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Drawing Euler Diagrams with Circles: The
Theory of Piercings

Gem Stapleton, Leishi Zhang, John Howse and Peter Rodgers

Abstract—Euler diagrams are effective tools for visualizing set intersections. They have a large number of application areas ranging
from statistical data analysis to software engineering. However, the automated generation of Euler diagrams has never been easy: given
an abstract description of a required Euler diagram, it is computationally expensive to generate the diagram. Moreover, the generated
diagrams represent sets by polygons, sometimes with quite irregular shapes which make the diagrams less comprehensible. In this
paper we address these two issues by developing the theory of piercings, where we define single piercing curves and double piercing
curves. We prove that if a diagram can be built inductively by successively adding piercing curves under certain constraints then it
can be drawn with circles, which are more aesthetically pleasing than arbitrary polygons. The theory of piercings is developed at the
abstract level. In addition, we present a Java implementation that, given an inductively pierced abstract description, generates an Euler
diagram consisting only of circles within polynomial time.

F

1 INTRODUCTION

AN Euler diagram is a collection of closed curves
that partition the plane into connected subsets,

called regions, each of which is enclosed by a set of the
curves. Typically, Euler diagrams are used to visualize
set-theoretic relationships where each curve in the Euler
diagram represents a set and each region represents
the intersection of a number of sets. The term ‘Euler
diagram’ is often confused with the term ‘Venn diagram’
– in fact, the latter can actually be seen as a subclass of
Euler diagrams. The reason for this is that whereas Venn
diagrams have to represent all possible set intersections,
Euler diagrams only need to represent a subset of the
possible intersections. For example, the lefthand diagram
in Fig. 1 shows an Euler diagram with 3 sets and 5
intersections (including that outside all of the curves)
whereas the righthand diagram in Fig. 1 is a both an
Euler diagram and a Venn diagram with 3 sets and
includes all 8 possible intersections.

Fig. 1. Euler diagrams.

Euler diagrams are attractive visualization tools be-
cause they are able to represent set intersection and
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enclosure in an easy to understand way. However, de-
spite the benefits as a visualization method, the practical
use of Euler diagrams has been held back by the dif-
ficulties in their automated generation. All generation
approaches start with an abstract description of the
diagram to be embedded. Typically, these descriptions
state which curves are to be present and which set
intersections must be represented. In order to transform
abstract descriptions into diagrams effectively, various
research efforts have been devoted to the automated
generation of Euler diagrams [1], [2], [3], [4].
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Fig. 2. Generation using a dual graph.

Some existing generation approaches, such as [5], [6],
construct a so-called dual graph from the abstract de-
scription, which is embedded in the plane, and ‘wrap’
closed curves around the dual graph, as illustrated in
Fig. 2. Each node in the graph represents a required
set intersection. For instance, PR represents the set
P ∩ R ∩ Q ∩ S and the node with no label represents
P ∩R ∩Q ∩ S. For space reasons we omit the details of
these generation approaches.

As the number of required sets and intersections in-
creases, the number of vertices and edges in the dual
graph can increase dramatically, with the graph having
at most 2n vertices each of which represents a set inter-
section. Two vertices are joined by an edge whenever the
set intersection they represent differs by exactly one set
(e.g. nodes for A ∩ B ∩ C and A ∩ B ∩ C will be joined
by an edge). Generating and manipulating such graphs
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can involve a huge amount of computation. Stages of the
drawing process typically involve finding a large planar
subgraph of the dual that has an embedding with certain
properties. The subgraph and its embedding are chosen
depending on the wellformedness conditions that the to-
be-drawn diagram is required to possess. Moreover, the
diagrams generated usually represent sets by polygons,
sometimes with quite irregular shapes [7], [8], which
make the diagrams less comprehensible and not neces-
sarily appealing to users who are familiar with the idea
of using circles to represent set-theoretic relationships.

In this paper, we propose a method that is capable
of generating a class of Euler diagrams using circles in
polynomial time. In part, the polynomial time algorithm
exists because the number of set intersections to be
represented is constrained to be at most 4×(n−1), where
n is the number of sets. However, this constraint on the
number of set intersections alone is not necessarily suf-
ficient to ensure that the aforementioned algorithms run
in polynomial time, as we will further discuss below. In
order to define our class of Euler diagrams, we identify
two types of curves, which we have termed ‘single pierc-
ing curves’ and ‘double piercing curves’ respectively, at
the abstract description level. Second, we show that if
a diagram can be drawn by successively adding these
piercing curves then it can be drawn with circles in an
efficient manner. For simplicity, in the remaining part
of this paper, we say a curve which is either a single
piercing or a double piercing is a piercing of a diagram.
Although we will define the terms single and double
piercing later, for now we refer the reader to Fig. 3 which
illustrates a diagram that can be built inductively by
adding piercing curves. Diagrams that can be generated
inductively using piercing curves can be identified at the
abstract level and it is at this level that we develop the
theory of piercings.

Fig. 3. An inductively pierced diagram.

‘Pierced’ Euler diagrams can be thought of as being
sparse, and are typical of those seen to represent lots
of subset and disjointness relationships between sets.
This is indicative of the type of situations where Euler
diagrams excel at representing information. Particular
examples include their application as a basis for software
modelling notations, such as class diagrams, state charts,
and constraint diagrams [9]; see [10] for an example of
a software model produced using constraint diagrams.
Indeed, Euler diagrams are suitable for forming the basis
of logics which are capable of ontology specification [11],

[12]; here, one may often want to specify that the classes
(concepts) in the ontology are either disjoint or in a
subset relationship. Euler diagrams have a wide range
of other application areas such as statistical data analysis
and logical reasoning [13], [14], [15], [16], [17], [18], [19].

We start, in section 2, by providing some examples
of Euler diagrams that have been automatically drawn
using previous generation methods. This allows for com-
parison with those produced using the methods of this
paper. Section 3 overviews the syntax of Euler diagrams
and other necessary background material. Abstract de-
scriptions of Euler diagrams are detailed in section 4.
Section 5 defines the notions of a single piercing and
a double piercing. Inductively pierced descriptions are
defined in section 6. We prove that all inductively
pierced descriptions can be embedded with circles in
section 7. Some limitations of the theory are discussed
in section 8. To demonstrate the utility of the theoret-
ical results, section 9 provides an implementation that
embeds inductively pierced descriptions as diagrams
drawn with circles; the software is freely available from
www.eulerdiagrams.com/piercing.htm. Many of
the diagrams in this paper were generated by the soft-
ware, including those in Figs. 1 and 3. The complexity
of our drawing method is identified in section 10, where
we also present some discussions around the complexity
of other drawing algorithms. Finally, we conclude in
section 11 and discuss future directions for this research.

2 OTHER DRAWING METHODS

The first generation method, developed by Flower and
Howse [5], provides an algorithm that is theoretically
capable of drawing an Euler diagram given any abstract
description, D, provided D has a so-called completely
wellformed drawing. The associated software implemen-
tation can produce drawings for diagrams with at most
4 curves. An illustration of the output can be seen in
Fig. 4. The abstract description for this diagram specifies
the labels present, A,B, C and D, and the regions (called
zones) to be present (i.e. which set intersections are to be
represented): ∅ (outside all of the curves), A (inside just
A), B, AB (inside exactly A and B), AC, ABC, ACD,
and ABCD. All of the diagrams in this section have
this abstract description to allow for easy comparison
(although some use lower case curve labels).

Fig. 4. Generation using the methods of [5].
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The techniques of Flower and Howse [5] were ex-
tended to enhance the layout [20]. First, some modifica-
tions were made to the implementation of the generation
method; in our running example this gives the lefthand
diagram in Fig. 5, although the labels are not shown,
as opposed to the diagram in Fig. 4. Also Flower et
al. [20] used layout metrics and hill climbing algorithms
to improve the diagrams’ aesthetic qualities; the result
of the layout improvements applied to the lefthand
diagram in Fig. 5 can be seen on the right.

Fig. 5. Using the layout improvement methods of [20].

Further extensions to the generation methods of
Flower and Howse allow the drawing of abstract de-
scriptions that need not have a completely wellformed
embedding. This was done by Rodgers et al. [21], where
techniques to allow the generation of any abstract de-
scription were developed; output from the software of
Rodgers at al. can be seen in Fig. 6. All of the methods
described so far use a dual graph based approach and are
computationally complex, having an NP-complete step.
This means that some diagrams take a significant time
to draw.

Fig. 6. Generation using the methods of [21].

Indeed, the dual graph method requires one to choose
a dual graph from the infinitely many that are ca-
pable of generating the required Euler diagram. The
chosen graph directly impacts the aesthetic quality of
the drawn diagrams and finding a suitable dual can
be difficult. A substantial part of Rodgers et al. [21]
focusses on the task of finding a dual that minimizes the

number of times wellformedness conditions are broken
and guarantees the absence of certain conditions (such
as no non-simple curve and no ‘disconnected’ zones).
An alternative method for choosing a dual graph is
developed by Simonetto and Auber [22], which has been
implemented [6]. Output from that implementation can
be seen in Fig. 7, where the labels have been manually
added post drawing1.

Fig. 7. Generation using the methods of [6].

Fig. 8. Inductive generation using the methods of [23].

A different method was developed by Chow [24],
that draws so-called monotone Euler diagrams. Amongst
other restrictions, monotone diagrams must have
the intersection between all curves in the to-be-
generated Euler diagram being present; such diagrams
are called monotone. Many ‘pierced’ diagrams do
not have this intersection present so our method
is complementary to that of Chow. We do not
have access to Chow’s software implementation of
his generation method, so we refer the reader to
http://apollo.cs.uvic.ca/euler/DrawEuler/
index.html for images of automatically drawn
diagrams that can be compared, in terms of aesthetics,
with those in this paper.

Most recently, an inductive generation method has
been developed [23], which draws Euler diagrams by

1. We thank Paolo Simonetto for supplying this image.



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 4

Fig. 9. Generation using the methods of this paper.

adding one curve at a time; see Fig. 8 for an example of
the software output. This method has the advantage that
it can draw diagrams under arbitrary sets of the well-
formedness conditions (where possible) but it also has
an NP-complete step since it searches through graphs
for cycles with certain properties. The layout metrics
of [20] could be applied to the diagrams drawn using
this method to improve their aesthetic qualities.

Using the techniques we develop in this paper, the
diagram in Fig. 9 can be generated. We identify a class
of abstract descriptions that can be drawn quickly, in
polynomial time, entirely with circles in a completely
wellformed manner.

3 EULER DIAGRAMS

An Euler diagram is a collection of closed curves drawn
in the plane. Each curve has a label, chosen from a
set L. The closed curves essentially provide a partition
of the plane into minimal regions. A zone is a union
of minimal regions determined by being inside certain
curves and outside the other curves. To illustrate, Fig. 10
shows an Euler diagram with three curves A, B and C.
There are seven zones in this diagram. Note that zone
c (the regions inside curve C but outside the other two
curves) consists of two minimal regions and is, therefore,
disconnected. Recall that a closed curve in the plane is
a continuous function of the form c : [a, b] → R2 where
c(a) = c(b). Given an arbitrary function, f : A → B, we
write image(f) to denote the set of elements in B to
which f maps.

A
B

C

a b

c

c

abcac bc

Fig. 10. An Euler diagram.

Definition 3.1: An Euler diagram is a pair, d =
(Curve, l), where

1) Curve is a finite collection of closed curves each
with codomain R2, and

2) l : Curve → L is an injective function.
Definition 3.2: A minimal region of an Euler diagram

d = (Curve, l) is a connected component of

R2 −
⋃

c∈Curve

image(c).

Definition 3.3: A zone in an Euler diagram d =
(Curve, l) is a non-empty set of minimal regions that can
be described as being interior to certain curves (possibly
no curves) and exterior to the remaining curves.

For the interpretability and classification of diagrams,
a range of diagram properties have been defined,
which are sometimes called wellformedness conditions.
Throughout this paper, we assume the following set of
wellformedness conditions:

1) All of the curves are simple.
2) No pair of curves runs concurrently.
3) There are no triple points of intersection between

the curves.
4) Whenever two curves intersect, they cross.
5) Each zone is connected (i.e. consists of exactly one

minimal region).
To illustrate, Fig. 11 shows some examples of non-
wellformed Euler diagrams. Formal definitions of the
wellformedness conditions can be found in [25]. Any
Euler diagram which satisfies all of the conditions is said
to be completely wellformed.

non-simple

curve

triple point non-crossing

point

disconnected

zones

A
A

B

concurrent

curves

A

B C

A B
A

B

Fig. 11. Non-wellformed diagrams.

4 ABSTRACTION OF EULER DIAGRAMS

In order to generate an Euler diagram, we start with a
description of that diagram. To illustrate, the diagram in
Fig. 12 can be described as having four curves, A, B, C,
and D. These curves divide the plane in such a manner
that there are six zones present. For instance, there is one
zone inside A only and another zone inside precisely A
and B. Thus, each present zone can be described by the
labels of the curves that the zone is inside.

Definition 4.1: An abstract description, D, is a pair,
(L,Z) where L is a subset of L (i.e. all of the labels
in D are chosen from the set L) and Z ⊆ PL such
that ∅ ∈ Z. Elements of Z are called abstract zones (or,
simply, zones). Given D = (L,Z), we define L(D) = L
and Z(D) = Z.

In Fig. 12, the diagram, d, has abstract description L =
{A,B, C,D} and Z = {∅, {A}, {B}, {A,B}, {C}, {C,D}}.
Sometimes we will write the zones using lower case
letters and as strings, such as ab instead of {A,B}; when
writing zones as strings, using lower case distinguishes
the zone a = {A} from the curve label A, for instance.
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Fig. 12. Abstractions.

Definition 4.2: Given an Euler diagram d = (Curve, l),
we map d to the abstract description abstract(d) =
(image(l), Z), called the abstraction of d, where Z con-
tains exactly one abstract zone for each zone in d; in
particular, given a zone, z, in d, the set Z contains the
abstract zone

abstract(z) = {l(c) : c ∈ C(z)}
where C(z) is the set of curves in d that contain z. Given
an abstraction, D = (L,Z), if abstract(d) = D then we
say d is an embedding of D.

Note that ∅ represents the zone that is contained by
no curves. It is called the outside zone and is present in
every abstract description. The Euler diagram generation
problem can be summarized as: given an abstract de-
scription, D = (L,Z), find an Euler diagram, d, such that
abstract(d) = D and such that d satisfies some chosen
wellformedness conditions.

5 PIERCING CURVES

A class of abstract descriptions that can be drawn with
circles in an efficient manner can be built by successively
adding piercing curves. We define two types of piercing
curves (strictly, curve labels). If an abstract description
can be built inductively, entirely of this type of curve,
under certain constraints then it can be drawn with
circles in polynomial time.

To illustrate, in Fig. 3, the curve labelled D is what we
define to be a single piercing of B. The curve D contains
exactly two zones, that inside D and that inside both
B and D. Double piercings pierce two other curves that
themselves intersect. So, in Fig. 3, the curve C is a double
piercing of A and B. We will see later that it is not always
the case that double piercings can be drawn with circles
and we have to place restrictions on the manner in which
we inductively construct our abstract descriptions.

To add a single piercing as a circle, it is necessary is
that the two zones through which the circle is to pass
are topologically adjacent. Indeed, by the wellformed-
ness conditions, we know that if these two zones are
topologically adjacent then they ‘separated’ by the curve
through which the to-be-added single piercing is to pass.
In the case of a double piercing, we need a point, p, that
is an intersection point of the two curves being pierced.
In Fig. 3, for example, we can add a double piercing
of A and B in d2 by finding a disc around one of their
(two) intersection points. Key to our construction is that,

if we build a diagram, d, by successively adding piercing
curves then any pair of zones in d whose abstractions
differ only by one label are topologically adjacent. Our
results below hold since we are working in R2 and,
under the standard metric, the neighbourhood of a point,
p, is a disc, so p can easily be enclosed by a circle.

The zones that a piercing curve passes through are
strongly related to each other and we call these zones a
cluster. The following definition formalizes this concept
at the abstract level.

Definition 5.1: Let z be an abstract zone and let L ⊆
L − z. The set {z ∪ L′ : L′ ∈ PL} is an L-cluster for z,
denoted C(z, L). Given an L-cluster, C(z, L), and a label,
λ ∈ L − (z ∪ L), the L-cluster C(z ∪ {λ}, L) is called a
λ-partner for C(z, L).

For example, given the zone ab (formally, {A, B}) and
the label set {C, D}, the set

C(ab, {C, D}) = {ab, abc, abd, abcd}

is a {C, D}-cluster for ab. Since the label E is not in ab
or in {C, D}, the cluster

C(abe, {C, D}) = {abe, abce, abde, abcde}

is an E-partner for C(ab, {C, D}).
Since piercing curves contain specific sets of zones, it

is useful to define the set of zones contained by a curve
label in an abstract description. We also observe that, in
a diagram, some curves properly contain other curves.
This concept is also helpful at the abstract level.

Definition 5.2: Let D = (L,Z) be an abstract descrip-
tion and let λ1 and λ2 be distinct curve labels in L. If
λ1 ∈ z and z ∈ Z then we say λ1 contains z in D with
the set of such zones denoted Zc(λ1). If Zc(λ1) ⊂ Zc(λ2)
then λ2 contains λ1 in D. The set of curves that contain
λ1 in D is denoted Lc(λ1).

To compute Lc(λ1), we can make use of the following
result.

Lemma 5.1: Let D = (L,Z) be an abstract descrip-
tion and let λ be a curve label in L. Then Lc(λ) =⋂
zi∈{z∈Z:λ∈z}

zi − {λ}.

5.1 Single Piercings

As illustrated previously, single piercing curves are those
curves that intersect with exactly one other curve.

Definition 5.3: Let D = (L,Z) be an abstract descrip-
tion and let λ1, λ2 ∈ L be distinct curve labels. Then λ1

is a single piercing of λ2 in D if there exists a zone, z,
such that

1) λ1 6∈ z and λ2 6∈ z,
2) Zc(λ1) = C(z ∪ {λ1}, {λ2}), and
3) C(z, {λ2}) ⊆ Z.

The zone z is said to identify λ1 as a piercing of λ2.
To illustrate, the diagram d1 in Fig. 13 has a sin-

gle piercing curve labelled C. At the abstract level,



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 6

abstract(d1) has zone set Z = {∅, a, b, ab, bc, abc}. The
zone b identifies C as a piercing of A, since

Zc(C) = {bc, abc} = C(bc, {A})
and

C(b, {A}) = {b, ab} ⊆ Z.

Neither A nor B are single piercing curves in d1 but
they are both single piercing curves in d2; removing a
single piercing curve can create single piercing curves.
The curve C can be thought of as ‘piercing’ the single
curve A, hence the terminology ‘single piercing’.

Fig. 13. Identifying single piercings.

5.2 Double Piercings
Double piercing curves are curves that pierce two other
curves and split four zones. This is a clear generalization
of a single piercing curve and one can proceed to define
triple piercings and so forth. We further discuss triple
piercings below, in the context of generation with circles.
Our generation method works for abstract descriptions
that are built using single and double piercings but not
n-piercings, where n ≥ 3.

Definition 5.4: Let D = (L,Z) be an abstract descrip-
tion and let λ1, λ2, λ3 ∈ L be distinct curve labels. Then
λ1 is a double piercing of λ2 and λ3 in D if there exists
a zone z such that

1) λ1 6∈ z, λ2 6∈ z, and λ3 6∈ z,
2) Zc(λ1) = C(z ∪ {λ1}, {λ2, λ3}), and
3) C(z, {λ2, λ3}) ⊆ Z.

The zone z is said to identify λ1 as a piercing of λ2 and
λ3.

Fig. 14. Identifying double piercings.

To illustrate, the diagram in Fig. 14 has a dou-
ble piercing curve labelled D and abstract zone
set {∅, a, ab, b, c, ac, bc, abc, cd, acd, bcd, abcd}. The abstract
zone c identifies D as a double piercing of A and B; we
have

Zc(D) = C(cd, {A, B})

and
C(c, {A,B}) = {c, ac, bc, abc} ⊆ Z.

Removing D from d1 creates a new double piercing, C,
of A and B; C was not a piercing in d1. In d2, all of the
curves are double piercings and the removal of any one
of them turns the remaining curves into single piercings.

6 INDUCTIVELY PIERCED DESCRIPTIONS

There are some diagrams that can be produced by induc-
tively adding piercings. We call them piercing diagrams
and the abstract description of this type of diagram is
called an inductively pierced description. Fig. 15 illus-
trates the process, starting with the ‘empty’ diagram,
and successively adding curves. Notice that the first
two diagrams do not contain single or double piercing
curves. The curve B is a single piercing in d2, we add
the double piercing C to give d3, then add D and E to
give d4 and d5 respectively. There are different sequences
of diagrams that result in d5 by adding piercing curves.

Fig. 15. Inductively adding piercings.

All of the diagrams in Fig. 15 are connected since their
curves form a connected component of the plane. We
can also add curves that are not connected to any other
curve, shown in Fig. 16, and then pierce these new
curves. Thus, curves that do not intersect with any other
curves act as a base case to which we can add piercings;
we call these curves base piercings.

Definition 6.1: Let D = (L,Z) be an abstract descrip-
tion and let λ ∈ L be a curve label. Then λ is a base
piercing in D if there exists a zone, z, such that

1) λ 6∈ z,
2) Zc(λ) = C(z ∪ {λ}, ∅), and
3) C(z, ∅) ⊆ Z.

The zone z is said to identify λ as a base piercing.
Note that in the above definition, C(z∪{λ}, ∅) = {z∪λ}
and C(z, ∅) = {z}. Whilst this alternative presentation
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Fig. 16. Disconnected diagrams.

may make the concepts in the definition more immedi-
ately apparent, our chosen presentation of the definition
readily matches the definitions of single piercings and
double piercings.

We are aiming to identify a class of abstract descrip-
tions that can be drawn with circles, since these are
aesthetically pleasing, in an efficient manner. If we can
build an abstract description, D, starting from (∅, {∅}) by
successively adding piercings then it is not necessarily
possible to draw D using only circles. Assume that we
have an abstract description, D, drawn in a completely
wellformed manner by successively adding piercings. If
we want to add a single piercing, λ, to obtain some par-
ticular abstract description then it is reasonably obvious
that we can add a circle labelled λ to that drawing and
obtain the required abstraction. We note, however, that a
single piercing cannot necessarily be added as a circle to
an arbitrary diagram, which will be demonstrated below.

Fig. 17. Choices of embedding.

The case of double piercings is more interesting. We
observe that, in any embedding drawn with circles, any
pair of curves intersects exactly twice or not at all. If λ1

is a double piercing of λ2 and λ3 then λ2 and λ3 intersect
exactly twice, meaning that if λ1 is to be embedded as
a circle in a wellformed manner then it has to contain
exactly one of these intersection points. Therefore, there
is a choice of at most two places where λ1 can be
embedded. In Fig. 15, there was only one choice for the
location of D since it has to be enclosed by C. If we are
to add more double piercings to d5 then we must ensure
that if they pierce A and B and are to be enclosed by C
then they must also be enclosed by D. Fig. 17 illustrates
a scenario where we have two choices for how to add
D to d8.

Further, consider the abstract description
with labels L = {A,B, C,D, E} and zones
Z = {∅, a, b, ab, c, ac, bc, abc, d, ad, abd, e, ae, abe}. This
abstraction has three double piercings of A and B,
namely C, D, and E. Fig. 18 shows how we could
embed A and B, then add C and D as piercings. It is

Fig. 18. Limitations.

then obviously not possible to add E as a circle to d14.
Therefore, we must restrict the manner in which we
add double piercings at the abstract level, for which we
make use of the following definition.

Definition 6.2: Let C1 = C(z, {λ1, λ2}) and C2 = C(z ∪
{λ3}, {λ1, λ2}) be partner clusters given λ3. Let D =
(L,Z) be an abstract description. If C1∪C2 ⊆ Z then λ3 is
outside-associated with C2 in D and is inside-associated
with C1 in D.

Given a double piercing, λ3, of λ1 and λ2 identified by
z, λ3 is outside-associated with C(z, {λ1, λ2}) and inside-
associated with C(z∪{λ3}, {λ1, λ2}). The zones in C(z∪
{λ3}, {λ1, λ2}) are all inside λ3, hence the terminology
‘inside associated’.

Finally, to define an inductively pierced description,
we need an operation to remove curve labels from
abstractions. Removing curve labels involves two steps:
we remove the curve label, λ, from the label set and then
we update the zone list, making sure λ is removed from
each zone; we transform D into the abstract description
that we define to be D − λ.

Definition 6.3: Given an abstract description, D =
(L,Z), and λ ∈ L, we define D − λ to be D − λ =
(L− {λ}, {z − {λ} : z ∈ Z}).

Definition 6.4: Let D = (L,Z) be an abstract descrip-
tion. Then D is an inductively pierced description if
either

1) D = (∅, {∅}), or
2) D has a base piercing, λ1, such that D − λ1 is

inductively pierced, or
3) D has a single piercing, λ1, of λ2 such that D− λ1

is inductively pierced, or
4) D has a double piercing, λ1, of λ2 and λ3 identified

by z, and either
a) no other curve label, λ4, in D is outside-

associated with C(z, {λ2, λ3}) or
b) exactly one other curve label, λ4, in D is

outside-associated with C(z, {λ2, λ3}) and we
have either
i) Lc(λ1) = Lc(λ4) = Lc(λ2) or

ii) Lc(λ1) = Lc(λ4) = Lc(λ3).
and D − λ1 is inductively pierced.

Note that given a piercing curve, λ1, we have Lc(λ1) =
z where z identifies λ1. Thus, in 4(b), we seek to es-
tablish whether Lc(λ4) = z and whether Lc(λ2) = z or
Lc(λ3) = z. From lemma 5.1, we can compute Lc(λi)
using Lc(λi) =

⋂
zj∈{z∈Z:λi∈z}

zj − {λi}.
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|L| IPD AD percentage
0 1 1 100
1 1 2 50
2 3 6 50
3 13 40 33
4 133 1992 7

TABLE 1
The proportion of inductively pierced abstract

descriptions.

The space of inductively pierced descriptions repre-
sents a relatively small, but not insignificant, fraction
of all abstract descriptions. The number of abstract de-
scriptions with label set L is T = 22|L| − 1, since there
are 2|L| zones and any non-empty set of zones gives
rise to an abstract description. In general, the number
of inductively pierced descriptions with label set L is
bounded above by the number of non-empty subsets of
PL with cardinality at most 4×(|L|−1), since there are at
most 4× (|L| − 1) zones in such a description: observing
that any inductively pierced description containing only
one curve label has two zones, and that there is such
description containing exactly two curve labels with four
zones, the maximum number of zones present when
|L| ≥ 2 is:

4× (|L| − 1)

since adding a double piercing increases the number
of zones by four. For any |L| it is relatively easy to
show that there is an inductively pierced description
with label set L containing 4×(|L|−1) zones. We can also
provide a lower bound on the number of zones present,
namely |L|+1 since every time we add a piercing curve
the number of zones increases by at least one. Again,
it is easy to show that there is an inductively pierced
description with label set L containing |L| + 1 zones.
Thus, we can give an upper bound on the number of
inductively pierced abstract descriptions containing at
least two curve labels:

UB =
4×(|L|−1)∑

i=|L|+1

2|L|Ci.

However, the number of abstract descriptions and
the upper bound placed on the number of inductively
pierced descriptions is not hugely insightful. First, there
are many abstract descriptions that are isomorphic to
each other: D1 = (L1, Z1) is isomorphic to D2 = (L2, Z2)
if there exists a bijection σ : L1 → L2 that induces a
bijection γ : Z1 → Z2 such that for each z1 ∈ Z1, λ ∈ z1

if and only if σ(λ) ∈ γ(z1). The table below summarizes
the number, IPD, of inductively pierced descriptions
and the number, AD, of abstract descriptions for fixed
label set, containing up to four curve labels reduced up
to isomorphism:

7 EMBEDDING INDUCTIVELY PIERCED DE-
SCRIPTIONS
The manner in which we embed inductively pierced
descriptions reflects the inductive definition. Given an
abstract description that we wish to embed, we start with
the empty diagram and successively add curves in the
appropriate manner until we obtain a diagram with the
required abstraction. In order to specify how to add a
curve label λ to an abstract description D− λ to give D
we need to describe λ’s effect on the zones.

Fig. 19. Adding a curve.

The diagram in Fig. 12 can be obtained from that
in Fig. 19, by adding a curve B. The abstraction of
the diagram in Fig. 19 consists of L = {A,C,D} and
Z = {∅, a, c, cd}. To describe how to add B, all we need is
to know which zone identified B as a piercing and which
curves B pierces. In this example, B is identified by the
zone ∅ and pierces A. The cluster C(∅∪{B}, {A}) allows
us to create the abstraction of the diagram in Fig. 12
from the abstraction, D, of the diagram in Fig. 19: we
take L∪{B} and Z ∪C(∅∪ {B}, {A}). We can write this
abstraction as D + (B, C(∅ ∪ {B}, {A})). For simplicity,
we will write D + B, when the cluster is clear from the
context or not relevant.

So, when we identify a curve as a piercing curve,
we store C(z, L) in order to know how to reconstruct
D when starting with the empty diagram (which is an
embedding of (∅, {∅})). Our embedding method adds
curves successively to drawn Euler diagrams until we
obtain an Euler diagram with the required abstraction.
For instance, if we want to embed the abstract de-
scription D5 = (L,Z) where L = {A,B, C,D, E} and
Z = {a, b, ab, c, ac, bc, abc, cd, acd, bcd, abcd, be, abe} then
our first task is to identify whether D5 has a piercing
curve. Here, E is a single piercing of A, identified by
z = b with C(z, {A}) = {b, ab}; note that D5 is the
abstraction of d5 in Fig. 15. Removing E from D5 yields
D4 = D5 − E with L(D4) = {A,B, C,D} and Z(D4) =
{a, b, ab, c, ac, bc, abc, cd, acd, bcd, abcd}, the abstraction of
d4. Continuing in this manner, we identify D as a pierc-
ing of D4, C and a piercing of D3 = D4−D, and so forth,
until we obtain (∅, {∅}). Successively removing peircings
gives a sequence of abstract descriptions that mirrors our
inductive process of adding circles at the drawn diagram
level. In this case, that sequence is 〈D0, D1, ..., D5〉).

Definition 7.1: Given an abstract description, D =
(L,Z), a pierced decomposition of D is a sequence,
dec(D) = 〈D0, D1, ..., Dn〉 where each Di−1 (0 < i ≤ n)
is obtained from Di by the removal of some piercing,
λi (so, Di−1 = Di − λi) and Dn = D. If D0 contains no
labels then dec(D) is a total pierced decomposition.
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The notion of a decomposition is similar to an abstrac-
tion of Euler diagrams developed in [26]. Establishing
whether an arbitrary abstraction, D, is an inductively
pierced description produces, as a bi-product, a total
pierced decomposition. Trivially, we have the following
lemma.

Lemma 7.1: Every inductively pierced description has
a total pierced decomposition.

So, the first step in our embedding process is to create
a total pierced decomposition. The following theorem
allows us to identify whether an abstract description is
inductively pierced in a relatively efficient manner. It es-
tablishes that the order in which we remove piercings is
not important when determining whether a description
is inductively pierced.

Theorem 7.1: Let D be an inductively pierced descrip-
tion with piercing λ1. Then D − λ1 is also inductively
pierced.

To prove the above theorem, one uses the following
lemma.

Lemma 7.2: Let D be an inductively pierced descrip-
tion with at least two distinct piercings, λ1 and λ2. Then
λ2 is a piercing of D − λ1.

We can easily identify some curve labels as not being
piercings, using the following lemma. Moreover, we can
also quickly identify some descriptions as not being
inductively pierced.

Lemma 7.3: Let D = (L,Z) be an abstract description
such that L 6= ∅ with λ ∈ L.

1) If |Zc(λ)| 6= 1 and |Zc(λ)| 6= 2 and |Zc(λ)| 6= 4 then
λ is not a piercing curve.

2) If |Z(D)| > 4×(|L(D)|−1) then D is not inductively
pierced.

3) If |Z(D)| < |L(D)| then D is not inductively
pierced.

We now present a key result of this paper: all in-
ductively pierced descriptions can be embedded in a
completely wellformed manner where all curves are
circles.

Theorem 7.2: Let D be an inductively pierced descrip-
tion. Then there is an embedding of D that possesses
all of the wellformedness conditions and all of whose
curves are circles.

Proof: The strategy to prove this theorem is to use
an induction argument. Given a total pierced decomposi-
tion, (D0, ..., Dn), we assume that Di = (Li, Zi) is embed-
ded as di in the appropriate manner (i.e. wellformed and
with circles) and such that for any pair of zones, z1 and
z2, in di if their abstract descriptions have a symmetric
difference containing exactly one label then they are
topologically adjacent. In any wellformed diagram (in
particular, di), we also have the property that any pair
of zones that are topologically adjacent have exactly one
label in the symmetric difference of their abstractions.

Consider, then, Di+1 which is obtainable from Di by
adding a piercing, λi. We know, therefore, that Di+1 =
Di + (λi, C(z, L̂)), for some L̂ ⊆ Li and zone z ∈ Zi.

We can show it is possible to add a circle to di to give
di+1 = di + λi in such a manner that

1) abstract(di + λi) = Di+1,
2) di + λi is wellformed, and
3) any pair of zones in di+λi whose abstractions have

a symmetric difference that contains exactly one
label are topologically adjacent.

Clearly, if λi is a base or single piercing, this is triv-
ial given the topological adjacency property. Thus, we
sketch the argument where λi is a double piercing.
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Fig. 20. Drawing with circles.

Suppose that λi pierces λx and λy identified by z.
Then, in di, the curves labelled λx and λy are drawn
with circles and overlap (like Venn-2, the Venn diagram
with two curves); see the representative region in di in
Fig. 20 which includes λx and λy but may omit curves in
di that also pass through the illustrated region. Clearly,
we can add a curve labelled λi to di, as shown in the
representative region of di+λi, by our assumption about
topological adjacency. However, we need to ensure that
the curve labelled λi only intersects λx and λy and does
not contain any other curves in di + λi, so that we get
the correct abstraction (i.e. abstract(di + λi) = Di + λi);
since di is embedded using only circles, this is the only
way the curve labelled λi can be embedded in such a
manner that we have the wrong abstraction.

We assume that di + λi has the wrong abstraction.
We further assume, without loss of generality, that the
curve labelled λi does not contain any curves that are
base piercings or are single peircings of λx or λy (we
can always route λi to achieve this, given topologi-
cal adjacency and wellformedness). Similarly, we can
always route λi through di in such a manner that it
only intersects with λx and λy. Hence, the curve la-
belled λi contains another curve because we have the
wrong abstraction. Therefore, it must contain at least
one curve labelled, say, λj that is outside-associated with
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C(z, {λx, λy}) in Di since di is a wellformed embedding
of Di.

Since di + λi has the wrong abstraction, λj is also
outside associated with C(z, {λx, λy}) in Di + λi. We
know that Di+1 is inductively pierced, so there is no
other curve label in Di+1 that is outside associated with
C(z, {λx, λy}). Moreover, if an additional curve label, λk

was outside associated with C(z, {λx, λy}) in Di then
it to would be outside associated with C(z, {λx, λy}) in
Di+λi. This implies that in Di, λj is the only curve label
that is outside associated with C(z, {λx, λy}).

We know, again without loss of generality, from the
definition of an inductively pierced description that
Lc(λi) = Lc(λj) = Lc(λx) in Di + λi. Therefore, in Di,
Lc(λj) = Lc(λx). It then follows that the four zones
around the point q are exactly those in C(z, {λx, λy}) and
we can, therefore, draw a circle around q labelled λi to
give di+λi with abstraction Di+λi. Hence Di+λi can be
embedded using circles. Trivially, we can draw the circle
labelled λi sufficiently small to ensure wellformedness.
Finally, it is also trivial that the constructed embedding
ensures that zones whose abstractions have a one label
symmetric difference are topologically adjacent, and the
result then follows by induction.

We note that, in the above proof, we argued that we
could draw a circle sufficiently small in order to add it in
the correct manner; this was to ensure that the circle, c,
was enclosed by the correct set, C, of other circles. This
need to draw curves with a small area inside them is not
particular to using circles to represent the sets. When we
want to draw one curve inside another, it is necessary
that it has a smaller area inside it. This feature of Euler
diagrams may make them difficult to read at a single
scale.

In the definition of an inductively pierced description,
the assertion in condition 4 that at most one other curve
label λ4 exists (satisfying the specified properties in
4(b)) is necessary for ensuring that we can draw an
appropriate diagram with circles.

Theorem 7.3: Let D be an abstract description with
double piercing, λ1, of λ2 and λ3 given z. Suppose
that D − λ1 is inductively pierced and that there exists
two distinct curve labels, λ4 and λ5, that are outside-
associated with C(z, {λ2, λ3}) in D − λ1 and for each
i ∈ {4, 5}, either

1) Lc(λ1) = Lc(λi) = Lc(λ2) or
2) Lc(λ1) = Lc(λi) = Lc(λ3).

Then D cannot be drawn with circles.
The strategy for the proof is to take any embedding

of D− λ1 drawn with circles, show that λ4 encloses one
point where λ2 and λ3 intersect and that λ5 encloses the
other point. It then follows that λ1 cannot be drawn as
a circle to give a diagram with abstraction D.

8 LIMITATIONS

We have already seen that we cannot necessarily draw
double piercings as circles, unless we are considering

an abstract description that is inductively pierced. It is
natural to ask whether, if an abstract description has a
single piercing, that piercing can be drawn as a circle.
In general, the answer to this is no. Fig. 21 shows an
example: if we want to add a single piercing, E, of C
identified by zone ab then we cannot do so using a circle.
There are alternative (not wellformed) embeddings of
abstract(d) that allow us to draw E as a circle. This
example proves the following lemma.

A B

d

C

D

Fig. 21. Single piercings cannot always be drawn as
circles.

Lemma 8.1: Let D be an abstract description with a
single piercing curve λ. Then it is not necessarily the
case that a curve labelled λ can be added as a circle to
an embedding of D − λ to give an embedding of D.

Perhaps the most obvious question is whether
this work extends to the case of triple piercings.
A triple piercing, λ1, of λ2, λ3 and λ4 identi-
fied by z contains exactly the zones in C(z ∪
{λ1}, {λ2, λ3, λ4}). To illustrate, D is a triple piercing
of {∅, a, b, ab, c, ac, bc, abc, d, ad, bd, abd, cd, acd, bcd, abcd}.
Visually, if we were to draw this abstract description
using circles, we would need to add D to a diagram
like d12 in Fig. 18. Intuitively, D cannot be added as a
circle and we cannot extend the results to allow triple
piercings and still draw the diagrams with circles.

Finally, whilst we have identified a significant class of
abstract descriptions that can be embedded using circles
in an efficient manner, there are still many descriptions
that can be drawn with circles that do not have induc-
tively pierced descriptions, such as that in Fig. 21. Future
work will extend the techniques developed in this paper
to identify a larger class of abstract descriptions that can
be embedded with circles.

9 IMPLEMENTATION

We have implemented a tool that allows the automated
embedding of inductively pierced abstract descriptions,
including functionality to identify whether a description
has this property. It is relatively straightforward to estab-
lish whether any given abstract description, D = (L,Z)
is inductively pierced. As stated previously, if D is in-
ductively pierced then establishing this produces a total
pierced decomposition, dec(D) = (D0, ..., Dn). When
we generate dec(D), we also create a list of piercings
lp = (λ0, ..., λn−1), where Di + λi = Di+1, and a list
of clusters, lc = (C(zo, L̂0), ..., C(zn−1, L̂n−1)), where λi

pierces the curves in L̂i identified by zi. The two lists lp
and lc completely determine dec(D) and we use these
two lists to construct our embedding.
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Once an abstract description, D, is confirmed to be an
inductively pierced description, the list of piercings, lp,
and list of clusters, lc, can be used to generate the layout.
Since we are building up our diagram inductively, at
each key stage in the embedding process we need to
add a circle, Ci, that is to be labelled λi. The program
will establish what type of piercing is λi. For each λi,
it is either contained by other circles that have already
been drawn or not contained by any other circles.

We first sketch the case of how to add Ci when λi

is not contained by any other curves. If λi is a base
piercing, the program will calculate the occupied region
in the current drawing (see the dotted rectangle area in
Fig. 22) and place the curve Ci outside that region. The
size of the curve is determined by the number of curves
with which Ci is to intersect in an embedding of D;
the more intersections, the bigger we make the curve,
to ensure that the still to be added curves are not too
small in the final diagram.

Ci

Fig. 22. Adding a base piercing curve that is inside no
other curves.

Suppose now that Ci is a single piercing of Cp in the
current diagram (i.e. the embedding of Di). If Ci is not
fully contained by any other curves, the method will
first find the occupied sectors of curve Cp and generate
a list of available sectors (see the grey areas in Fig. 23
as an example). The algorithm will then find the most
suitable available sector in which to fit the curve. The
most suitable sector is selected by measuring the “size”
of each available sector (see the dotted line in Fig. 23
as an example) and finding one whose size is closest to
twice the desired radius, ri, of Ci. Once the most suitable
sector is found, the algorithm will fit the new curve. The
size and centre of the new curve will be adjusted to make
sure the resulting diagram has abstraction Di + λi.

Cp

Ci

Fig. 23. Adding a single piercing curve that is inside no
other curves.

If Ci is a double piercing curve, the algorithm will
find the two curves that Ci pierces, say Cp1 and Cp2. It
calculates the two intersection points of Cp1 and Cp2 and
selects a valid one as the centre of Ci. An invalid intersec-
tion point is detectable by checking whether that point
has been used as the centre of another dual piercing, Cx,

of Cp1 and Cp2 and, if such a Cx exists, whether Cx is
to contain Ci. Once a valid intersection point is found,
it can be used as the centre of the new curve Ci. The
radius of the curve can be determined by the area which
is already marked as available between Cp1 and Cp2, (see
the grey area of Fig. 24 as an example). Again, the radius
of Ci will be adjusted to make sure the adding of new
curve results in a diagram with abstraction Di + λi.

Cp2

Ci

Cp1

Fig. 24. Adding a double piercing curve that is inside no
other curves.

Ci

C0

Fig. 25. Adding a base piercing curve inside other curves.

Suppose now that Ci is contained by some other curve
in Di + λi. If Ci is fully contained by other curves, the
method will find the inner most outside curve of Ci,
say C0, and fit Ci inside C0. If C0 is a base piercing,
the program will calculate the unoccupied area (see the
grey area in Fig. 25) in C0 and then fit Ci inside this
area. If Ci is a single piercing curve, the algorithm will
calculate the sector in curve Cp which is occupied by
C0 (see Fig. 26). A list of available sub-sectors will then
be generated (see the grey sectors in Fig. 26). Similar
to adding single piercing curves that are not contained
by other curves, Ci will be fitted to the most suitable
sector and the radius will be adjusted to generate a valid
layout. If Ci is a double piercing curve, the method will
find the two curves that Ci pierces, say, Cp1 and Cp2.
The two intersection points of the two curves will be
calculated and one that is inside curve C0 will be used
as the centre of Ci; see Fig. 27.

Cp

C0
Ci

Fig. 26. Adding a single piercing curve inside other
curves

To prototype the generation mechanism, we have im-
plemented the method as a Java program, available from
www.eulerdiagrams.com/piercing.htm. The pro-
gram takes an abstract description of an Euler diagram
as input and checks whether the abstract description is
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Ci

C0Cp1

Cp3

Fig. 27. Adding a double piercing curve inside other
curves

inductively pierced. Once the program confirms that an
abstract description is inductively pierced, it will draw
the diagram by inductively fitting circles to available
spaces in the reverse order of the sequence of removal.
Figs. 1, 3, 9, 12, 13, 14, 15, 16, 17, 18, and 19 were
all drawn using our software. Fig. 28 shows some nice
automatically generated layouts for Euler diagrams con-
taining many curves. Fig 29 shows a diagram containing
52 circles, which took 6.641 seconds to draw (Intel Pen-
tium CPU with 2GB RAM, under Windows XP operation
system, Java Version 1.6.0 03 from Sun Microsystems
Inc.). As one can see in this diagram, the circles are
sometimes a little small.

The method generates the basic drawing of a piercing
diagram with circles. The layout may not be optimal but
various methods can be applied to adjust the size of
circles after the initial drawing. In future work, we plan
to develop force directed methods that will move the
circles’ centre points and will alter the radii to improve
the layout whilst maintaining the abstract description.

Fig. 28. Output from the software.

10 COMPLEXITY

The class of inductively pierced descriptions can be
drawn efficiently, even under the requirement that the
diagrams produced are completely wellformed. A naive
algorithm to identify whether an abstract description,
D, is inductively pierced first checks the cardinality of
the zone set: D is not inductively pierced if |Z(D)| >
4× (|L(D)| − 1). If the zone set is small enough then for
each curve label, λ, we determine whether it is a piercing
curve. As soon as we identify a piercing curve, we check
whether the conditions of definition 6.4 are satisfied;
in the worst case, this takes |L(D)| × |Z(D)| which is
O(|L(D)|2), since |Z(D)| ≤ 4 × (|L(D)| − 1). Again,

in the worst case, we have to iterate through all the
curve labels in L(D) performing this process. Hence the
time complexity of this naive algorithm is O(|L(D)|3).
The generation process is efficient because the program
only needs to calculate the radius and centre of each
circle; the embedding stage (i.e. after we have produced
a decomposition) of the implemented algorithm is of
O(|L(D)|2). Therefore, the time complexity of the entire
generation algorithm is that of the process of seeking a
decomposition, O(|L(D)|3).

We note that there are trivial, highly efficient, methods
of drawing any abstract description but they pay no re-
gard to wellformedness; for example, draw one circle for
each zone, join these circles at a single point (creating a
‘wedge of circles’), then traverse the circles to form each
curve [27]. It is perhaps natural to ask whether other
drawing methods that produce completely wellformed
diagrams have similar efficient properties to our method,
given the restriction to the class of inductively pierced
descriptions. Thus, we will consider in more detail the
dual graph based method of Flower and Howse [5], since
this method guarantees to draw a wellformed diagram
whenever this is possible; this drawing process was
illustrated in figure 2.

Given an abstract description, D = (L,Z), the first
stage of the Flower and Howse method constructs the
so-called superdual: the superdual of D is a graph, G,
with vertex set Z and with an edge, e, between two zones
(i.e. vertices) whenever the symmetric difference of the
zones contains exactly one curve label. The next stage is
to find a subgraph of the superdual that is planar, well-
connected and has an embedding which passes the face
conditions; we do not have space to formally define these
conditions for space reasons. The superdual has a planar
subgraph that possess these two conditions if and only if
the abstract description D has a completely wellformed
embedding. Moreover, Flower and Howse use such a
subgraph to produce a completely wellformed embed-
ding. Checking whether an arbitrary abstract description
has a superdual with such a subgraph is known to be
NP-complete.

If we consider only inductively pierced descriptions
then it is relatively easy to establish that the superdual
is planar, well-connected, and that any embedding of
it passes the face conditions. Hence the Flower and
Howse method when applied to inductively pierced
description does not have this NP-complete step. There-
fore, the complexity of this method is dependent on
(a) the algorithm used to find a plane embedding of
the superdual, and (b) the algorithm used to construct
the curves of the diagram given the embedding of the
superdual. There are known polynomial time algorithms
to construct plane embeddings of planar graphs, so (a)
is of polynomial complexity.

Regarding (b), whether the algorithm used to draw the
curves as presented in [5] is of comparable complexity
to our drawing method (i.e. at most O(|L(D)|2), giving
an overall complexity of O(|L(D)|3)) or has worse time
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Fig. 29. A diagram containing 52 circles.

complexity is unknown. The method presented in [3]
for drawing the curves from a suitable subgraph of the
superdual is polynomial. However, typically the curves
are not circles, since the layout of superdual impacts the
possible routings for the curves.

It may also be natural to ask, if we consider the
larger class of abstract descriptions consisting of all those
whose number of zones is polynomial in the number
of labels, whether the drawing method of Flower and
Howse is of polynomial time complexity. We suspect
that the answer to this may well be no: it is easy to
show that there are abstract descriptions whose number
of zones is linear (e.g. 4× (|L(D)| − 1)) in the number of
zones where the superdual is non-planar and, therefore,
a large planar subgraph must be found which is well
connected and has an embedding which passes the face
conditions. Known algorithms to find well-connected
planar subgraphs are exponential and the potential need
to consider all different plane embeddings of each such
subgraph cannot be overlooked.

11 CONCLUSION

In this paper, we have identified a class of abstract de-
scriptions of Euler diagrams that can be drawn efficiently
with circles. Using circles brings an aesthetic quality to
the automatically generated diagrams. The implemented
software that we have developed, which is freely avail-
able from www.eulerdiagrams.com/piercing.htm,
demonstrates the practical utility of the research. The
many areas in which Euler diagrams can be, and are,
used to visualize information serves to demonstrate the
significance of the work.

Our results improve on previous contributions in a
number of ways. Existing generation approaches tend
to embed Euler diagrams using polygons, sometimes
with quite irregular shapes. Moreover, generating an em-
bedding of an Euler diagram from an arbitrary abstract
description can be very computationally expensive: the
complexity of the computation often grows exponen-
tially as the number of curves in the diagram increases.
We have identified a class of inductively pierced descrip-
tions can be drawn in completely wellformed manner in
polynomial time.

In the future, we plan to investigate an amalgamation
of embedding methods. A goal is to be able to identify
a ‘maximally pierced sub-description’ of an abstract
description. If we are able to do this, then we can
embed that sub-description using the method presented
in this paper and then use known techniques to add the
remaining curves to the diagram [8], [23]. To illustrate, if
we want to embed the abstraction D with zones Z(D) =
{∅, a, b, ab, c, ac, bc, abc, ad, acd, e, be, ce, bce, abe, abce}, we
can remove E, giving D−E which is inductively pierced,
embed D − E and then add E, as shown in Fig. 30.

A
B

C

D

EA B

C

D

Fig. 30. Embedding maximal sub-diagrams.
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