
Similar Code Detection and Elimination for
Erlang Programs

Huiqing Li and Simon Thompson

School of Computing, University of Kent, UK
{H.Li, S.J.Thompson}@kent.ac.uk

Abstract. A well-known bad code smell in refactoring and software
maintenance is duplicated code, that is the existence of code clones,
which are code fragments that are identical or similar to one another.
Unjustified code clones increase code size, make maintenance and com-
prehension more difficult, and also indicate design problems such as a
lack of encapsulation or abstraction.
This paper describes an approach to detecting ‘similar’ code based on
the notion of anti-unification, or least-general common abstraction. This
mechanism is used for detecting code clones in Erlang programs, and is
supplemented by a collection of refactorings to support user-controlled
automatic clone removal. The similar code detection algorithm and refac-
torings are integrated within Wrangler, a tool developed at the University
of Kent for interactive refactoring of Erlang programs. We conclude with
a report on case studies and comparisons with other tools.

Key words: Anti-unification, Code clone detection, Erlang, Program
analysis, Program transformation, Refactoring, Similar code, Wrangler.

1 Introduction

Duplicated code, or the existence of code clones, is one of the well-known bad
‘code smells’ when refactoring and software maintenance is concerned. The term
‘duplicated code’, in general, refers to program fragments that are identical or
similar to one another; the exact meaning of ‘similar code’ might be substantially
different between different application contexts.

While some code clones might have a sound reason for their existence [1],
most clones are considered harmful to the quality of software, since code dupli-
cation increases the probability of bug propagation, the size of the source and
executable, and most importantly the cost of maintenance [2,3].

The most obvious reason for code duplication is the reuse of existing code,
typically by a sequence of copy, paste and modify actions. Duplicated code in-
troduced in this way often indicates program design problems such as a lack of
encapsulation or abstraction. This kind of design problem can be corrected by
refactoring out the existing clones at a later stage [4,5,6], but it could also be
avoided by first refactoring the existing code to make it more reusable, and then
reusing it without duplicating the code [5].



2 Huiqing Li and Simon Thompson

In the last decade, substantial research effort has been put into the detection
and removal of clones from software systems; however, few such tools are avail-
able for functional programming languages, and there is a particular lack of tools
that are integrated with existing programming environments, thus supporting
clone removal as a part of the programmer’s normal work pattern.

This paper describes an approach to detecting ‘similar code’ in Erlang pro-
grams based on the notion of anti-unification [7,8], as well as a mechanism for
automatic clone elimination under the user’s control. The anti-unifier of two
terms denotes their least-general common abstraction, therefore captures the
common syntactic structure of the two terms.

In general, we say two expressions or expression sequences, A and B, are
similar if there exists a non-trivial least-general common abstraction, C, and
two substitutions σA and σB which take C to A and B respectively. By ‘non-
trivial’ we mean that the size of the least-general common abstraction should be
above some threshold, but certain other conditions can be specified, and this is
under active investigation.

The approach presented in this paper is able, for example, to spot that the
two expressions ((X+3)+4) and (4+(5-(3*X))) are similar as they are both
instances of the expression (Y+Z), and so both instances of the function

add(Y,Z) -> Y+Z.

Our approach uses as the representation of an Erlang program the Abstract
Syntax Tree (AST) for the parsed program annotated with static semantic in-
formation. Scalability, one of the major challenges faced by AST-based clone
detection approaches, is achieved by a two-phase clone detection technique. The
first phase uses a more efficient syntactic technique to identify candidates which
might be clones, which are then assessed by means of an AST-based analysis
to give only genuine clones. While the paper shows this approach being imple-
mented for Erlang in particular, we see no reason why it should not be applicable
to similar code detection in any other programming language.

The application of the approach of this paper to a substantial case study
is discussed in [9]; the account here concentrates on the underling theory and
implementation of the technology.

The remainder of the paper is organised as follows. Section 2 gives an overview
of Erlang and Wrangler, and in particular our earlier mechanism for clone de-
tection and elimination, while clarifying the motivation and goal of this paper.
Section 3 introduces some terminology to be used; Section 4 describes the sim-
ilar code detection algorithm. The elimination of code clones is discussed in
Section 5, and initial experimental results are reported in Section 6. Section 7
gives an overview of related work, and finally, Section 8 concludes the paper and
briefly discusses future work.

2 Erlang and Wrangler

Erlang [10,11] is a strict, impure, dynamically typed functional programming
language with support for higher-order functions, pattern matching, concurrency,



Similar Code Detection and Elimination for Erlang Programs 3

communication, distribution, fault-tolerance, and dynamic code loading. Unlike
other functional programming languages such as Haskell [12], Erlang does not
have built-in support for type classes, inheritance or polymorphism. Erlang al-
lows static scoping of variables, in other words, matching a variable to its binding
only requires analysis of the program text, however some variable scoping rules
in Erlang are rather different from other functional programming languages.

The Erlang language comes with libraries containing a large set of built-in
functions. Erlang has also been extended by the Open Telecom Platform (OTP)
middleware platform, which provides a number of ready-to-use components and
design patterns, such as finite state machines, generic servers, etc, embodying a
set of design principles for fault-tolerant robust Erlang systems.

Wrangler [13,14] is a tool that supports interactive refactoring of Erlang pro-
grams. It is integrated with Emacs as well as with Eclipse, through the ErlIDE
plugin. Wrangler itself is implemented in Erlang. Wrangler supports a variety
of refactorings, as well as a set of ‘code smell’ inspection functionalities, and
facilities to detect and eliminate code clones. Wrangler supports a number of
basic structural refactorings such as renaming, function generalisation, function
extraction, folding, move a function definition to another module, tuple function
arguments, etc, as well as a sets of macro- and process-related refactorings. Sig-
nificant effort has been put to improve usability of the tool, and Wrangler is
aimed to be used by real-world Erlang programmers from beginners to experts.

A clone detection and elimination framework was first added to Wrangler in
2007 [15]. In contrast to the approach proposed here, Wrangler’s original clone
detector reports syntactically well-formed code fragments that are identical up
to consistent renaming of variables and substitution of literals. A hybrid clone
detection technique which makes use of both the token stream and the AST
was used to achieve performance and efficiency. Three refactorings, function
extraction, function generalisation and folding, can together be used to remove
clones from the program. More about this approach can be found in [15].

Wrangler’s original clone detection mechanism is rather limited:

– The clone detector cannot detect code fragments that are similar but not
identical, such as X+Y and X+(Y+1).

– The user needs to figure out which of the literals contained in a cloned code
fragment need to be generalised in order to capture the commonality of all
duplications.

– Moreover, the user needs to identify which of variables locally declared in
the cloned code fragment are used by the code following it, so that their
values can be returned by the generalised function.

– To get these two sorts of information identified above, a manual inspection
and comparison of every clone occurrence is needed, an impractical propo-
sition in a system of any size.

To overcome these limitations, we have designed a new approach which can
detect not only identical code but also code fragments that are similar through
anti-unification. The clone elimination process has been greatly simplified so
that the user no longer needs to work out the common abstraction and the set



4 Huiqing Li and Simon Thompson

of variables to be returned, as these are identified automatically by the tool.
With the new approach, we aim to spot more code clones, and make the clone
removal process practically applicable.

3 Terminology

3.1 Anti-unfication

The idea of anti-unification was first proposed by Plotkin [7] and Reynolds [8]
in 1970. Anti-unification applies the process of generalisation on pairs, or sets,
of terms. The resulting term captures all the commonalities of the input terms.

A substitution is a mapping from variables to terms, and is in general rep-
resented as a set of bindings {x1 7→ e1, ..., xn 7→ En}. Applying a substitution
σ to a term E = E(x1, ..., xn) gives the term Eσ = E(e1, ..., en) in which each
variable xi is replaced by the corresponding term ei.

Given terms E1...En, we say that E is a generalisation of E1, ..., En if there
exist substitutions σi for each Ei, 1 ≤ i ≤ n, such that Ei = Eσi. E is the least-
general common generalisation of E1...En if for each E′ which is also a common
generalisation of E1, ..., En, there exists a substitution θ such that E = E′θ.
The least-general common generalisation of E1, ..., En is called the anti-unifier
of E1, ..., En, and the process of finding the anti-unifier is called anti-unification.

To apply anti-unification techniques to ASTs of Erlang programs, restrictions
as to which kinds of subtrees can be replaced by a variable, and which cannot,
need to be taken into account. For instance, objects of certain syntactic cate-
gories, such as operators, guard expressions, record names, cannot be abstracted
and passed in as the values of function parameters, and therefore should not
be replaced by a variable during anti-unification. Furthermore, an AST subtree
which exports some of its locally declared variables should not be replaced by a
variable either. On the other hand, it is perfectly fine to substitute the function
name in a function application with a variable because higher order functions
are supported by Erlang.

3.2 Similarity Score

Anti-unification provides a concrete way of measuring the structural similarity
between terms by showing how both terms can be made equal. In order to mea-
sure the similarity between terms in a quantitative way, we defined the similarity
score between terms.

Let E be the anti-unifier of sub-trees E1, ..., En, the similarity score of E1, ...,
En is computed by the following formula:

Similarity Score = min{SE/SE1 , ..., SE/SEn
}

where SE , SE1 ... SEn represent the number of nodes in E, E1... En respectively.
The similarity score allows the user to specify how similar two sub-trees should
be to be considered as clones. Given a similarity score as the threshold, we say
that a set of sub-trees are similar if their similarity score is above the threshold.



Similar Code Detection and Elimination for Erlang Programs 5

Parse Program

AST Annotation

AAST Generalisation

Serialise and Hash AAST

Formatting

Examination of Clone
Candidates using
Anti-Unification

Clone Detection using
Suffix Tree

Source Erlang Programs Clone Classes

AST

Annotated AST (AAST)

Generalised AAST

Hashed AAST

Initial Clone Candidates

Final Clones

Fig. 1: An Overview of the Clone Detection Process

3.3 Definition of Clones

Common terminology for clone relations between two or more code fragments
are the phrases clone pair and clone class [16]. A clone pair is a pair of code
fragments which are identical or similar to each other. A clone class is a set of
code fragments in which any two of the code fragments form a clone pair.

In the context of this paper, each member of a clone pair/class is a sequence
of Erlang expressions. Note that sub-sequences of expression sequences in each
clone pair/class could also make clone pairs/classes. Suppose we have a clone
class with 3 class members: {[a1, a2, ..., an], [b1, b2, ..., bn], [c1, c2, ..., cn]}, then

{[ai, ...aj ], [bi, , ...bj ], [ci, ..., cj ]}(1=<i=<j=<n))

could also be clone classes. For ease of description, we use Ci,j to represent the
clone class whose class member are formed by the sub-sequence, starting from
index i and ending at index j, of each class member of clone class C.

While only those maximal clone classes whose similarity score is above the
threshold specified are reported to the user, sub-sequence clone classes are used
by the clone detection process; further details of this are given in Section 4.

4 The Similar Code Detection Algorithm

The similar code detector takes a project (or just a set of Erlang modules) as
input, performs clone detection, and reports clone classes in the project. Each



6 Huiqing Li and Simon Thompson

clone class is reported by giving the number of instances of the cloned code, each
instance’s start and end locations in the program source, as well as the least-
general common generalisation represented as an Erlang function definition. The
entire clone detection process is shown in Fig. 1. The process consists of seven
steps as described in the rest of this section.

Three parameters can be used to specify the granularity of clone classes
reported, and they are:

– the minimum number of expressions included in a cloned code fragment,
which is a sequence of expressions;

– the minimum number of class members of a clone class, and
– the similarity score threshold.

Parse Program and Generate AST Erlang files are first lexed and parsed
into ASTs. The lexer and parser used are modified versions of the standard
Erlang lexer and parser, so that both line and column numbers of identifiers
are kept in the AST. Location information makes it possible to map between
different representations of the same piece of code. In order to reflect the original
program text, the Erlang pre-processor is bypassed to avoid macro expansion,
file inclusion, conditional compilation, etc.

Annotate AST with Static Semantic Information Binding information
of variables and function names is annotated to the AST in terms of defining
and use locations. Unlike some other AST representation approaches which use
a single leaf node to represent all the occurrences of the same variable, the AST
representation used by Wrangler does not allow node-sharing between different
occurrences of the same variable. In this case, we use location information to
express the binding structure of identifiers. For instance, each occurrence of a
variable or function name in the AST is annotated with its occurrence location
in the source and the location(s) where it is defined. Binding information allows
us to check whether two variable or function names refer to the same object by
looking at their defining locations; this is required during the anti-unification
process.

Being static-semantics-aware, our clone detection tool is able to achieve the
degree of accuracy that cannot be achieved by language-independent clone de-
tection tools, or indeed tools that rely on the lexical structure alone.

Generalise and Hash the AST A major challenge faced by AST-based clone
detection approaches is scalability. Näıve anti-unification of every subtree with
every other subtree involves a prohibitively large amount of computation and
memory usage, and is not feasible in practice. Scalability is achieved by our
approach using a two-phase clone detection. The first phase carries out a quick,
semantics-unaware clone detection over a generalised version of the program,
and reports initial clone candidates to be further examined by the second phase.
This second phase examines the initial clone candidates in the context of the



Similar Code Detection and Elimination for Erlang Programs 7

original program by means of anti-unification, getting rid of false positives, and
reports the final clone classes.

The first phase makes use of suffix tree techniques to collect initial candidates.
Suffix tree analysis [17] is the technique used by most text or token-based clone
detection approaches because of its speed [18,16]. A suffix tree is a representation
of a string as a tree where every suffix is represented by a path from the root to a
leaf. The edges are labelled with the substrings, and paths with common prefixes
share an edge. The suffix tree analysis itself is only able to report duplications of
strings that are identical. To make use of the suffix tree techniques, while being
able to report similar code fragments, the AST needs to be pre-processed before
being passed on for suffix tree construction. The pre-processing is carried out in
two steps. Firstly, the AST is generalised so that only a structural skeleton of
each expression statement is kept; secondly, a hash function is applied to each
expression statement to map it to a number. This is covered next.

The aim of structural generalisation is to capture as much structural sim-
ilarity between expressions as possible while keeping each expression’s original
structural skeleton. This process traverses each expression statement subtree in
a top-down order, and replace certain kinds of subtrees with a single node repre-
senting a placeholder. A subtree is replaced by a placeholder only if syntactically
it is legal to replace that subtree with a node representing a variable, and the
subtree does not represent a pattern, a match expression or a compound ex-
pression such as a conditional expression, a receive expression, a try...catch
expression, etc.

Taking the following code as an example, the generalisation process will turn
the function definition on the left-hand side into the pseudo function definition on
the right-hand side. As a design decision, our clone detector does not attempt to
detect similar patterns simply because generalisation of a function over patterns
could make the function much harder to understand in practice. Therefore in
this example, the literal pattern one is not changed.

foo(X) -> foo(X) ->

Y = case X of ? = case ? of

one -> 12; one -> ?;

Others -> 196 ? -> ?

end, end,

X + Y. ?.

(a) original code (b) generalised code

Expression sequences in the AST are then pretty-printed and serialised into a
single sequence of expressions with a delimiter to separate each sub expression
sequence. After that, a hash function is applied to each expression statement in
the sequence returning a hash value. Expression statements that are textually
the same get the same hash value. All hash values are stored in an indexed table
without duplication. This way, we are able to map a sequence of expressions into
a sequence of numbers. To save space and make the algorithm more efficient, the
actual implementation represents an expression using its start and end locations
in the program source, and a hash value using its index in the table as an integer



8 Huiqing Li and Simon Thompson

is much short than the hash value itself. The mapping is represented as a list of
two-element tuples, whose first elements are locations and second elements are
index values.

Initial Clone Detection using a Suffix Tree This step fetches the index
values from each tuple in the list returned from the previous step, and con-
centrates them into a single string; a delimiter character is inserted after every
index value during the concatenation. A suffix tree is then built on the string
generated, and clone classes of index sequences are collected from the suffix tree.
Location information is used to map clone classes in terms of indexes back to
clone classes in terms of expression sequences. The suffix tree algorithm used
is part of Wrangler’s original clone detection algorithm, the implementation of
which is reported in [15].

Examine Clone Candidates using Anti-unification The previous step re-
turns a collection of clone classes whose class members are structurally similar,
but which do not necessary share a non-trivial anti-unifier; even so it helps to
reduce the amount of comparisons needed significantly. This step examines the
initial clone class candidates one by one using anti-unification and removes those
false positives. It takes one clone class as input each time, and returns none, one
or more clone classes that satisfy the thresholds. Together with each final clone
class, the anti-unifier of the class members is returned. Due to space restrictions,
the anti-unification algorithm is not discussed in this paper.

For each clone class candidate, C say, the clone detector takes a class member,
A say, as the first member of a new clone class, C1 say, and try pairwise anti-
unification with each of the other class members. A class member from C is
added to C1 only if doing so does not make the similarity score of C1 go under
the threshold specified. When no more new members can be added to C1, the
clone detector checks whether the number of clone members in C1 is above the
parameter specified by the user, and discards it if the answer is ‘no’. After this,
another class member is selected from the remaining members of C, and the
process is repeated until no more new clone classes can be found.

In the case that none or more than one maximal clone class is returned from
the candidate clone class, i.e. the candidate clone class is not anti-unifiable as a
whole, its sub-portion clone classes are examined too. As an example, the class
candidate shown in Fig. 2 has four class member E1, E2 E3 and E4. By anti-
unification this class is divided into two new clone classes C1 = {E1, E3} and
C2 = {E2, E4}. Clone members of C1 are not anti-unifiable with class mem-
bers of C2 because of their different binding structure of variables. Suppose the
minimum length of a cloned expression sequence to be reported is 3, then the
clone detector will continue to examine the two sub-portion clone classes C1,3

and C2,4. Examination of C1,3 will return the whole clone class, while examina-
tion of C2,4 returns two new classes, but because the two new clone classes are
subclones of C1 and C2, they are discarded. Therefore the examination of clone
class C results in three new clone classes: C1, C2 and C1,3.



Similar Code Detection and Elimination for Erlang Programs 9

S1 = "This", S1 ="This" D1= [1], D1=[X+1],

S2 = " is a ", S2 ="is another", D2= [2], D2=[5],

S3 = "string", S3 ="String", D3 =[3], D3=[6],

[S1,S2,S3] [S3,S2,S1] [D1,D2,D3] [D3,D2,D1]

(E1) (E2) (E3) (E4)

Fig. 2: An initial clone class candidate with four class members

This step dominates the overall cost of the clone detection algorithm. Ex-
amination of a candidate clone class of n members has a worst case of O(n2)
complexity.

Discussion. More constraints can be applied during the anti-unification process
so that certain kinds of node are not replaced by variables even if doing so is
theoretically correct. For example, generalisation over expressions that contain
locally declared free variables is possible, but doing so makes the program harder
to understand, and may well not be of interest to the user. Another constraint
would be the maximal number of new variables introduced during the anti-
unification process, so as to avoid the generation of functions with too many
variables, which represents another kind of bad code smell. We are currently
working towards making the clone detector a customizable tool so that the user
could specify which kinds of generalisation are preferred or not preferred.

Formatting Final clone classes are sorted and displayed in two different orders,
first by the number of duplications, then by the length of expression sequences.
The location of each clone member, identified by the combination of source file
name, line and column numbers, is mouse clickable. Associated with each clone
class is the least-general common abstraction of the clone class in form of a
function definition. The function name and variable names of the form NewVar i
are generated by the clone detector. Variables that are declared locally but used
elsewhere are included in the tuple returned by the function.

Fig. 3 shows the clone detection in action. The buffer above is an Erlang mod-
ule consisting of four functions whose bodies correspond to the class members
in Fig. 2, and the buffer below shows the result of running the clone detector on
this buffer, illustrating the clones C1,3, C2, and C1, as well as their anti-unifiers.

5 Refactoring Support for Similar Code Elimination

The primary purpose of clone detection is to identify them so that they can be
eliminated. A number of Wrangler refactorings, together with the least-general
common abstractions suggested by the clone detector, make clone elimination
straightforward. With the current framework, the clone removal process involves
the following steps:



10 Huiqing Li and Simon Thompson

Fig. 3: A snapshot showing similar code detection

1. select a clone class, copy and paste the least-general common abstraction
into the proper Erlang module;

2. rename variable names if necessary;
3. re-order the function parameters if necessary;
4. rename the function to some suitable name;
5. apply the refactoring ‘fold expressions against a function definition’ to the

new function.

Both renaming and folding are refactorings supported by Wrangler. Reordering
of function parameters is not supported by Wrangler yet, but this does not add
any overhead to the clone removal process as long as the reordering of parameters
is done before ‘folding’ is applied, i.e. before the function is actually used.

Folding expressions against a function definition is the refactoring which
actually removes code clones from the program. This refactoring searches the
program for instances of the right-hand side of the function clause selected, and
replaces them with applications of the function to actual parameters under the



Similar Code Detection and Elimination for Erlang Programs 11

Fig. 4: A snapshot of Wrangler showing folding

user’s control. This refactoring can not only detect instances where parameters
are replaced by variables or literals, but also instances where parameters are re-
placed by arbitrary expressions. Expressions with side effects or locally declared
variables are wrapped in a fun expression (or closure) to preserve the seman-
tics. When this refactoring is initiated to a function clause selected, Wrangler
automatically searches for code fragments that are clones of this function clause.
Once clone instances have been found, the user can indicate whether to fold a
particular clone instance or not. Folding is not performed within the selected
function clause itself, since doing this will change the program’s semantics.

Fig. 4 shows a snapshot of this refactoring in action. The user has chosen
to apply ‘folding’ to the function foo. The expression sequence highlighted is
one of the clone instances found by this refactoring, and the text shown in the
minibuffer asks the user whether this clone instance should be removed. We
should point out that the fact that Erlang is a weakly typed language and does
not support polymorphism has made the clone detection and elimination process
easier. For example, with Erlang programs we can be sure that X+Y and A+B are
clones without carrying out complex type analysis, whereas this is not in general
possible in strongly-typed programming languages like Haskell.

6 Clone Detection Applied

The clone detector has been applied to various Erlang applications and test code.
Our case studies show that test code written under the Erlang/OTP Test Server



12 Huiqing Li and Simon Thompson

framework has a much higher percentage of duplicated code than normal Erlang
applications or test code written under other testing frameworks. This was not
very surprising given the fact that all Erlang/OTP Test Server test functions
follow a predefined coding pattern, and the copy, paste, then modify style of
editing can be very tempting to testers.

One of test suites we have examined contains 4 Erlang modules, 9189 lines of
code. This test suite is actually used by industry, and at the time we examined
this test code more testing functions were still being added. With the default
parameter settings, i.e. 5 for the minimum number of expressions, 2 for the
minimum number of repeats, and 0.8 for the similarity score, it takes the clone
detector less than 2 minutes to report 354 initial clone class candidates and 150
final clone classes. This was run on a laptop with Intel(R) 2.00 GHz processor,
2015MB RAM, and running Windows Vista. Of the 150 clone classes, the largest
clone class, whose least-general common generalisation is shown below, contains
a sequence of five match expressions with 75 instances across 3 modules.

new_fun(NewVar_1, NewVar_2, NewVar_3) ->

FilterName_1 = "F_1",

Pos = 1,

FilterRuleSetList = [{FilterName_1, Pos, NewVar_1}],

NetSide = NewVar_2,

Dir = NewVar_3,

NetDirFilterList = [{NetSide, Dir, FilterName_1}],

{FilterRuleSetList, NetDirFilterList}.

The clone class with the longest expression sequence reports an expression se-
quence of 89 lines occurring twice in the same module with only two literal
strings being different.

Working together with programmers familiar with the test suite and the
application being tested, we looked to eliminate clones from the code. We took
one of the test modules, containing 2600 lines of code, as an example: the clone
detector reports 31 clone classes for this module. We started by removing clones
with the largest number of repeats, thus working bottom up. Instead of devoting
time to the details of the removal process, we were able to concentrate on its
higher-level aspects, such as choosing how to name the functions representing
the cloned code.

This experiment also showed the importance of user inspection during the
clone elimination process. We have the Wrangler support for identifying candi-
dates for clones but they may well need further analysis and insight from users
to identify what should be done. For example, a clone might contain some ex-
pressions whose functionality belongs to the next part of the code, and should
be removed from the least-general common generation before clone removal is
applied, if the extracted function is to represent a meaningful operation.

7 Related Work

A typical clone detection process first transforms source code into an internal
representation which allows the use of a comparison algorithm, then carries out



Similar Code Detection and Elimination for Erlang Programs 13

the comparison and finds out the matches. A recent survey of existing techniques
by Roy and Cordy can be found in [2]. Overall there are

– text-based approaches [19,2,20], which consider the target program as se-
quence of lines/strings;

– token-based approaches [21,18,22], which apply comparison techniques to
the token representation of programs.

– AST-based approaches [23,24,25,26,27], which search for similar subtrees in
the AST with some tree matching techniques; and

– program dependency graph based approaches [21], which look for isomorphic
subgraphs to find clones.

Our approach presented in this paper uses the AST-based approach. AST-based
approaches in general could report more clones than text-based and/or token-
based approaches, but since näıve comparison of subtrees for equality does not
scale, various techniques are needed to make them scalable.

The most closely related work to ours is by Bulychev et al. [26] who also use
the notion of anti-unification to perform clone detection in ASTs. Their approach
consists of three steps, first identify similar statements using anti-unification and
classify them into clusters, this is done by attempting anti-unification of each
statement with each potentially matching cluster; then find identical sequences
of cluster IDs, corresponding to statement sequences within a compound state-
ment; after that anti-unification is used again to refine the candidate sequences
identified previously for overall similarity. Anti-unification distance, which can
be seen as the total size of subtrees to be replaced, is used to check the similarity
of clone pairs.

Our approach is different from Bulychev et al.’s in several aspects. First, we
use a different approach, which is faster but reports more false positives, to get
the initial clone candidates; second, their approach reports only clone pairs, while
our approach reports clone classes as well as their anti-unifiers; third, Bulychev
et al.’s approach is programming language independent, and the quality of the
algorithm depends on whether the occurrence of the same variable (in the same
scope) refers to one leaf in the AST; whereas our tool is for Erlang programs,
though the idea also applies to other languages, and static semantics information
is taken into account to disallow inconsistent substitutions.

Another related work is by Evans et. al [24] who search for large common
patterns in ASTs. It is based on heuristics and works in a bottom-up manner,
specifying and increasing the patterns step-by-step. The disadvantage of this is
that it can only find duplicated statements, not sequences of statements.

In [23], Baxter et al. use a hash function to place each full subtree of the AST
into a bucket, then every two full subtrees with a bucket are compared. The hash
function is chosen to be insensitive to identifier names so that these can be pa-
rameters in a procedural abstraction. In [23], Baxter et al. also suggest a mech-
anism for the removal of code clone with the help of macros. DECKARD [25]
is another AST-based language independent clone detection tool, whose main
algorithm is to compute certain characteristic vectors to approximate structural
information within ASTs and then cluster similar vectors, and thus code clones.



14 Huiqing Li and Simon Thompson

Most of the above mentioned clone detection tools target large legacy pro-
grams, and none of them is closely integrated with an existing programming en-
vironment, not to mention support for interactive automatic clone elimination.
Without applying deeper knowledge of the scoping rules of the target program-
ming language, language-independent clone detection tools tend to have a lower
precision, and are not very suitable for mechanical clone refactoring.

8 Conclusions and Future Work

In this paper, we have presented a similar code detection and elimination tech-
nique based on the notion of anti-unification, or least-general common abstrac-
tion, as well as techniques taken to improve performance and efficiency. The
tool is able to detect more clones than Wrangler’s original code detection tool,
which only reports code fragments that are identical after consistent variable
renaming and substitution of literals. The tool reports not only clones, but also
the least-general common abstraction of each clone class in form of an Erlang
function definition. The least-general common abstraction helps the user decide
whether the clone is worth elimination or not, and also makes the clone removal
process much easier. The clone detector tool is built on top of the infrastructure
of Wrangler, the Erlang refactorer, and also integrated within the Wrangler en-
vironment. User-controlled automatic elimination of clones was made possible
with Wrangler’s refactoring support. Case studies carried out with real-world
industrial code demonstrated the usefulness of the tool.

Our future work goes in a number of directions. While this paper lays out the
infrastructure of the tool, in the future we are going to do an empirical study of
clones detected from different Erlang systems with different parameter settings.
Our current similar code detection tool cannot detect expression sequences which
are similar up to a single insertion or deletion of an expression, or similar up to a
number of expression-level edits, and we are trying to extend the tool to detect
this kind of more general similarity. We would also like to explore the application
of the approach to other functional programming languages like Haskell, in which
case a type-aware anti-unification is needed.

This research is supported by EU FP7 collaborative project ProTest (http:
//www.protest-project.eu/), grant number 215868; we thank our funders and
colleagues for their support and collaboration.

References

1. Kapser, C., Godfrey, M.W.: ”Clones Considered Harmful” Considered Harmful.
In: Proc. Working Conf. Reverse Engineering (WCRE). (2006)

2. Roy, C.H., Cordy, R.: A Survey on Software Clone Detection Research. Technical
report, School of Computing, Queen’s University at Kingston, Ontario, Candada

3. Monden, A., Nakae, D., Kamiya, T., Sato, S., Matsumoto, K.: Software Qual-
ity Analysis by Code Clones in Industrial Legacy Software. In: METRICS ’02,
Washington, DC, USA (2002)

http://www.protest-project.eu/
http://www.protest-project.eu/


Similar Code Detection and Elimination for Erlang Programs 15

4. Balazinska, M., Merlo, E., Dagenais, M., Lague, B., Kontogiannis, K.: Partial Re-
design of Java Software Systems Based on Clone Analysis. In: Working Conference
on Reverse Engineering. (1999) 326–336

5. M. Fowler: Refactoring: Improving the Design of Existing Code. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA (1999)

6. Higo, Y., Kamiya, T., Kusumoto, S., Inoue, K.: ARIES: Refactoring Support
Environment Based on Code Clone Analysis. In: IASTED Conf. on Software En-
gineering and Applications. (2004) 222–229

7. Plotkin, G.D.: A note on inductive generalization. Machine Intelligence 5 (1970)
153–163

8. Reynolds, J.C.: Transformational systems and the algebraic structure of atomic
formulas. Machine Intelligence 5 (1970) 135–151

9. Li, H., Lindberg, A., Schumacher, A., Thompson, S.: Improving your test code
with Wrangler. Technical Report 4-09, School of Computing, Univ. of Kent, UK

10. Armstrong, J.: Programming Erlang. Pragmatic Bookshelf (2007)
11. Cesarini, F., Thompson, S.: Erlang Programming. O’Reilly Media, Inc. (2009)
12. S. Peyton Jones, ed.: Haskell 98 Language and Libraries: the Revised Report.

Cambridge University Press (2003)
13. Li, H., Thompson, S., Lövei, L., Horváth, Z., Kozsik, T., Vı́g, A., Nagy, T.: Refac-

toring Erlang Programs. In: EUC’06, Stockholm, Sweden (November 2006)
14. Li, H., Thompson, S., Orosz, G., Töth, M.: Refactoring with Wrangler, updated.

In: ACM SIGPLAN Erlang Workshop 2008, Victoria, British Columbia, Canada
15. Li, H., Thompson, S.: Clone Detection and Removal for Erlang/OTP within a

Refactoring Environment. In: PEPM’09, Savannah, Georgia, USA (January 2009)
16. Kamiya, T., Kusumoto, S., Inoue, K.: CCFinder: A Multi-Linguistic Token-based

Code Clone Detection System for Large Scale Source Code. IEEE Computer So-
ciety Trans. Software Engineering 28(7) (2002) 654–670

17. Ukkonen, E.: On-Line Construction of Suffix Trees. Algorithmica 14(3) (1995)
249–260

18. Baker, B.S.: On Finding Duplication and Near-Duplication in Large Software Sys-
tems. In Wills, L., Newcomb, P., Chikofsky, E., eds.: Second Working Conference
on Reverse Engineering, Los Alamitos, California (1995)

19. Baker, B.S.: A Program for Identifying Duplicated Code. Computing Science and
Statistics 24 (1992) 49–57

20. Ducasse, S., Rieger, M., Demeyer, S.: A language independent approach for de-
tecting duplicated code (1999)

21. R. Komondoor and S. Horwitz: Tool Demonstration: Finding Duplicated Code
Using Program Dependences. Lecture Notes in Computer Science 2028 (2001)

22. Li, Z., Lu, S., Myagmar, S.: Cp-miner: Finding copy-paste and related bugs in
large-scale software code. IEEE Trans. Softw. Eng. 32(3) (2006) 176–192

23. Baxter, I.D., Yahin, A., Moura, L., Sant’Anna, M., Bier, L.: Clone Detection Using
Abstract Syntax Trees. In: ICSM ’98, Washington, DC, USA (1998)

24. W. Evans, C.F., Ma, F.: Clone Detection via Structural Abastraction. In: the 14th
Working Conference on Reserse Engineering. (2008) 150–159

25. Jiang, L., Misherghi, G., Su, Z., Glondu, S.: Deckard: Scalable and accurate tree-
based detection of code clones. In: ICSE ’07, Washington, DC, USA, IEEE Com-
puter Society (2007) 96–105

26. Bulychev, P., Minea, M.: Duplicate code detection using anti-unification. In: Spring
Young Researchers Colloquium on Software Engineering. (2008) 51–54

27. R. Koschke and R. Falke and P. Frenzel: Clone Detection Using Abstract Syntax
Suffix Trees. In: WCRE ’06, Washington, DC, USA (2006) 253–262


	Similar Code Detection and Elimination for Erlang Programs
	Huiqing Li and Simon Thompson

