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Abstract. Euler diagrams are a popular and intuitive visualization tool
which are used in a wide variety of application areas, including biological
and medical data analysis. As with other data visualization methods,
such as graphs, bar charts, or pie charts, the automated generation of an
Euler diagram from a suitable data set would be advantageous, removing
the burden of manual data analysis and the subsequent task of drawing
an appropriate diagram. To this end, various methods have emerged that
automatically draw Euler diagrams from abstract descriptions of them.
One such method draws some, but not all, abstract descriptions using
only circles. We extend that method so that more abstract descriptions
can be drawn with circles. Furthermore, we show how to transform any
‘undrawable’ abstract description into a drawable one. Thus, given any
abstract description, our method produces a drawing using only circles.
A software implementation of the method is available for download.

1 Introduction

It is commonly the case that data can be more easily interpreted using visu-
alizations. One frequently sees, for instance, pie charts used in statistical data
analysis and graphs used for representing network data. These visualizations are
often automatically produced, allowing the user to readily make interpretations
that are not immediately apparent from the raw data set. Sometimes, the raw
data are classified into sets and one may be interested in the relationships be-
tween the sets, such as whether one set is a subset of another or whether one set
contains more elements than another.

For example, the authors of [6] have data concerning health registry enrollees
at the world trade centre. Each person in the health registry is classified as being
in one or more of three sets: rescue/recovery workers and volunteers; building
occupants, passers by, and people in transit; and residents. In order to visualize
the distribution of people amongst these three sets, the authors of [6] chose to
use an Euler diagram which can be seen in figure 1. A further example, obtained
from [16], shows a visualization of five sets of data drawn from a medical do-
main. The authors of [16] chose to represent one of the sets (Airflow Obstruction
Int) using multiple curves. Other areas where Euler diagrams are used for in-
formation visualization include crime control [7], computer file organization [4],
classification systems [20], education [10], and genetics [12].



Fig. 1. Data visualization using an
Euler diagram.

Fig. 2. Using multiple circles to
represent a set.

As with other diagram types for data visualization, the ability to automat-
ically create Euler diagrams from the data would be advantageous. To date, a
range of methods for automatically drawing Euler diagrams have been devel-
oped, with most of them starting with an abstract description of the required
diagram. The existing methods can be broadly classified into three classes.
Dual Graph based methods: With these methods, a so-called dual graph of
the required Euler diagram is identified and embedded in the plane. Then the
Euler diagram is formed from the dual graph. Methods in this class include the
first Euler diagram drawing technique, attributable to Flower and Howse [8].
Others who have developed this class of drawing method include Verroust and
Viaud [22], Chow [2], and Simonetto et al. [15]. Recently, Rodgers et al. have
developed a general dual graph based method that is capable of drawing a dia-
gram given any abstract description [13]. Some of these methods allow the use
of many curves to represent the same set, to ensure drawability (as in figure 2).
Inductive Methods: Here, one curve of the required Euler diagram is drawn
at a time, building up the diagram as one proceeds. This is a recently devised
method, attributable to Stapleton et al. [18], and builds on similar work for Venn
diagrams [5, 21]. Stapleton et al.’s method is also capable of drawing a diagram
given any abstract description and it has advantages over the dual graph based
methods in that it readily incorporates user preference for properties that the
to-be-drawn diagram is to possess.
Methods using Particular Shapes A large number of methods attempt to
draw Euler diagrams using particular geometric shapes, typically circles, because
they are aesthetically pleasing. Chow considers drawing diagrams with exactly
two circles [2], which is extended to three circles by Chow and Rodgers [3]. The
Google Charts API includes facilities to draw Euler diagrams with up to three
circles [1] and Wilkinson’s method allows any number of circles but it often
fails to produce diagrams with the specified abstract description [23]; Wilkin-
son’s diagrams can contain too few zones and, thus, fail to convey the correct
semantics. Similarly, Kestler et al. devised a method that draws Euler diagrams
with regular polygons but it, too, does not guarantee that the diagrams have
the required zones [11]. In previous work, we have devised a method for drawing
a particular class of abstract descriptions with circles, which does ensure the
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correct abstraction is achieved [19]. None of these methods is capable of draw-
ing an Euler diagram given an arbitrary abstract description. In part, this is
because many abstract descriptions are not drawable with a circles or regular
polygons, given the constraints imposed by the authors on the properties that
the diagrams are to possess (such as no duplicated curve labels). However, these
methods often produce aesthetically pleasing diagrams.

In this paper, we take the method of [19] and extend it, so that every ab-
stract description is (essentially) drawable at the cost of representing sets with
more than one curve (as in figure 2). Our method takes the abstract description
and draws a diagram with circles that contains all required zones, but may con-
tain additional zones; any extra zones are shaded. Section 2 presents necessary
background material on Euler diagrams, along with some new concepts that are
particular to the work in this paper. Abstract descriptions are defined in sec-
tion 3 and we provide various definitions of abstract-level concepts. Section 4
describes the class of inductively pierced abstract descriptions developed in [19],
on which the results in this paper build. Our drawing method is described in
section 5. Section 6 shows some output from the software implementation of the
method, alongside diagrams drawn using previously existing methods.

2 Euler Diagrams

An Euler diagram is a set of closed curves drawn in R2. Each curve has a label
chosen from some fixed set of labels, L. Our definition of an Euler diagram is
consistent with, or a generalization of, those found in the literature, such as in [2,
8, 17, 22]. An Euler diagram is a pair, d = (Curve, l), where

1. Curve is a finite set of closed curves in R2, and
2. l:Curve → L is a function that returns the label of each curve.

A minimal region of d is a connected component of

R2 −
⋃

c∈Curve

image(c)

where image(c) is the set of points in R2 to which c maps. We define the set
of curves in a diagram with some specified label, λ, to be a contour with label
λ. The diagram d1 in figure 3 has four contours, but five curves. A point, p, is
inside a contour precisely when the number of the contour’s curves that p is is
inside is odd. Another important concept is that of a zone, which is a set of
minimal regions that can be described as being inside certain contours (possibly
none) and outside the rest of the contours. The diagram d1 in figure 3 has 11
zones, each of which is a minimal region.

There are a collection of properties that it is desirable for Euler diagrams to
possess, since they are often thought to correlate with the ease with which the
diagrams can be interpreted. The most commonly considered properties are:

1. Unique Labels: no curve label is used more than once.
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Fig. 3. Euler diagram concepts.

2. Simplicity: all curves are simple (have no self-intersections).
3. No Concurrency: the curves intersect at a discrete set of points (i.e. no

curves run along each other in a concurrent fashion).
4. Only Crossings: whenever two curves intersect, they cross.
5. No 3-points: there are no 3-points of intersection between the curves (i.e.

any point in the plane is passed through at most 3 times by the curves).
6. Connected Zones: each zone consists of exactly one minimal region.

A diagram, d, possessing all of these properties is completely wellformed.
Neither diagram in figure 3 is completely wellformed, since both use the curve
label R twice and, thus, in each diagram the set R is represented by more than
one curve. Now, d is completely wellformed up to labelling if it possesses
all properties except, perhaps, the unique labels property. If all of the curves in
d are circles then d is drawn with circles. Our drawing method only produces
diagrams drawn with circles that are completely wellformed up to labelling.

Further concepts that we need concern the topological adjacency of zones
and ‘clusters’ of topologically adjacent zones. We define these concepts only for
diagrams that are completely wellformed up to labelling, since this is sufficient for
our purposes. In particular, in such diagrams we know that two zones which are
topologically adjacent are separated by a single curve. For example, in figure 3,
the zones z2 and z3 are topologically adjacent in d1, separated by the leftmost
curve labelled R; when this curve is removed, z2 and z3 form a minimal region.
The zones z6 and z11 are not topologically adjacent and neither are z2 and z4.

Let z1 and z2 be zones in d = (Curve, l). If there exists a curve, c, in Curve
such that z1 and z2 form a minimal region in the diagram (Curve − {c}, l −
{(c, l(c)}) then z1 and z2 are topologically adjacent in d separated by c.
Regarding our drawing problem, we could choose to draw a circle that splits two
adjacent zones and which intersects their separating curve. We call topologically
adjacent zones z1 and z2 a cluster given c. We also define a cluster comprising
four zones. Let c1 and c2 be distinct curves in d, that intersect at some point
p. The four zones in the immediate neighbourhood of p (since we are assuming
wellformedness up to labelling, precisely four such zones exist) form a cluster
given c1, c2 and p, denoted C(c1, c2, p). In figure 3, the zones z3, z4, z6 and z7

form a cluster given Q and S (blurring the distinction between the curves and
their labels). Given a cluster of four zones, we can draw a circle around the point
p that splits all and only these zones.
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3 Abstract Descriptions

As with typical Euler diagram drawing methods, we start with an abstract de-
scription of the required diagram. This description tells us which zones are to
be present. An abstract description, D, is a pair, (L,Z), where

1. L is a finite subset of L (i.e. all of the labels in D are chosen from the set
L) and we define L(D) = L,

2. Z ⊆ PL such that ∅ ∈ Z and for each λ ∈ L there is a zone, z, in Z where
λ ∈ z and we define Z(D) = Z.

The abstract description, D, of d2 in figure 3 has labels {P,R, S} and zones
{∅, {P}, {R}, {P,R}, {P, S}, {P,R, S}}; we say that d2 is a drawing of D. We
will sometimes abuse notation, omitting the label set and writing the zone set
as, for instance, {P, R, PR, PS, PRS}.

It is not possible to identify whether two zones will necessarily be topolog-
ically adjacent when presented only with an abstract description. However, we
can observe that, in a diagram that does not possess any concurrency, two zones
that are topologically adjacent have abstractions that differ by a single curve
label. For example, the topologically adjacent zones z2 and z3 in figure 3 have
abstractions {P} and {P, R} which differ by R, the label of their separating
curve. We use this observation to define an abstract notion of a cluster. Let z
be an abstract zone (i.e. a finite set of labels) and let Λ ⊆ L be a set of labels
disjoint from z. The set {z ∪Λi : Λi ⊆ Λ} is a Λ-cluster for z, denoted C(z, Λ).
The cluster C({P, Q}, {Q,S}, d1) is the cluster {PR, PQR, PRS, PQRS} and
corresponds to the cluster {z3, z4, z6, z7} in d1, in figure 3. In general, a set of
zones in a diagram that form a cluster will have abstractions that form a cluster.
However, a set of zones may have abstractions that form a cluster but need not
themselves be a cluster in the drawn diagram. For example, z6 and z11, figure 3,
do not form a cluster but their abstractions, {R,Q} and {P, R,Q}, do form a
cluster.

Further abstract level concepts are useful to us. Our drawing method first
draws curves that are not contained by any other curves and ‘works inwards’
drawing contained curves later in the process. We can identify at the abstract
level whether a contour, C1, is to be contained by another, C2, and, as such, in
any drawing C2’s curves will each be contained by at least one of C1’s curves. We
are also interested in which abstract zones are contained by which curve labels.

Let D = (L,Z) be an abstract description and let λ1 and λ2 be distinct curve
labels in L. If λ1 ∈ z and z ∈ Z then we say λ1 contains z in D with the set of
such zones denoted Zc(λ1). If Zc(λ1) ⊂ Zc(λ2) then λ2 contains λ1 in D. The
set of curves that contain λ1 in D is denoted Lc(λ1). In the abstract description
(given above) for d2 of figure 3, the curve label P contains the curve label S but
not the curve label R. This reflects the fact that, in d2, the contour labelled P
does not contain the contour labelled R.

We need an operation to remove curve labels from abstraction descriptions.
Given an abstract description, D = (L, Z), and λ ∈ L, we define D − λ to be
D−λ = (L−{λ}, {z−{λ} : z ∈ Z}). The abstract description for d1 in figure 3
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becomes the abstract description for d2 on the removal of Q. A decomposition
of D is a sequence, dec(D) = (D0, D1, ..., Dn) where each Di−1 (0 < i ≤ n) is
obtained from Di by the removal of some label, λi, from Di (so, Di−1 = Di−λi)
and Dn = D. The description D0 is called a subdescription of Dn. If D0

contains no labels then dec(D) is a total decomposition.

4 Inductively Pierced Descriptions

A class of abstract descriptions that can be drawn with circles in a completely
wellformed manner can be built by successively adding piercing curves. Figure 4
shows a sequence of diagrams where, at each stage, the curve added is a piercing
curve. This section summarizes results in [19] and adds a new concept of an
inductively pierced diagram. The following definition is generalized from [19].

Definition 1. Let D = (L,Z) be an abstract description. Let λ1, λ2, ..., λn+1 ∈
L be distinct curve labels. Then λn+1 is an n-piercing of λ1, ..., λn in D if
there exists a zone, z, such that

1. λi 6∈ z for each i ≤ n + 1
2. Zc(λn+1) = C(z ∪ {λn+1}, {λ1, ..., λn}), and
3. C(z, {λ1, ..., λn}) ⊆ Z.

The zone z is said to identify λn+1 as a piercing.

P Q

R

S

d4

P Q

R

d3

P Q

d2

P

d1

Fig. 4. An inductively pierced diagram.

In figure 4, the curve S is a 1-piercing of R in d4. If an abstract description
can be built by successively adding 0-piercing, 1-piercing, or 2-piercing curves
then, usually, it can be drawn with circles in a completely wellformed manner.
However, there are occasions when this is not possible. For example, in figure 5,
we may want to add a curve, T , to d3 that is a 2-piercing of P and Q. However,
it is not possible to do so using a circle whilst maintaining wellformedness. Thus,
the definition of an inductively pierced description, which allows only 0, 1, or
2-piercings, restricts the ways in which 2-piercings can arise.

Definition 2. Let C1 = C(z, {λ1, λ2}) and C2 = C(z∪{λ3}, {λ1, λ2}) be clusters.
Let D = (L,Z) be an abstract description. If C1 ∪ C2 ⊆ Z then λ3 is outside-
associated with C2 in D and is inside-associated with C1 in D.
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Fig. 5. Adding three 2-piercing curves.

Definition 3. Let D = (L,Z) be an abstract description. Then D is induc-
tively pierced if either

1. D = (∅, {∅}), or
2. D has a 0-piercing, λ, such that D − λ is inductively pierced, or
3. D has a 1-piercing, λ, such that D − λ is inductively pierced, or
4. D has a 2-piercing, λ3, of λ1 and λ2 identified by z, and either

(a) no other curve label, λ4, in D is outside-associated with C(z, {λ1, λ2}) or
(b) exactly one other curve label, λ4, in D is outside-associated with C(z, {λ1, λ2})

and we have either
i. Lc(λ3) = Lc(λ4) = Lc(λ1) or
ii. Lc(λ3) = Lc(λ4) = Lc(λ2).

and D − λ3 is inductively pierced.

All of the diagrams in figures 4 and 5 have inductively pierced descriptions
whereas the diagram d1 in figure 3 does not.

Definition 4. A diagram, d, is inductively pierced if either d contains no
curves or the following hold:

1. d is drawn entirely with circles,
2. d is completely wellformed,
3. given any pair of abstract zones, z1 and z2, in d’s abstraction, D, if the

symmetric difference of z1 and z2 contains exactly one label, λ, then in d the
zones with abstractions z1 and z2 are topologically adjacent, separated by the
curve labelled λ, and

4. there is a circle, c, whose label is an i-piercing (i ≤ 2) in the abstraction, D,
of d, and the diagram obtained from d by removing c is inductively pierced.

The diagrams in figures 4 and 5 are inductively pierced. However, the diagram
d2 in figure 3 has an inductively pierced abstract description but d2 itself is not
inductively pierced; it can be redrawn in an inductively pierced manner.

Theorem 1. Let D be an inductively pierced abstract description. Then there
exists an inductively pierced drawing, d, of D. Moreover such a d can be drawn
in polynomial time, [19].

Presented in [19] is a detailed algorithm to draw d given D, as in theorem 1.
A total, decomposition, dec(D) = (D0, ..., Dn) is an inductively pierced de-
composition if every Di is an inductively pierced abstract description and is
obtained from Di+1 by the removal of a piercing curve.
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5 Drawing with Circles

We will now demonstrate how to turn an arbitrary abstract description into
another abstract description that can be drawn in an inductively pierced manner,
except that it may have duplicated curve labels. A diagram is inductively
pierced up to curve relabelling if there exists a relabelling of its curves so
that the curve labels are unique and the resulting diagram is inductively pierced.
The diagram d2 in figure 3 is inductively pierced up to curve relabelling. In
addition, d1 is also inductively pierced up to curve relabelling but, unlike d2, its
abstract description is not inductively pierced.

It is helpful to summarize the initial stages our drawing process. We take an
abstract description, D, and find a total decomposition, dec(D) = (D0, ..., Dn)
of D. At least one of the Dis is an inductively pierced subdescription of Dn

(for instance, D0 is inductively pierced). We can draw such a Di, yielding di,
using the methods of [19] which draws Di by adding an appropriate circle to the
drawing of Di−1. Once we reach the first Dj which is not inductively pierced, we
start to draw contours consisting of more than one circle. We will address how
to choose sensibly a decomposition and how to add the remaining contours to
dj−1 in order to obtain d. We point the reader to subsection 5.4, which includes
a comprehensive illustration of our drawing method.

5.1 Choosing a Decomposition

There are choices about the order in which the curve labels are removed when
producing a decomposition of an abstract description and we prioritize removing
curve labels that do not contain other curve labels.

P Q

R

S T

d1

P Q

R

S T

d2

U
V

P Q

R

S

d3

T T

T

P Q

R

S

d4

T

T

Fig. 6. Choosing a decomposition.

Definition 5. Let D = (L,Z) be an abstract description that contains curve
label λ. We say that λ is minimal if λ does not contain any curve labels in D.

In figure 6, d1’s abstract description has minimal curve labels R, S and T ,
whereas for d2 the minimal labels are R, U and V . Trivially, every abstract
description, D (with L(D) 6= ∅), contains at least one minimal curve label and,
moreover, every piercing curve is minimal. When producing a decomposition,
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our method removes a minimal curve label at each step. This ensures that, when
we draw the diagram (the process for which is described later), if curve label λ1

is contained by curve label λ2 then the contour, c1, for λ1 will be drawn inside
the contour, c2, for λ2. This nicely reflects the semantics of the diagram: if λ1

represents a proper subset of λ2 then c1 will be contained by c2.

Definition 6. Let D = (L,Z) be an abstract description. To produce a chosen
total decomposition of D carry out the following steps:

1. Set i = n, where |L(D)| = n and define D = Di and deci(D) = (D).
2. Identify a minimal curve label, λ, in D.
3. Remove λ from Di to give Di−1.
4. Form deci−1(D) by copying deci(D) and placing Di−1 at the beginning.
5. If i > 1 decrease i by 1 and return to step 2. Otherwise deci is a chosen total

decomposition.

In figure 6, we could remove the curve labels in the following order to produce
a chosen total decomposition of the abstract description for d2: U → V → S →
T → R → P → Q; here we obtain an inductively pierced abstract description
on the removal of S. An alternative order is V → T → U → S → R → Q → P .

5.2 Transforming Decompositions

We would like to be able to visualize abstract description, D, using only circles
(which are aesthetically pleasing) at the expense of duplicating curve labels.
If D is an arbitrary abstract description this is, unfortunately, not necessarily
possible. However, it is always possible to add zones to D and realize an abstract
description that is drawable in this manner. Here, we show how to add sufficient
zones to D to ensure drawability, given a chosen total decomposition, dec(D) =
(D0, ..., Dn).

We observe that, when removing λi from Di+1 to obtain Di, the zone set
Z(Di) can be expressed as Z(Di) = ini ∪ out i, where

1. ini = {z ∈ Z(Di) : z ∪ {λi} ∈ Z(Di+1)}, and
2. out i = {z ∈ Z(Di) : z ∈ Z(Di+1)}.

We say that the zone sets ini and outi are defined by Di and Di+1. If λi is a
piercing curve label then ini ⊆ out i, since λi ‘splits’ all of the zones through
which it passes (if a piece of a zone is inside λi then a piece is also outside λi).
consider a zone, z, that is in ini but not in out i. Then z is not split by λi and
z 6∈ Z(Di+1); transforming Di+1 by adding z to Z(Di+1) will result in z being
split by λi and being added to outi. We transform dec(D) into a new sequence
of abstract descriptions that ensure all zones passed through are split on the
addition of λi. This transformation process is defined below.

The addition of these zones removes any need for concurrency in the draw-
ings. For instance, suppose we wish to add a contour labelled U to d4 in figure 6,
so that the zone {P} is contained by U and all other zones are outside U . Then
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the new curve would need to run along the boundary of the zone {P} and, there-
fore, be (partially) concurrent with the curves P , R, and T . Altering this curve
addition so that the zone {P} is instead split by U allows us to draw U as a
circle inside the zone {P}, and the ‘extra’ zone will be shaded.

Definition 7. Given a chosen, total decomposition, dec(D) = (D0, ..., Dn), trans-
form dec(D) into a splitting super-decomposition, dec(D′) = (D′

0, ..., D
′
n),

associated with D as follows:

1. D0 remains unchanged, that is D0 = D′
0.

2. Di+1 = (Li+1, Zi+1) is replaced by D′
i+1 = (Li+1, Z

′
i+1) where

Z ′i+1 = Zi+1 ∪
⋃

j≤i

inj

where inj is as defined above, given Dj and Dj+1.

Given a splitting super-decomposition associated with D, we know that if Di

is inductively pierced then D′
i = Di.

Theorem 2. A splitting super-decomposition, dec(D′) = (D′
0, ..., D

′
n), associ-

ated with D is a total decomposition of D′
n.

Our problem is now to find a drawing of D′
n rather than Dn. We note that

D′
n has a superset of Dn’s zones and we will use shading, as is typical in the

literature, to indicate that the extra zones are not required (semantically, the
extra zones represent the empty set).

5.3 Contour Identification and the Drawing Process

Given a splitting super-decomposition, dec(D′) = (D′
0, ..., D

′
n), we are in a po-

sition to start drawing our diagram. First, we identify D′
i in dec(D′) such that

D′
i is inductively pierced but D′

i+1 is not inductively pierced. We draw D′
i, using

the methods of [19], yielding an inductively pierced drawing of D′
i. The manner

in which we add the remaining curves using partitions (described below) should
give the idea as to how D′

i is drawn; in the inductively pierced case, there is one
‘valid partition’ that includes all zones in in′j which gives rise to one circle.

Suppose, without loss of generality, that we have obtained a drawing, d′j , of
D′

j , where j ≥ i, that is inductively pierced up to curve relabelling (so it is drawn
with circles). It is then sufficient to describe how to add a contour, labelled λj ,
to d′j in order to obtain such a drawing, d′j+1, of D′

j+1. This will justify that D′
n

has a drawing that is inductively pierced up to curve relabelling.
Consider the sets in ′j and out ′j which describe, at the abstract level, how to

add λj to d′j : the zones in inj are to be split by curves labelled λj whereas those
in outj are to be completely outside curves labelled λj . Trivially, we can draw
one circle inside each zone of d′j whose abstraction is in in ′j to obtain d′j+1; label
each such circle λj . See figure 6, where the contour T has been drawn in this
manner in d3 given the set in = {P, PQ, QS}.
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Theorem 3. Let dec(D) = (D0, ..., Dn) be a decomposition with splitting super-
decomposition dec(D′) = (D′

0, ..., D
′
n). Then dec(D′) has a drawing, d, that is

inductively pierced up to curve relabelling.

Of course, the justification of the above theorem (drawing one circle in each
split zone) may very well give rise to contours consisting of more curves than is
absolutely necessary, as in d3 of figure 6. We seek methods of choosing how to
draw each contour using fewer curves. Consider the drawing, d′j , of D′

j . We know
that each zone in in ′j is to be split by the to-be-added contour. We partition in ′j
into sets of zones, according to whether they are topologically adjacent or form a
cluster in d′j . The sets in the partition will each give rise to a circle labelled λj in
d′j+1. In d3 of figure 6, the zones A and AB form a cluster, so in = {P, PQ, QS}
can be partitioned into two sets: {{P, PQ}, {QS}}. Using this partition, we
draw d4 in figure 6 rather than d3.

Definition 8. A partition of in ′j is valid given d′j if each set, S, ensures the
following:

1. S is a cluster that contains 1, 2 or 4 zones,
2. if |S| = 2 then the zones in d′j whose abstractions are in S are topologically

adjacent given a curve whose label is in the symmetric difference of the zones
in S, and

3. if |S| = 4 then there exists a pair of curves, c1 and c2, that intersect at some
point p in d′j such that the zones in d′j whose abstractions are in S form a
cluster given c1, c2 and p.

Each set, S, in a valid partition gives rise to a circle in d′j+1:

1. if |S| = 1 then draw a circle inside the zone whose abstraction is in S,
2. if |S| = 2 then draw a circle that intersects c (as described in 2 above), and

no other curves, and that splits all and only the zones whose abstractions
are in S, and

3. if |S| = 4 then draw a circle around p (as described in 3 above) that intersects
c1 and c2, and no other curves, and that splits all and only the zones whose
abstractions are in S.

There are often many valid partitions of in ′j and we may want to use heuristics
to guide us towards a good choice. One heuristic is to minimize the number of
sets in the partition, since each set will give rise to a circle in the drawn diagram.

5.4 Illustrating the Drawing Method

We now demonstrate the drawing method via a worked example, starting with
D = {∅, P, PQ, R, PR, QR, PQR,PS, PQS, PRS, PQRS,QS}. Since there are
four curve labels, as the first step in producing a chosen total decomposition,
we define D = D4. Next, we identify S as a minimal curve label and remove S
to give D3 = {∅, P, PQ, R, PR, QR, PQR,Q}. Similarly, we identify R, then Q,
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then P as minimal, giving dec(D) = (D0, D1, D2, D3, D4) as a chosen decompo-
sition of D, where D2 = {∅, P, PQ,Q}, D1 = {∅, P}, and D0 = {∅}. The table
summarizes ini and outi at each step, and gives Z ′i (the zone sets of the abstract
descriptions in the splitting super-decomposition):

Di ini outi Z ′i
D0 {∅} {∅} Z(D0)
D1 {∅, P} {∅, P} Z(D1)
D2 {∅, P, Q, PQ} {∅, P, PQ, Q} Z(D2)
D3 {P, PQ, PR,PQR,Q} {∅, P, PQ, R, PR,QR, PQR} Z(D3)
D4 – – Z(D4) ∪ {Q}

Thus, the splitting super-decomposition is dec(D′) = (D′
0, D

′
1, D

′
2, D

′
3, D

′
4)

where Di = D′
i for i ≤ 3 and D′

4 has zone set Z(D4)∪{Q}. We note that D′
3 is an

abstract description of Venn-3, the Venn diagram with three curves, and is drawn
by our method as d′3 in figure 7. To d′3 we wish to add a contour labelled S; note
that in′4 = {P, PQ, PR,PQR, Q} and out′4 = {∅, P, PQ, R, PR, QR, PQR,Q}.
Given d′3, {{P, PQ, PQR, PQ}, {Q}} is a valid partition of in′4. Using this par-
tition, we obtain d′4 where the zone with abstraction {Q} is shaded, since {Q}
is in D′

4 but not in D4.

P Q

d2'

P

S

Q

R

S

d4'

P

d1'

P Q

R

d3'
+Q +R +S

Fig. 7. Illustrating the drawing method.

6 Implementation and Comparison with other Methods

We have implemented our drawing method and the software is available for
download; see www.eulerdiagrams.com. Examples drawn using our software are
shown in figure 8. The lefthand diagram was drawn from abstraction {∅, ac, ab, b};
when entering the abstract description into the tool, the ∅ zone is not entered and
the commas are omitted. The other two diagrams were drawn from abstractions
{∅, a, b, ab, ac, bd, ef} and {∅, b, ab, c, ac, bc, abc, cd, bd, d, ae} respectively, where
the contour d comprises two curves in the latter case. In all cases, the shaded
zones were not present in the abstract description. Layout improvements are
certainly possible, particularly with respect to the location of the curve labels
relative to the curves and the areas of the zones. We plan to investigate the use
of force directed layout algorithms to improve the layout.
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Fig. 8. Output from our software.

We now include some examples of output from other implemented drawing
methods, permitting their aesthetic qualities to be contrasted with the diagrams
drawn using our software. Figure 9 shows an illustration of the output using the
software of Flower and Howse [8], which presents techniques to draw completely
wellformed diagrams, but the associated software only supports drawing up to 4
curves. The techniques of Flower and Howse [8] were extended in [9] to enhance
the layout; the result of the layout improvements applied to the lefthand diagram
in figure 10 can be seen on the right.

Fig. 9. Generation us-
ing [8]. Fig. 10. Using the layout improvement [9].

Further extensions to the methods of [8] allow the drawing of abstract de-
scriptions that need not have a completely wellformed embedding. This was done
in [13], where techniques to allow any abstract description to be drawn were de-
veloped; output from the software of [13] is in figure 11. An alternative method
is developed by Simonetto and Auber [14], which is implemented in [15]. Out-
put can be seen in figure 12, where the labels have been manually added post
drawing; we thank Paolo Simonetto for this image. Most recently, an inductive
generation method has been developed [18], which draws Euler diagrams by
adding one curve at a time; see figure 13 for an example of the software output.
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Fig. 11. Generation
using [13].

Fig. 12. Generation using [15]. Fig. 13. Generation
using [18].

A different method was developed by Chow [2], that relies on the inter-
section between all curves in the to-be-generated Euler diagram being present.
We do not have access to Chow’s implementation, so we refer the reader to
http://apollo.cs.uvic.ca/euler/DrawEuler/index.html for images of au-
tomatically drawn diagrams.

7 Conclusion

We have presented a technique that draws Euler diagrams that are completely
wellformed up to labelling. The drawings use only circles as curves, which are
aesthetically desirable; many manually drawn Euler diagrams employ circles
which demonstrates their popularity. This is the first method that can draw any
abstract description using circles. Of course, our drawings may include extra
zones but we can mark them as such by shading them gray.

Along with layout improvements, as discussed in section 6, future work will
involve giving more consideration as to how to choose valid partitions, since
the choice of partition can impact the quality of the drawn diagram. Moreover,
the zones we added to produce a splitting super-decomposition removed the
need for concurrency in the diagram. We could add further zones that reduce
the number of duplicate curve labels required. For instance, three zones, z1, z2

and z3, in ini may have a valid partition {{z1, z2}, {z3}}, meaning we use two
circles when adding λi. However, we might be able to add a fourth zone, z4, to
ini where {{z1, z2, z3, z4}} is a valid partition (i.e. {z1, z2, z3, z4} forms a cluster)
for which we are able to add a single 2-piercing curve. Finding a balance between
the number of curves of which a contour consists and the number of ‘extra’ zones
in order to obtain an effective diagram will be an interesting challenge.
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