that references do not point to scopes from the outside

introduces  hassles  that  arguably  make  Java  no  better

than C or C++. Real-time garbage collectors strive to

avoid  the  need  for  scoped  memory:  although  less

efficient  than  the  non-real-time  ones,  they  currently

provide pause times in hundreds of microseconds. Even

shorter pause times seem theoretically possible. A real-

time GC is a part of JVM implementations of IBM, Sun,

Aicas, and Purdue's Ovm.

A unique restriction for spacecraft on-board software is

the  amount  of  memory.  Due  to  extensive  costs  of

radiation  hardened  RAM,  future  ESA  systems  are

expected  to  have  only  32M  of  RAM,  although  the

hardware could support 128M. The limit of 32M is very

restrictive for any realistic Java application. If we only

focus on the heap, due to the use of GC, we typically

need  3  times  more  memory  than  the  live  data  really

spans.  It  seems that  space  applications  would  benefit

from a GC that would require less memory, most likely

for  the  price  of  decreased  performance.  Compression

techniques  or  just  reduction of  extensive  aligning are

obvious  candidates  to  be  explored,  as  well  as

modification of the GC algorithm to reduce the three-

fold overhead.  On the other  hand,  existing C or  Ada

space applications also incur space overheads due to the

use  of  static  memory  allocation  or  memory  pooling,

which introduces an a priori fragmentation of the heap.

The memory pool code is often heavily used by most

subsystems  of  the  on-board  software  and  not  enough

attention is paid to its efficiency and flawlessness. Thus,

it  is  possible  that  performance  of  existing  RTGCs  is

already  comparable  with  legacy  space  applications  in

memory usage.

Code size is also an issue with respect to memory usage

–  the  future  ESA hardware  has  (only)  8M  of  non-

volatile memory in addition to the 32M of RAM. Even

if  we  restrict  the  dynamic  class  loading  to  classes

known at compilation/deployment time, the amount of

code used just by the start-up of class libraries can be

significant. Although much of the initialisation may not

be used in a particular application execution, stripping

down the Java features would make us lose most of the

benefits  of  Java.  Potential  solutions  to  apply  include

rewriting  the  class  libraries  to  initialise  more  lazily,

while  keeping  real-time  properties,  as  well  as

code/bytecode compression.

Lastly, the VM footprint itself can be significant. Non-

RT JVMs implement just-in-time compilation, which is

hardly  applicable  in  small  embedded  devices  due  to

limited  memory  and  computational  power.  Ahead-of-

time  compilation  is  usually  preferred.  However,  the

binary code is significantly larger than the bytecode.

Space applications could greatly benefit from dynamic

updating of a running application by loading code not

present when the application was started. The built-in

Java  support  for  this  represents  much  safer  and

technically more sound option comparing to the current

practice  of  patching  binary  images  of  software

applications.  A  sensible  solution  with  respect  to

available  memory  would  probably  thus  be  based  on

ahead-of-time compilation of most of the classes and on

interpreting bytecode of the dynamically loaded classes.

Our  experience from the RT Java Assessment  project

shows that we can identify pieces of on-board software

where the performance penalty of the interpreted code is

not significant (e.g. the time to perform a system call is

–  not  surprisingly  –  comparable  in  both  native  and

interpreted execution modes). 

4 THE OVM EXPERIENCE

Purdue Ovm is a research JVM that implements most of

the  RTSJ  specification  and  has  a  real-time  garbage

collector.  It  was  primarily  designed  for  Linux  and

worked on similar POSIX systems with x86, SPARC,

and PowerPC processors.  It  can employ the Xenomai

RT-Linux to expose hardware interrupts and I/O devices

to Java programs. The core of Ovm has also been ported

to RTEMS/LEON2, RTEMS/LEON3 and RTEMS/x86.

We  were  able  to  run  the  SPEC  JVM  98  compress

benchmark  on  a  system  with  8M  flash  memory  and

32M RAM. 

Ovm provides an ahead-of-time compiler that compiles

Java bytecode into C code, which is in turn compiled by

GCC into machine code. The same compiler is used for

the  application  bytecode,  the  Java  libraries  bytecode,

and the bytecode of the VM runtime itself (the majority

of the VM is implemented in Java). The use of C as the

output language has the advantage of leaving some low-

level  optimizations  (register  allocation,  instruction

selection, redundant code elimination, some of inlining)

to  GCC  as  well  as  making  the  VM  more  portable.

Additionally, the generated C code is relatively easy to

debug.

As  Ovm  already  had  support  for  SPARC,  porting  to

LEON2 and LEON3 CPUs did not require much work;

only some calling convention details had to be resolved.

On  the  other  hand,  porting  to  the  RTEMS  operating

system required new threading control code, some I/O

fixes,  fixes  to  the  boot  process  and extensions of  the

build system. The build system had to be extended for

cross-compilation and for running code in an emulator.

Because Ovm already used GNU Autotools, this did not

require massive changes. The VM boot code had to be

adapted for RTEMS memory layout. Ovm uses a pre-

compiled memory image with the VM code, which has

to be at  fixed memory address.  As  RTEMS does not



have MMU, some relatively minor changes were needed

to make this possible.

The port of Ovm to RTEMS brought to light limitations

that have to be eliminated to make the use of Java for

the  development  of  spacecraft  on-board  software

possible.  The memory usage is  still  too large,  due to

both the binary (the VM code and pre-compiled class

libraries)  and  heap  requirements.  The  problem of  the

large binary cannot be alleviated through interpretation,

as  our  real-time configuration of  Ovm currently  does

not support bytecode interpretation (earlier versions of

Ovm supported a simple interpreter which was used for

debugging).  Ovm has  also  a  very  limited  support  for

interfacing C and Java code; this is both beneficial (full-

fledged C-to-Java interfaces such as JNI tend to be quite

large)  and  detrimental:  end-users  cannot  quite  easily

write  their  own  C  code  and  link  it  with  an  Ovm

program.

5 ROADMAP TO JAVA IN SPACE

Spacecraft  on-board software could benefit  from Java

once Java is improved in certain aspects. Some of the

suggested  improvements  are  generally  accepted  as

requirements for RT embedded Java systems – shorter

RTGC pause times,  better  CPU utilization.  Somewhat

unforeseen are the stringent memory requirements due

to hardened RAM (up to 8M for code, up to 32M for

heap).  An  important  factor  is  also  a  limited  timer

resolution  due  to  limited  clock  rate,  as  compared  to

desktop  systems.  The  limited  timer  resolution  makes

RTGC implementation more challenging.

In  short  time,  it  is  unlikely  that  with  current  Java

implementations  the  whole  spacecraft  on-board

software could be written in Java. However, Java could

be used as an isolation platform for software that has not

been assigned the highest  criticality,  while the critical

code would still be written in Ada or C. The Ada/C code

will communicate with the Java code using well defined

native interface, allowing both calls from Java to Ada/C

and  vice  versa.  Java  could  never  bypass  the  native

interface to corrupt or break the Ada/C code thanks to

the Java type-safety. Indeed, the Ada/C code still would

have to be robust against erroneous or adversary use of

the native interfaces it would provide to Java.  The Java

code could be updated in flight (thanks to dynamic class

loading).  And  indeed  the  Java  code  could  use  all

mentioned Java features that make programming easier

and safer.

This scenario of Java as an isolation platform would still

require  some  engineering  of  the  Java  VM.  The  Java

native  interface  should  be  fast  and  the  Java  VM,

especially  the  RTGC,  should  not  consume  excessive

resources when not in use. The dynamic class loading

would  require  an  interpreter  with  reasonable

performance  and  limited  memory  requirements.  A

logical partitioning approach could be used to make the

memory and CPU utilisation of Java under control. One

possible  solution  to  this  is  to  use  a  separation

microkernel  such  as  PikeOS,  which  was  recently

selected for Securely Partitioning Spacecraft Computing

Resources, a project funded by ESA [15]. In addition to

the separation of Java control code from critical native

code,  this  scenario  can  be  employed  for  isolation  of

different Java control applications from one another.

Surprisingly,  certain  limitations  of  hardware  for

spacecraft on-board applications can be exploited by the

JVM. In particular, SMP or multi-core systems are not

expected to fly in the short term (ESA is only starting

projects to investigate the consequences of the use of

multi-core systems). The lack of real parallelism makes

the  VM  implementation  simpler  and  puts  unique

requirements for the GC as well. The extremely small

heap size (up to 32M as opposed to gigabytes in desktop

systems)  would  also  impact  decisions  on  GC design.

Also, limitations of software, such as the limited SMP

support found in RTEMS, can also be overcome by the

VM;  VMs  typically  implement  much  of  the  heavy-

lifting required to  support  SMPs,  potentially  allowing

parallel  Java code to run on top of not fully parallel-

aware operating systems.

Once the sandbox scenario is proven to work and the RT

GC  technology  allows  writing  code  with  acceptable

latencies,  more  and  more  parts  of  the  space  systems

could be implemented in Java.

We also believe that  Java design and coding patterns

should  be  investigated  for  the  real-time  embedded

systems  development.  For  instance,  our  experiments

with different implementations of the System Data Pool

have shown that simple design issues such as method

signatures  could  have  significant  influence  on  the

overall throughput and response times. Attention has to

be  paid  when  Java  exceptions  or  synchronisation  are

used.

6 CONCLUSIONS

In the future,  we would like to focus on two parallel

tracks.

One  of  them  is  developing  a  RT  Java  VM  for

RTEMS/LEON,  which  meets  the  requirements  of

spacecraft on-board software. Ovm can run on RTEMS/

LEON,  but  has  two  important  drawbacks:  does  not

presently support dynamic loading and it's footprint is

too large.  Adding dynamic loading to Ovm would be

possible  since  it  existed  in  earlier  versions  for

debugging,  but  reducing  the  footprint  will  require

significant  changes  or  writing  a  new virtual  machine

from scratch. We would like to focus on Safety Critical



Java  [6],  an  updated  subset  of  the  Real-Time

Specification  for  Java  and  to  explore  optimizations

reducing footprint in this context.

The second track is the evaluation of existing RT Java

VMs  for  their  suitability  for  spacecraft  on-board

software. This will include incremental building of code

base of prototype on-board software in RT Java. Here

we would like to build upon our efforts in the Real-Time

Java Assessment project, as well as other studies. At the

same  time,  this  will  include  further  benchmarking  of

different RT Java products such as Ovm, AeroVM and

PERC  Pico.  We  currently  have  a  test  suite  available

which we can easily port to the other VMs in order to

compare their performance and predictability.
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