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Abstract—Geometric differential evolution (GDE) is a birds, and Differential Evolution [21], which is similar

very recently introduced formal generalization of tradi- 9 PSO, but it uses different equations governing the

tional differential evolution (DE) that can be used to derive motion of the particles. Despite their relatedness, DE is

specific GDE for both continuous and combinatorial spaces

- - . . known to produce consistently better performance than
retaining the same geometric interpretation of the dynamics P y P

of the DE search across representations. In this article, we PSO on many problems. In fact, DE is one of the most

first review the theory behind the GDE algorithm, then, competitive EAs for continuous optimization [21].

we use this framework to formally derive specific GDE In their initial inception, both PSO and DE were de-

for search spaces associated with binary strings, permuta- fined only for continuous problems. In both algorithms,

tions, vectors of permutations and genetic programs. The

. . : . . the motion of particles is produced by linear combi-
resulting algorithms are representation-specific differential

evolution algorithms searching the target spaces by acting nations of points in space and has a natural geometric

directly on their underlying representations. We present interpretation. There are a number of extensions of DE

experimental results for each of the new algorithms on a tg pinary spaces [21] [20], spaces of permutations [2]
number of benchmark problems. [19] and to the space of genetic programs [18]. Some of
Index Terms—Differential evolution, representations, these works recast combinatorial optimization problems

principled design of search operators, combinatorial spaces, as continuous optimization problems and then apply

genetic programming, theory. N ] ]
the traditional DE algorithm to solve these continuous

problems. Other works present DE algorithms defined
I. INTRODUCTION , . .
directly on combinatorial spaces that, however, are only

Two relatively recent additions to the Evolutionary Alyggsely related to the traditional DE in that the original
gorithms (EAs) family are Particle Swarm Optimizatiorbeometric interpretation is lost in the transition from

(PSO) [5], inspired to the flocking behavior of swarms ofgntinuous to combinatorial spaces. Furthermore, every

time a new solution representation is considered, the DE
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geometric interpretation of the dynamics of the points ifor permutations, and section VIII reports experiments
space of DE across representations. In particular, G@B the TSP. Section IX presents specific GDE search
can be applied to any search space endowed withoperators for Sudoku for which candidate solution grids
distance and associated with any solution representatiame represented as vectors of permutations, and section X
to derive formally a specific GDE for the target space angports experimental results for this problem. Section Xl
for the target representation. GDE is related to Geometgicesents specific GDE search operators for expression
Particle Swarm Optimization (GPSO) [10], which is arees, and section Xl reports the experimental analy-
formal generalization of the particle swarm optimizatiosis on standard GP benchmark problems. Section Xl
algorithm [5]. Specific GPSOs were derived for differenpresents conclusions and future work.
types of continuous spaces and for the Hamming space
associated with binary strings [11], for spaces associated !l THE GEOMETRY OF REPRESENTATIONS
with permutations [15] and for spaces associated with In this section, we introduce the ideas behind a recent
genetic programs [23]. formal theory of representations [9] which forms the
The objective of the present article is to review theontext for the generalization of DE presented in the
theory behind the GDE algorithm, illustrate how thigollowing sections.
framework can be used in practice as a tool for the Familiar geometric shapes in the Euclidean plane such
principled design of DE search operators for standaes$ circles, ellipses, segments, semi-lines, triangles and
and more complex solution representations associatsmhvex polygons can be defined using distances between
with combinatorial spaces, and finally to test experpoints in space. For example, a circle is the locus of
mentally the new GDE algorithms endowed with suchoints from which the distance to the centreis a
operators on benchmark problems. In particular, as targgten constant value, the radius By replacing in the
spaces for the GDE, we consider combinatorial spacdsfinition of a shape, say a circle, the Euclidean distance
associated with binary strings, permutations and vectossth a different distance, say the Hamming distance, we
of permutations and computer programs representedasain the definition of a circle in the Hamming space.
expression trees. A circle in the Hamming space looks quite different
The remaining part of the article is organized asom a circle in the Euclidean plane, however they both
follows. Section Il contains a gentle introduction to a&hare the same geometric definition. Analogously, if
formal theory of representations that forms the contemte replace the Euclidean distance with the Manhattan
for the generalization of the DE algorithm. Section IIdistance, we obtain the definition of a circle in the
briefly introduces the classic DE algorithm, and sectioManhattan space. A number of simple geometric shapes
IV describes the derivation of the general GDE algdased on the Manhattan distance in the plane have been
rithm. Section V presents specific GDE search operatatsrived explicitly (see Taxicab Geometry [7]). We can
for binary strings, and section VI reports experimentah fact replace the Euclidean distance in the definition
results on NK-landscapes and also on a second setobfany geometric shape with any distance meeting a
standard benchmark problems based on binary stringsinimum number of requirements (metric), obtaining the

Section VIl presents specific GDE search operatoc®rresponding shape in a space with a different geometry.
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We can also raise the level of abstraction and replacé points in the plane, or algebraically, by an equa-
the Euclidean distance with a generic metric, obtainingpn whose solutions are the coordinates of its points.
an abstract shape, such as for example an abstrahis is an important duality which allows us to treat
circle. An abstract circle captures what is common to aljeometric shapes as equations and vice versa. There is
circles across all possible geometries. Any property ah analogous duality that holds for geometric search
an abstract circle is also a property of any space-specifiperators. Candidate solutions can be seen as points
circle. in space, geometric view, or equivalently, as syntactic

Search algorithms can be viewed from a geometraonfigurations of a certain type, algebraic view. For
perspective. The search space is seen as a geomaixample, a candidate solution in the Hamming space
space with a notion of distance between points, amén be considered as a point in space or as a binary
candidate solutions are points in the space. For exampd&ing corresponding to that point. The binary string
search spaces associated with combinatorial optimizatican then be thought as being the coordinates of the
problems are commonly represented as graphs in whigbint in the Hamming space. This allows us to think
nodes corresponds to candidate solutions and edgésa search operator equivalently as (i) an algorithmic
between solutions correspond to neighbour candidgieocedure which manipulates the syntax of the parent
solutions. We can endow these spaces with a distarsmutions to obtain the syntactic configurations of the
between solutions equal to the length of the shortesffspring solutions using well-defined representation-
path between their corresponding nodes in the grappecific operations (algebraic view), or (ii) a geometric
Geometric search operators are defined using geomett@scription which specifies what points in the space can
shapes to delimit the region of search space where lie returned as offspring for the given parent points and
sample offspring solutions relative to the positions ofiith what probability (geometric view). For example,
parent solutions. For example, geometric crossover usiform crossover for binary strings [22] is a recom-
a search operator that takes two parent solutions lination operator that produces offspring binary strings
input corresponding to the end-points of a segment, abg inheriting at each position in the binary string the
returns points sampled at random within the segmebit of one parent string or of the other parent string
as offspring solutions. The specific distance associateith the same probability. This is an algebraic view of
with the search space at hand is used in the definitionthie uniform crossover that tells how to manipulate the
segment to determine the specific geometric crossoymrent strings to obtain the offspring string. Equivalently,
for that space. Therefore, each search space is asstitd same operator can be defined geometrically as the
ated with a different space-specific geometric crossovegeometric crossover based on the Hamming distance
However, all geometric crossovers have the same abstrizt takes offspring uniformly at random in the segment
geometric definition. between parents.

In analytic geometry, in which points of the Cartesian There are two important differences between these
plane are in one-to-one correspondence with pairs wio definitions of the same operator. The geometric
numbers, their coordinates, the same geometric shagedinition is declarative, it defines what offspring the

can be equivalently expressed geometrically as a sgterator returns given their parents without explicitly
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telling how to actually generate the offspring from the search algorithm to obtain a specific instance of
parents. The algebraic definition, on the other hand, is the algorithm for this space.

operational, since it defines the search operator by telling4) Finally, one can use this geometric and declarative
for each combination of parents how to build the cor- description of the search operator to derive its
responding offspring. The second important difference  operational definition in terms of manipulation of

is that the geometric description of a search operator the specific underlying representation.

is representation-independent and refers only indirectifhis methodology was used to generalize PSO and DE to
to the specific solution representation via a distanegy metric space obtaining GPSO [10] and GDE [17] and
defined on such representation (i.e. edit distances supln to derive the specific search operators for GPSO for
as the Hamming distance which can be defined on thenumber of specific representations and distances. In the
binary string representation as the minimum numbegsllowing sections, we illustrate how this methodology
of bit-flips to obtain one string from the other). Incan be used in practice to generalize DE and to specialize
contrast, the algebraic definition of a search operatoriisto specific metric spaces associated with a number
representation-dependent and uses operations which @rgepresentations. The same methodology can be used
well-defined on the specific solution representation by generalize to combinatorial spaces other algorithms
that may not be well-defined on other representatiomgturally based on a notion of distance. This includes
(e.g. bit-flip on a binary string is not well-defined on &earch algorithms such as Response Surface Methods,

permutation). Estimation of Distribution Algorithms and Lipschitz

The duality of the geometric search operators h&gPtimization algorithms, and also Machine Learning

surprising and important consequences [9]. One of thedgorithms.
is the possibility of principled generalization of search

. . . . I11. CLASSIC DIFFERENTIAL EVOLUTION
algorithms from continuous spaces to combinatorial

spaces, as sketched in the following. In this section, we describe the traditional DE [21]
(see algorithm 1).

1) Given a search algorithm defined on continuous The characteristic that sets DE apart from other evo-
spaces, one has to recast the definition of tHetionary algorithms is the presence of the differential
search operators expressing them explicitly imutation operator (see line 5 of algorithm 1). This
terms of Euclidean distance between parents apg@erator creates a mutant vectoby perturbing a vector
offspring. X3 picked at random from the current population with

2) Then one has to substitute the Euclidean distant®ee scaled difference of other two randomly selected
with a generic metric, obtaining a formal search alpopulation vectord” - (X1 — X2). This operation is un-
gorithm generalizing the original algorithm basedlerstood being important because it adapts the mutation
on the continuous space. direction and its step size to the level of convergence

3) Next, one can consider a (discrete) representatiand spatial distribution of the current population. The
and a distance associated with it (a combinatoriahutant vector is then recombined with the currently

space) and use it in the definition of the formatonsidered vectakK (:) using discrete recombination and
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AIgorlthm 1 DE with differential mutation and diSCfetepopmation Size]\[p norma”y varies from 10 to 100.

recombination
1: initialize population ofN, real vectors at random

IV. GEOMETRIC DIFFERENTIAL EVOLUTION

2: while stop criterion not metlo
) ] Following the methodology outlined in section II, in
3. for all vector X (¢) in the populationdo
) o this section we generalize the classic DE algorithm to
4: pick at random 3 distinct vectors from the
) general metric spaces. To do this, we recast differential
current populationX'1, X2, X3

5: create mutant vectdy = X3+ F- (X1 — X2)

mutation and discrete recombination as functions of the

] distance of the underlying search space, thereby obtain-
where I is the scale factor parameter
i .. ing their abstract geometric definitions. Then, in the fol-
6: setV as the result of the discrete recombination ~ _ _ - _
) . lowing sections, we derive the specific DE algorithms for
of U and X (¢) with probability Cr

] binary strings, permutations, vectors of permutations and
7: if f(V)> f(X(i)) then

genetic programs by plugging distances associated with

8: set the i’ vector in the next population
Y(i) =V these representations in the abstract geometric definition
1) =
of the search operators.
9 else
10: setY (i) = X (i) o ) ) )
A. Generalization of differential mutation
11: end if
Let X1, X2, X3 be real vectors and” > 0 a scalar.
12:  end for

13 for all vector X (i) in the populationdo The differential mutation operator produces a new vector

14: setX (i) = Y (i) U as follows:
15:  end for U= X34 F- (X1 X2) 0

16: end while

The algebraic operations on real vectors in equation 1
can be represented graphically [21] as in figure 1. Real
vectors are represented as points. The téfin— X2
the resulting vectod” replaces the current vector in theg represented as a vector originatingXi2 and reach-
next population if it has better or equal fitness. ing X1. The multiplication with the scaling factoF

The differential mutation parametér, known as scale produces a vector with the same origin and direction
factor, is a positive real normally between 0 and 1, but fut with a different length. The addition of'3 to the
can take also values greater than 1. The recombinatistaled vector corresponds to the translation of the origin
probability paramete€'r takes values if0, 1]. It is the of the scaled vector fronX'2 to X 3 keeping invariant its
probability, for each position in the vectd¥ (i), of the direction and length. The point of the (graphical) vector
offspring V' inheriting the value of the mutant vectdr. so obtained corresponds to the real vedior
When Cr = 1, the algorithm 1 degenerates to a DE Unfortunately, this graphical interpretation of equation
algorithm with differential mutation only (becau3é= 1 in terms of operations on vectors does not help us to
U). When F' = 0, the algorithm 1 degenerates to a DEjeneralize equation 1 to general metric spaces because

algorithm with discrete crossover only, &s= X3. The the notions of vector and operations on vectors are not

December 1, 2009 DRAFT



There is a interesting duality between the algebraic no-
tion of convex combination of two vectors and the geo-

metric notion of segment in the Euclidean space. Vectors

F* (X1 -X2) represent points in space. The poiilg corresponding

to the vectors” obtained by any convex combination of

; two vectorsA and B lay in the line segment between
X2

their corresponding point®, and Pg. The vice versa
U=X3 + F * (X1 — X2) also holds true: the vectar’ corresponding to a point
Pc in the segmentP4, Pp| can be obtained as a convex
Fig. 1. Construction ot/ using vectors. combination of the vectorgl and B. The weightsi¥ 4

andWjg in the convex combination localize the point on

the segmentPy4, Pgl: distances tdPc from P4 and Pp

well-defined at this level of generality. In the following, , , , i
are inversely proportional to the corresponding weights,

we propose a generalization based on interpreting equa-
prop ¢ P g qWA and Wg. So, the weightiV4 of a vector A can

tion 1 in terms of segments and extension rays, which _ . ) )
be thought as the intensity of a linear attraction force

are geometric elements well-defined on any metric space. i ) ,
towards a fix pointP4 exerted on a movable poirt..

To do that, we need to rewrite equation 1 in terms of i . ,
The stronger the force intensity 4 (relative toWWg) the

only convex combinations of two vectors, which are the ) . )
closer the pointPs (understood as the equilibrium point

algebraic dual of segments. A convex combination of a )
of the attraction forces exerted @4 and Pg) ends up

set of vectors is a linear combination of these vec:to[)se,ng 0P
| A

provided that their weights are all positive and sum up _ . ) . )
This duality allows for a geometric interpretation of

to one. _ : I )
equation 3 in terms of convex combinations (see figure

Equation 1 can be rewritten as: 2). Let us call E the vector obtained by the convex
U+F-X2=X3+F- X1 @) combinations on both sides of equation 3. Geometri-
cally the pointE must be the intersection point of the
By dividing both sides byl + I and lettingV’ = 3% segmentg/, X2] and [X1, X3]. The distances fronE
we have: to the endpoints of these segments can be determined
WoU+(1-W) X2=W.X3+(1—W) X1 (3) from equation 3 as they are inversely proportional to their
respective weights. Since the poibit is unknown (but
Both sides of equation 3 are convex combinations @k weight is known), it can be determined geometrically
two vectors. On the left-hand side, the vectéfsand by firstly determiningE as convex combination ok'1
X2 have coefficient3 and1 — W, respectively. These and X 3; then, by projectingX2 beyond EZ' (extension
coefficients sum up to one and are both positive becausg) obtaining a point/ such that the proportions of
W e [0,1] for F > 0. Analogously, the right-hand sidethe distances o2 and U to the pointE is inversely
is a convex combination of the vectaks3 and X1 with  proportional to their weights. In the Euclidean space, the

the same coefficients. constructions ofU using vectors (figure 1) and convex
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generatingV’. Discrete recombination is a geometric
U =ER(X2, E) . .
X1 crossover under Hamming distance for real vectors [9].

The Hamming distance (HD) for real vectors is defined
E = CX(X1, X3) analogously to the Hamming distance between binary
strings: it is the number of sites with mismatching values
across the two vectors. From its definition, we can
X3 derive that theC'r parameter of the discrete recombi-

X2 nation is proportional to the expected number of values
that V' inherits from U. Therefore, E[HD(U,V)] =

Fig. 2. Construction of/ using convex combination and extensioncr -HD(U, X(i)) and E[HD(X(i),V)] = (1 - Cr) -

ray. HD(U, X (i)). ConsequentlyCr and 1 — Cr can be

interpreted as the weights &f and X (), respectively,

o ] ) _of the convex combination that returns in the space
combinations (figure 2) are equivalent (algebraically,

) of real vectors endowed with Hamming distance. In
hence geometrically).

] ] ) order to generalize the discrete recombination, by re-
Segments and extension rays in the Euclidean space _ . _ _ _
. . ] . placing hamming distance with a generic metric, we
and their weighted extensions can be expressed in terms

) ] ) obtain the abstract convex combination operafok
of distances, hence, these geometric objects can be nat-

] ) ) _introduced in the previous section. So, we have that the
urally generalized to generic metric spaces by replacing
. . . . ) .ﬁ;eneralized discrete recombination i6fand X (i) with
the Euclidean distance with a generic metric. We wi
probability parametelCr generatingV is as follows:

present their abstract definitions in section IV-C.
V =CX(U,X(i)) with weights(Cr,1 — Cr).

The differential mutation operator U =

) In the classic DE (algorithm 1), replacing the original
DM(X1,X2,X3) with scale factorF can now be

] ) ) _ differential mutation and discrete recombination opera-
defined for any metric space following the construction
tors with their generalizations, we obtain the formal Ge-
of U presented in figure 2 as follows:
ometric Differential Evolution (see algorithm 2). When

- 1
1) ComputeW = 7 this formal algorithm is specified on the Euclidean space,
2) Get FE as the convex combinatio6X (X1, X3)

with weights(1 — W, W) (generalizinglkf = (1 —
W) - X1+ W - X3)

3) Get U as the extension raypR(X2,E) with
weights (W, 1 — W) (generalizingl = (E — (1 —
W) - X2)/W)

the resulting Euclidean GDE doa®t coincide with

the classic DE. This is because, whereas the original
differential mutation operator can be expressed as a
function of the Euclidean distance, the original discrete

recombination operator can be expressed as a function
of the Hamming distance for real vectors, not of the

Euclidean distance. The Euclidean GDE coincides with

B. Generalization of discrete recombination an existing variant of traditional DE [21], which has

After applying differential mutation, the DE algo-the same differential mutation operator but in which the

rithm applies discrete recombination 1@ and X (i) discrete recombination is replaced with blend crossover.
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Interestingly, blend crossover lives in the same spaoé extension ray in metric spaces was introduced in
as differential mutation and their joint behavior has the GDE framework [17]. That notion of convex com-
geometric interpretation in space. bination requires distances of the fixed points to the

equilibrium point to be a generic decreasing function

Algorithm 2 Formal Geometric Differential Evolution
1: initialize population ofN, configurations at random

of the weights of the fixed points. In the following, we

2: while stop criterion not metlo present a more refined notion of convex combination

3. for all configurationX () in the populationdo in which the function relating weights and distances is

4 pick at random 3 distinct configurations fromgiven explicitly. Then the extended ray recombination

the current populatiorX 1, X2, X3 can be naturally interpreted as the inverse operation of

the convex combination.

5: set W = - where F is the scale factor
parameter Let us first recall the definition of segment and
6: create intermediate configuratidnas the con- SXIENsion ray in metric spaces. LS, d) be a met-
vex combinationCX (X1, X3) with weights ric space. A (metric) segment is a set of the form
(1— W, W) [z;y] = {z € Sld(z,2) + d(z,y) = d(z,y)} where
7: create mutant configuratioli as the extension ¥ € S are called end-points of the segment. The
ray ER(X2, E) with weights (W, 1 — W) extension rayER(A, B) in the Euclidean plane is a
8: create candidate configuratiori as the con- semi-line originating inA and passing throug® (note

vex combinationCX (U, X (i) with weights that BR(A,B) # ER(B,A)). The extension ray in

(Cr,1 — Cr) where Cr is the recombination a metric space can be defined indirectly using metric

segments, as follows. Given poindsand B, the (metric)

parameter

o it £(V) > f(X(i)) then extension rayER(A, B) is the set of pointsC that
10: set theit" configuration in the next popula- Salisfy € € [A,B] or B € [A,C]. Only the part of

tion Y (i) = V the extension ray beyon® will be of interest because
11: else the pointC that we want to determine, which is, the
12: setY (i) = X(4) offspring of the differential mutation operator, is never
13: end if betweenA and B by construction.
14:  end for We can now use these geometric objects as basis

15.  for all configurationX (¢) in the populatiordo for defining the convex combination operator and the
16: setX (i) = Y (i) extended ray recombination operator, as follows.
The convex combination C =

CX((A,Wy),(B,Wg)) of two points A and B

17:  end for

18: end while

with weightsW, andWg (positive and summing up to
one) in a metric space endowed with distance function
C. Definition of convex combination and extension ray; returns the set of point§' such thatC' € [A, B] and
A notion of convex combination in metric spaces waéd(A, C)/d(B,C) = Wg/W 4. In words, the weights of

introduced in the GPSO framework [10]. The notiorthe pointsA and B are inversely proportional to their
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distances toC' 1. When specified to Euclidean spacesf the extension ray recombination operators for all
this notion of convex combination coincides with the@epresentations in this article.
traditional notion of convex combination of real vectors. The above definitions of convex combination and ex-
The extension ray recombinatio R is defined as tension ray can be relaxed to obtain the required relation
the inverse operation of the weighted convex combbetween weights and distances to the offspring only
nation CX, as follows. The weighted extension rayin expectation. These relaxed versions of the operators
ER((A,wap), (B, wy:)) of the points A (origin) and have the advantage of being more naturally suited to
B (through) and weightaw,, and w. returns those combinatorial spaces and being easier to implement for
pointsC' such that their convex combination withwith  such spaces.
weights wye and way, CX((A, waes), (C,wse)), returns V. BINARY GDE

the pointB. Notice that from this definition follows that

. . " In this section, we derive formally specific convex
the weightsw,;, andwy,. in £ R are positive real numbers

combination and extension ray recombination for the
between0O and 1 and sum up tol because they must

Hamming space for binary strings. These specific oper-
respect this condition i€’ X. The set of points returned gsp Y 9 P P

. . . ators can then be plugged in the formal GDE (algorithm
by the weighted extension ray R can be characterized

L ) i i 2) to obtain a specific GDE for the Hamming space, the
explicitly in terms of distances to the input points of
Binary GDE.
ER, as follows [17].
Lemma 1:The pointsC returned by the weighted A, Convex combination

extension rayER((A, wa), (B, wsc)) are exactly those Let us consider the convex combinatiof =

points which are at a distane& A, B) - wqp/wp. from CX((A, W), (B, Ws)) of two points A and B with

B andat a distancel(4, ) /w. from A. weights W, and Wg (positive and summing up to
Proof: From the definition of weighted extension
ray we have thaB = C X ((A, wa), (C,ws.))). Hence,
d(A,C) =d(A, B)+d(B,C) and the distance$( A, B)
and d(B,C) are inversely proportional to the weight
wqp and wy.. Consequentlyd(A,C) = d(A, B)/wpe
and substituting it ind(B,C) = d(A,C) — d(A, B) we
getd(B,C) = d(A, B) - wap/Wee, SINCEW,p, + wWpe + 1.

one). In the Euclidean spac€, is uniquely determined,
however this is not the case for all metric spaces. In
particular, it does not hold for Hamming spaces. When
*CX is specified to Hamming spaces on binary strings, it
can be formally shown that we obtain the recombination
operator outlined in algorithm 3 [10]. This algorithm
returns a offspring binary string’’ of parent binary

strings A and B such thatHD(A,C)/HD(B,C) =

This characterization is useful to construct procedur% /W4 in expectation, wherdZ D denotes the Ham
B A 3 -

to implement the weighted extension ray for Speclflcming distance between binary strings. This differs from

spaces. In fact, we used it, together with representatlotrﬂ-e Euclidean case where this ratio is guaranteed.

specific properties of the extension ray, in the derivation

B. Extension ray

1To allow weights and distances to assume value zero and avoid . ) . )
problems with division by zero, the requirement in the definition can In order to gain an intuitive underStandmg of how an

be changed ag(A,C) - W4 = d(B,C) - Wg. extension ray looks like in the Hamming space, let us
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10

Algorithm 3 Binary Convex Combination Operator Proof:
1: inputs: binary stringsA and B and weightd¥ 4 and

Proof of statement :1the schema so defined corre-
W, eights must be positive and sum tol . .

B (weig . POSIV um up ) sponds to the set of the possible offspring 4fand
2: for all position: in the stringsdo
3. if random(0,1)< W4 then

4 setC(i) to A(7)

B that can be obtained by recombining them using the
uniform crossover. This crossover operator corresponds

to the uniform geometric crossover under Hamming

5. else . . _
distance which returns offspring in the segment between
6: setC'(i) to B(7)
parents.
7. endif .
Proof of statement:2all C matching the schem&
8: end for

defined in this statement recombined witlcan produce

9: return stringC' as offsprin . o " :
g pring B as offspring. This is because at each positionA4in

B andC) when in the schema' there isx the bit in B

at that position can be inherited fromh. When in the
consider an example of extension ray originatinglin=

110011 and passing through = 111001.

schema there is a bi0 (or 1) the bit in B at that position

can be inherited fronC. Furthermore, only the strings
The relationC' € [A, B] is satisfied by thos€' that

match the schem&1l = 11 «0* 1. This is the set of the
with A. [ |

C matching S can produceB when C' is recombined

ible offspri fA B that tai
possible offspring oA and at can be obtained by Using the characterization of the weighted extension

recombining them using the uniform crossover. . . .
g g ray in terms of distances (lemma 1) and the characteriza-

The relationB € [A4, C] is satisfied by all thos€' that
matchS2 = % 1+ 0%. This is the set of all thos€' that

tion of the extension ray in the Hamming space in terms
of schemata (theorem 2), we were able to derive the

when recombined withd using the uniform crossover . . — .
weighted extension ray recombination for this space (see

can produce’ as offspring. algorithm 4). Theorem 3 proves that this recombination

The following theorem characterizes the extension rac}berator conforms to the definition of weighted extension

in the Hamming space in terms of schemata. ray for the Hamming space (in expectation).

Theorem 2:Let A and B be fixed binary strings in thaorem 3:Given parentsd and B, the recombina-

the Hamming space: tion in algorithm 4 returns an offspring' such that
1) the relationC' € [A, B] is satisfied by those strings E[HD(B,C)]/HD(A,B) = Wap/Wgc, where
C that match the schema obtained by keeping the[H D (B, C)] is the expected Hamming distance be-
common bits inA and B and insertingx where tweenB and the offspringC.
the bits of A and B do not match. Proof: This can be shown as follows. The number
2) the relationB € [A,(C] is satisfied by all those of bits in which A and B differ are HD(A, B).
strings C' that match the schema obtained byhe number of bits in whichA and B do not differ
inserting* where the bits are common iA and is n — HD(A, B). For the bits in whichA and B
B and inserting the bits coming fro8 where the differ, the stringC' equals B. For each bit in which

bits of A and B do not match. A and B do not differ, C does not equalB with
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Algorithm 4 Binary Extension Ray Recombination  pination and extension ray for the space of binary strings
1: inputs: binary stringsA (origin) and B (through) of

under HD. These space-specific operators can be plugged

lengthn and weightsVa z andWsc (weights must in the formal GDE (algorithm 2) to obtain a specific

iti 1
be positive and sum up to 1) GDE for the space of binary strings.

2: setHD(A, B) as Hamming distance betwegnand

B VI. EXPERIMENTS FORBINARY GDE
3: setH D(B,C) asHD(A, B)-wap/wpc (Compute o implemented the GDE algorithm for binary spaces
the distance betweeB and C using the weights)

4. setp as HD(B,C)/(n — HD(A, B)) (this is the

within a Java framework,and investigated its perfor-

mance on some benchmark problems. The proposed
probability of flipping bits away fromA and B

beyondB)

algorithm was compared with three other algorithms:

e CGA: A canonical Genetic Algorithm, with
s: for all positions in the stringsdo

6: setC(i) = B(i)
7. if B(i) = A(¢) and random(0,1X p then

roulette wheel fithess-proportionate selection, uni-
form crossover and bitflip mutation.

« tGA: a Genetic Algorithm with truncation selection,

8: setC'(i) to the complement oB(i) i ) )
with a selection threshold gfopsize/2.
9: end if
o ES: A 1+ X\ Evolution Strategy, withu = A =
10: end for

popsize/2 and bitflip mutation.

11: return stringC' as offspring
For the first benchmark suite, we also compared it

with:

N _ « BPSO: Discrete Binary PSO of Kennedy and Eber-
probability p. So, the expected distance betweén

and C is E[HD(B,C)] = (n — HD(A,B)) - p. By
substitutingp = HD(B,C)/(n — HD(A,B)), we
have E[HD(B,C)] = HD(B,C) = HD(A,B) -
Wap/Wpe. So, E[HD(B,C)/HD(A,B) =

Wap/Wae.
ically varied betweer.0 and0.5 in increments of).01.
Theorem 3 holds under the assumption that the di- . . )
For the experiments involving GDE, the key parameters
ameter of the space is at least as large as the wanted ) .
F and Cr were systematically varied betweérd and

hart, using the results presented in [4].

For the ES and GAs, the bitflip mutation works as
follows: each bit in the chromosome is considered, and
with probability p this bit is flipped. In the experiments

involving these algorithms, this parameter was systemat-

Hamming distance betweedA and C. That is, that the o
1.0 in increments 00.1.

requested point on the extension ray does not go beyond _ _
In all experiments, the length of any single run was

the boundary of the space. When such a condition does ) ] ) )
set t04000 function evaluations, in order to be directly

not hold, the offspring” returned by the algorithm 4 is .
comparable with the results of Kennedy and Eberhart.

the point on the extension ray at maximum distance from ) ) )
For GDE, GA and ES the population size was varied

A. In this case, the required relation between distance . ] )
systematically: sizes dfo, 20, 40, 80 and160 were tried,

and weights does not hold.

Now we have operational definitions of convex com- 2Source code is available upon request from the second author.
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with the numbers of generations limited appropriatehoptimum only in the third decimal, is apparently a bad
400, 200, 100, 50 and 25. match with fitness-proportional selection; the landscape
of f3 has similar characteristics but to a lesser degree.

A. Spears-DeJong functions Therefore, the results of the canonical GA are the worst

We used three of the same benchmark problergg g problems.
that Kennedy and Eberhart tested their binary PSO on.gq, the evolution strategy and the GA with truncation

These are William Spears’ binary versions of DeJonggyjection are strictly better on all benchmarks than the
. 3 .

functions f1, f2 and 3. (We did not usef4 and f5  canonical GA; binary PSO is better than ES in that it

due to unresolved differences between different versiops,-hes optimum more often gt and f2; and GDE is

of the code, which might be due to differing numericajne pest algorithm overall, as it is as good as BPSO on

precision in different systems; further, Kennedy an?Q and f3 but reaches the global optimum almost twice

Eberhart do not report precise results for.) as often onf1.

Each configuration (parameters and population size)

was tested twenty times, and the average best score @fgorithm | f1 (78.6) f2 (3905.93) | 3 (55.0)
each run was recorded, as well as how many of th&PSO ) 10 4 20

) GDE 78.5999 | 19 | 3905.9296| 4 | 55.0 | 20
runs that reached the global optimum. The results are. 782152 | 0 | 3905.8052| o | 52.1 | 1
summarized in table I. The parameters were optimizedca 78.5993 | 4 | 3905.9266| 2 | 55.0 | 20
separately for each combination of benchmark functiarES 78.5998| 7 | 3905.9291] 2 | 85.0 | 20

TABLE |

RESULTS ON THESPEARS DEJONG BENCHMARK SUITE. THE

tion are reported here. The best parameter settings found
MAXIMA OF THE FUNCTIONS ARE REPORTED NEXT TO THEIR

and algorithm, and only the results of the best configura-

are reported in tables Il and III. NAMES. FOR EACH COMBINATION OF ALGORITHM AND PROBLEM,

The GDE algorithm appears to work best with small THE RESULTS OF THE BEST PARAMETERIZATION OF THAT

. . . L. COMBINATION ARE REPORTED THE FIRST NUMBER IS THE BEST
population sizes, 10 or 20 individuals (and thus more

FITNESS OF THE LAST GENERATIONAVERAGED OVER 20 RUNS.
generations). Orf1, there is a clear preference for high The sEcoND NUMBER IS THE NUMBER OF THOSE RUNS THAT
values (e.g. 0.9) of botlt” and Cr, whereas onf2 the REACHED THE GLOBAL OPTIMUM.

algorithm seems to work best with values of around 0.3

for both parameters.

In comparison, both GAs always work best with large

lati d relativelv hiah tati t 1 Function | pop/gen| F Cr
populations and relatively high mutation rates (.1). o oo o5 Tos
The ES seems to be relatively insensitive to population 72 201200 | 03 | 03
size, as long as the mutation rate is in the redidis— 73 * * "
0-1. TABLE II

. . . BEST PARAMETER SETTINGS FOUND FORSDE ON THE
The compressed fitness structure fdf and f2, with

SPEARS DEJONG BENCHMARKS. THE ASTERISKS DENOTE THAT

many local optima with values differing from the global MANY COMBINATIONS ARE OPTIMAL .

3The original ¢ source code of these functions can be found at
http://www.cs.uwyo.edwbwspears/functs/dejong.c
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cGA | pop/gen| mutation GA with truncation selection perform significantly better
f1 | 160/25 | 0.12

f2 | 160/25 | 0.16
f3 | 80/50 | 0.39
tGA | pop/gen| mutation for different K. Apparently, for lowK larger population
f1 | 80/50 | 0.29
f2 | 8050 | 0.1

f3 | 80/50 | 0.45

than the canonical GA for alk.

Table V shows the best parameter settings for GDE

sizes are preferred, and for high€rsmaller populations

do better. Interestingly, for all the best configuration

ES | pop/gen| mutation is very low F' and medium to higt€’r. Table VI presents
f1 | 10/400 | 0.13 the best parameter settings found for ES and GA. A very
f2 | 160/25 | 0.1 . . .
PRE - clear trend is that ES works best with small populations
and both GAs with larger populations; ES also generally
TABLE IIl

BEST PARAMETER SETTINGS FOUND FORSA (WITH TRUNCATION prefers lower mutation rate than the GAs.

AND ROULETTE-WHEEL SELECTION) AND ESON THE

SPEARS DEJONG BENCHMARKS. THE ASTERISKS DENOTE THAT 10 K=0|K=1|K=2| K=3| K=4 =5

MANY COMBINATIONS ARE OPTIMAL. GDE | 0.623 0.730 0.732 0.758 0.751 0.741
cGA | 0.521 0.509 0.515 0.536 0.519 0.517
tGA 0.597 0.621 0.613 0.621 0.641 0.641
ES 0.667 0.721 0.746 0.740 0.736 0.727
100 K = K = K=2| K= K = =5
GDE | 0.665 0.750 0.738 0.756 0.736 0.719
In order to more systematically test the behaviour ofcGA | 0.552 | 0.594 | 0.613 | 0.610 | 0.600 | 0.610

GDE on landscapes with varying amountofepistasis,WéGA 0.664 | 0707 | 0.713 | 0.736 | 0.737 | 0.730
ES | 0677 | 0696 | 0.710 | 0.717 | 0.717 | 0.720

B. NK Landscapes

performed additional experiments using NK fitness land
TABLE IV

RESULTS ON THENK LANDSCAPE BENCHMARK. AVERAGE
have two paramtersV, the number of dimensions, was MAXIMUM FITNESS AT THE LAST GENERATION FOR EACH
ALGORITHM USING K VALUES BETWEENO AND 5, USING

scapes, as proposed by Kauffman [3]. NK landscapes

fixed to 100 in our experimentsk’, the number of depen-
. . . POPULATION SIZES OF BOTHLO AND 100. 50 RUNS WERE
dencies on other loci per locus was varied betweand

PERFORMED FOR EACH CONFIGURATION

4. The parameters of the algorithms (mutation rate,

andC'r) were varied in the same way as with the Spears-

DeJong experiments above. All evolutionary runs lasted

for 10000 function evaluations, which were allocated VII. PERMUTATION-BASED GDE

either as population siz€)0 and 100 generations or as In this section, we derive formally specific convex

population sizel0 and 1000 generations. combination and extension ray recombination for the
The results in table IV show that GDE is a veryspace of permutations. We use the swap distance between

competitive algorithm overall. For population size 100permutations as basis for the GDE. These specific oper-

GDE is the best of the four algorithms féf of 1, 2 and ators can then be plugged in the formal GDE (algorithm

3, and a close second féf of 0 and 4. For population 2) to obtain a specific GDE for the space of permutations,

size 10, GDE is the best algorithm for ali' except the permutation-based GDE. Notice, however, that in

K = 0. The results further show that the ES and therinciple, we could choose any other distance between
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K | poplgen| F | Cr Algorithm 5 Swap distance
0 | 100/100| 0.0 | 0.8 1: inputs: permutationg, and py
1 | 100/100| 0.0 | 0.7 2 setdist — 0
2 | 100/100| 0.0 | 0.5 o )
3: for all positioni in the permutationsio
3 | 10/1000| 0.1 | 0.9
4 | 101000 0.1 | 0.8 4 if pa(i) # pu(i) then
5 | 10/1000| 0.1 | 0.8 5: find p,(?) in p, and bej its position inp,
TABLE V 6: swap contents of, () andpy(5)
BEST PARAMETER SETTINGS FOUND FORGDE ON THE NK 7. dist = dist + 1
LANDSCAPE BENCHMARK.
8: endif
9: end for
CGA | tGA | ES 10: returndist

0.01 | 0.35| 0.01
0.01 | 0.43 | 0.03
0.28 | 0.47 | 0.03
0.16 | 0.19 | 0.04 by swaps the two parent permutations one towards the
0.39 | 0.36 | 0.02
0.20 | 0.30 | 0.02

other until they converge to the same permutation. Which

gl |lw|v|~|o|x

of the two permutations has to be sorted toward the
TABLE VI

BEST MUTATION SETTINGS FOUND FORGA AND ESON THE NK
LANDSCAPE BENCHMARK. THE GAs ALWAYS PERFORMED BEST ~ fandom recombination mask generated using the parents

WITH POPULATION SIZE100,AND THE ESWITH POPULATION SIZE weights interpreted as probabilities of the outcome of
10.

other at each position is controlled by the contents of a

tossing a biased coin being the respective parent. This
operator is called ‘convex combination’ because it is

allegedly a convex combination for permutations under

permutations (e.g., adjacent swap distance, reversal dslaiap distance. However, this needs to be proved.

tance, insertion distance, etc.) as a basis of the GDE. In o )
Theorem 4:The convex combination in Algorithm 6

that case, for each distance, we would obtain a different . .
is a geometric crossover under swap distance [11].

permutation-based GDE.
Additionally, in previous work [11], it was shown

A. Swap distance that the distances of the parents to the offspring are

The swap distance between two permutations is thgcreasing functions of their weights in the convex

minimum number of swaps needed to order one perm%c_)mbmatlon. In the following, we give a stronger result

tation into the order of the other permutation. It can b@at says that that these distances are inversely propor-

implemented as in Algorithm 5. tional to the corresponding weights, as required by the
refined definition of convex combination introduced in

B. Convex combination this article.

Algorithm 6 presents a recombination operator for Theorem 5:The convex combination in Algorithm 6
permutations that was introduced in the GPSO framés (in expectation) a convex combination in the space of

work [11]. This operator produces an offspring by sortingermutations endowed with swap distance.
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Algorithm 6 Convex combination become equal in all positions, hence converged to the
1: inputs: permutationg, andp;, and their weightsv,

offspring p.. Since the convex combination operator is a

and . L
we geometric crossover, the offpring is on a shortest path

2: generate a recombination maskrandomly with ‘a . .
betweerp, andp, (shortest sorting trajectory by swaps).

and ‘b’ with probabilitiesw, and
P v o The expected number of swap moves on the shortest

3: for all position in the permutationslo .
P ! P path fromp, towardp, to reachp., i.e., E[SD(pa, pc)],

4. if pa(i /) then L
Pa(i) 7 po(i) is given by the number of swap moves on the shortest
5; if i) = a then
it m(i) = a path, i.e.,5D(p., py), multiplied by the probability that
6: find p,(7) in p, and bej its position in .
Pa(i) I py 7S P b any swap move on the shortest path was obtained by
7 swap contents i) and py (j
P Oy () Pel7) orderingp, towardpy, i.e., w,. HenceE[SD(p,,p.)] =
8: else
SD(pa,ps) - wp. Analogously for the other parent we
9: find ) in p, and bej its position inp, .
po(d) in p TSP P obtain: E[SD(pp,p.)] = SD(pa,ps) - we. Therefore,
10: swap contents of, (i) andp,(j . .
P Oba (1) Pa(7) the expected distances of the parents to the offspring
11: end if . . . . .
are inversely proportional to their respective weighss.
12:  end if
13: end for
14: returnp, as offspring C. Extension ray

Algorithm 7 presents a recombination operator that

is allegedly the extension ray recombination for permu-
Proof: The convex combination for permutations igations under swap distance. This operator produces an

a geometric crossover under swap distance. Therefoofspring permutation by sorting by swaps parent permu-

the offspring of the convex combination are in théationp, away from parent permutatign,. The number

segment between parents as required to be a conwdxswaps away is calculated in a way to obtain con-
combination. To complete the proof, we need to shosistency between weights and distances of the offspring
that the weightsw, and w, of the convex combina- to the parents as required from the general definition
tion are inversely proportional to the expected distance$ extension ray recombination in metric space. The
E[SD(pa,p.)], E[SD(pp,p.)] from the parentp, and following theorem proves that this is indeed an extension

pp to their offspringp,.., as follows. ray recombination for permutations under swap distance.

The recombination mask contains a set of indepen- Theorem 6:The extension ray recombination in Al-
dently generated choices. The effect of each choice ggrithm 7 is (in expectation) an extension ray operator in
sortingp, a single swap towards, with probabilityw, the space of permutations endowed with swap distance.
and sortingp,, a single swap towards, with probability Proof: First we prove thatp. = ER(pa.,ps) by
wg, Whenp, andp, differ at the current position. When proving thatp, is in the segment betweegn andp. un-

p. andp, are equal at the current position, the effect aler swap distance. Then we prove that the expected dis-
the choice is to leave, and p, unchanged. When all tancesE[SD(p,, py)] and E[SD(ps, p.)] are inversely

choices in the mask: have been applieg, andp, have proportional to the weightss,;, andwy., respectively.
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Algorithm 7 Extension ray recombination obtain p{™ such thatp, is on a swap shortest path
1. inputs: parentp, (origin point of the ray) andp,

betweenp, and pl()"). Since the operataE R constructs

(passing through point of the ray), with correspondt-he offspringp, (corresponding t@l()n)) from parents,

i ightsw,;, andwy,. (both weight bet . i
Ing weightsw,, anduy. (both weights are be Weenandpb following the above procedure, we have thats

Oand 1and sumupto 1l . .
P ) in the segment between, andp. under swap distance.

2: output: a single offspring.. (a point on the extension

ray beyondp, on the ray originating inp, and

passing throughy,) The probabilityp is the probability of applying a swap

3: compute the swap distancD (p., ps) betweenp, away fromp,, for each position, for whichp, equalspy.

andp, The wanted distanc€D(py, p.) to have distances and

4 €t SD(py, pe) = SD(paspy) - Wap/whe (COMpUte weights of parents inversely proportional is calculated

from the weightsw,;, andw., and the known distance

SD(pa,ps). The probabilityp is then set taSD(py, p.)

the distance betwegn, andp. using the weights)

5:setp = SD(pp,p.)/(n — 1 — SD(pa,p)) (the

probability p of swapping elements away frop, over the number of positions for which, equalsp,.

andp, beyondp,) This number is well estimated by the maximum number

6 setp, = py of swaps away fronp, that can be applied tp,. The

7 for all positioni in the permutationsio last number is given by the length of the diameter of

8 if po(i) = pa(i) and random(0,1X p then the space (maximum swap distance between any two

permutations), which i& — 1 wheren is the number of

9: select at random a positigh

10: swap contents of.(i) andp.(j) elements in the permutation, minus the swap distance
11-  end if betweenp, and p,. Hence, the expected number of
12- end for swaps away fronp, done equals the wanted distance

13: returnp, as offspring SD(py, pe)- [

As for the case of the Hamming space, the extension

Every swap move applied toy that increases the ray recombination operator for permutations cannot re-

. . turn points which are farther away than the diameter of
Hamming distance between, and p, generate a per-

mutation | such thatp, is on a swap shortest paththe space. When input weights require this, the point

betweenp, and pj. This is because (iy] is a swap actually returned by the operator is the farthest away

away frompy, i.e., SD(py,p;,) = 1 and (i) p; is a swap point on the extension ray.
further away fromp, since HD(pg,p}) > HD(pa,pb),
i.e., SD(pa,pp)+1 = SD(pg,p;,). HenceSD(pg, py) + Now we have operational definitions of convex com-
SD(pp,p,) = SD(pa,p;). This construction can be bination and extension ray for the space of permutations
continued applying a swap move i obtaining ap; under swap distance. These space-specific operators can
such thatpj andp, are on a swap shortest path betweebe plugged in the formal GDE (algorithm 2) to obtain a

pe andpy. Analogously, for any further reiteration, wespecific GDE for the space of permutations.
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VIII. EXPERIMENTS WITHGDEON TSP rithms (GDE, GA and hill climber) were run for 100000

(hundred thousand) function evaluations. For GDE and
We have tested the permutation-based GDE on ra@A, population sizes of 10, 20, 50, 100, 1000 were tried,

domly generated instances of the Travelling Salesm%h the number of generations set 160000 /popsize.
Problem (TSP), which is perhaps the most famOLEor both algorithms, their two respective key parameters
permutation-based optimization problem. We do not €xe,0 yaried between 0 and 1 in increments of 0.2; for
pect the GDE to be comparable in performance with tr@DE the parameters ar€ and Cr. For the GA, these
state-of-the-art search algorithms customized to Suc'bgrameters were defined as the elite proportion (how
well-studied problem. Also, the neighborhood structurﬁl51rge part of the rank-ordered population is used as the
on the TSP that works best with local search heurIStI%‘T’ite; the lesser fit rest of the population is replaced each
is that based on the 2-opt move which reverses tI2;%nerati0n) and mutation probability (the probability
order of the elements in a continuous section of tr}ﬁat a new offspring is created through swap mutation
permutation. Analogously to the swap move, this MOVEom the previous individual at the same position in
gives rise to a distance between permutations (knovme population rather than using PMX crossover of two
as reversal distance). This would be perhaps the m?ﬁhdomly selected individuals in the population). We

suitable distance to use as a base for GDE when appligge 1ot some extreme settings yield degenerate versions

to TSP. We will test this in future work. of both algorithms. Alas, for the hillclimber, there is

Local search heuristics based on the swap move &gthing to tune.

known to do reasonably well on the TSP. Also, genetic

algorithms with the PMX crossover operator for per- | Algorithm | Fitness| Population | Parameters
Hillclimber | 5.37 -

mutation, which is known to be a geometric crossover

] GA 5.13 10 elite 0.2, mut 0.6
under swap distance, does reasonably well on the TSP.[" ;¢ 535 10 F00,Cro2
Therefore, as a reference, we compare the GDE on the TABLE VI

swap space with a stochastic hill-climber based on thresuLTs ONTSPINSTANCES OF SIZE50. LOWER FITNESSES ARE
swap move and with a genetic algorithm with rank-based BETTER.
selection, PMX crossover and swap mutation.

The TSP instances used in our experiments are ran-

mi ner with either ities for small problem
do yge erated, with either 50 cities for sma pobe S Algorithm Fitness | Population | Parameters

or 200 cities for large problems. The distance between | Hilclimber | 14.83 | -

each pair of cities lies between 0 and 1, and the instances| GA 21.92 | 10 elite 0.2, mut 0.4
. . ) GDE 4461 | 10 F 0.2, Cro.2
are symmetric but not Euclidean. Twenty TSP instances
I . TABLE VIII
were generated at the beginning of the experiments;
RESULTS ONTSPINSTANCES OF S1ZE200. LOWER FITNESSES ARE
every algorithm configuration is run once per instance, BETTER.

and the fitness averaged over all instances.

Moderately extensive tuning experiments were per-

formed for the population-based algorithms. All algo- The results (table VII) show that a well-tuned GDE
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FiCr | 0.0 0.2 0.4 0.6 0.8 10 vector-of-permutations solution representation, which is
0.0 | 2091 22.03| 21.58 | 21.89 | 21.63 | 21.37

02 | 535 |69 | 708 | 722 | 743 | 753
04 | 938 | 844 | 983 | 1077 | 11.43 | 11.92 row-wise swap distance. In this section, we derive the

a natural representation for Sudoku grids, associated with

0.6 | 11.46| 7.91 | 11.61| 12.83| 134 | 13.93 specific GDE for Sudoku based on this space. Then, in
08 | 138 | 979 | 12.15| 13.63 | 13.93 | 13.41
1.0 | 19.23 | 14.63 | 13.86 | 12.86 | 13.15 | 13.22

section X, we present experimental results and compare
the performance of GA, GPSO and GDE.

TABLE IX

PARAMETER SETTINGS AND CORRESPONDING AVERAGE FITNESS . L
A. Sudoku solving as optimization problem
ON TSPINSTANCES OF SIZE50, USING POPULATION SIzE10,

WHERE THE BEST SETTING WAS FOUNDTHE F PARAMETER ON Sudoku is a logic-based placement puzzle. The aim

THE HORIZONTAL AXIS, AND CR ON THE VERTICAL. LOWER Of the pUZZIe iS to enter a d|g|t from 1 through 9 in

FITNESSES ARE BETTER
each cell of a 9x9 grid made up of 3x3 subgrids (called
“regions”), starting with various digits given in some
cells (the “givens”). Each row, column, and region must
outperforms a hillclimber and is competitive with a wellcontain only one instance of each digit. Sudoku puzzles
tuned GA (it outperforms many settings of the GA) owith a unique solution are called proper sudoku, and the
small instance sizes. On larger instances, it seems Gifajority of published grids are of this type. The general
is no longer competitive with the GA, at least for not foproblem of solving Sudoku puzzles a1? x n? boards
the parameter settings explored here (see Table VIIl).of n x n blocks is known to be NP-complete [24].
Table IX presents a comparison of the performance of Sudoku is a constraint satisfaction problem with 4
GDE with population size 10 on small instances undaypes of constraints:
different settings of the parameters F and Cr. It is clear 1) Fixed elements
that the Cr parameter should be small but non-zero; with2) Rows are permutations
the current search granularity, a Cr setting of 0.2 is 3) Columns are permutations

optimal for all settings of F. The setting of F is less 4) Boxes are permutations

obvious, as it is possible to find good Cr settings for |t can be cast as an optimization problem by choosing
all values of F; however, in general lower settings argome of the constraints as hard constraints that all
better. It should be pointed out that a parameter searg§lutions have to respect, and the remaining constraints
with finer granularity would reveal even better settinggs soft constraints that can be only partially fulfilled and
as informal investigations have revealed. the level of fulfillment is the fitness of the solution. We
consider a space with the following characteristics:
IX. GDE FOR SUDOKU « Hard constraints fixed positions and permutations
The Sudoku puzzle is a perfect candidate to test new on rows

algorithmic ideas because it is entertaining and instruc-. Soft constraints permutations on columns and
tive as well as a non-trivial constrained combinatorial  boxes
problem. We have used it in previous work to test GPSO « Distance sum of swap distances between paired

[15] and a GA [16] with geometric operators based on a rows (row-swap distance)
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Fitness function (to maximize): sum of number obffspring on a minimal sorting path between parents
unique elements in each row, plus, sum of number oking swaps (sorting one parent into the order of the
unique elements in each column, plus, sum of numbether parent) they have to avoid swaps that change
of unique elements in each box. So, fof & 9 grid we common elements in both parents (elements that are
have a maximum fithess 6f 9+9-9+4+9-9 = 243 for a already sorted). Therefore also row-wise PMX and row-
completely correct Sudoku grid and a minimum fithessise cycle crossover preserve both hard constraints.
litle more than9 -1+ 9-149-1 = 27 because for  Using the product geometric crossover theorem [13],
each row, column and square there is at least one uniquas immediate that both row-wise PMX and row-
element type. wise cycle crossover are geometric under row-swap

It is possible to show that the fitness landscapelstance, since simple PMX and simple cycle crossover
associated with this space is smooth, making the seate geometric under swap distance. Since simple cycle
operators proposed a good choice for Sudoku. crossover is also geometric under Hamming distance

(restricted to permutations), row-wise cycle crossover is
B. Geometric crossovers and mutation for Sudoku  g|5o geometric under Hamming distance.

In previous work [16], we presented geometric Finally, notice that to restrict the search to the space
crossovers and mutations based on the space of vectwirgrids with fixed positions and permutations on rows,
of permutations endowed with the row-swap distanc#he initial population must be seeded with feasible ran-
The geometric mutation swaps two non-fixed elements dom solutions taken from this space. Generating such
a row. The geometric crossovers are the row-wise PM3o6lutions can be done still very efficiently.
and row-wise cycle crossover.

This mutation preserves both fixed positions and pef- Extension ray and Convex combination in product
mutations on rows because swapping elements wititRaces and subspaces
a row that is a permutation returns a permutation. The In the following, we present general theoretical results
mutation is 1-geometric under row-swap distance. that allow us to build new convex combination (or ex-

Row-wise PMX and row-wise cycle crossover recomtension ray recombination) by combining operators that
bine parent grids applying respectively PMX and cyclare known to be convex combinations (or extension ray
crossover to each pair of corresponding rows. In casecombinations) and by restricting the domain of known
of PMX the crossover points can be selected to be tltenvex combinations (or extension ray recombinations).
same for all rows, or be random for each row. In term§hese results are very useful to deal in a natural way
of offspring that can be generated, the second versiwith the compound structure of Sudoku solutions and
of row-wise PMX includes all the offspring of the firsttheir hard constraints. We illustrate their application to
version. Sudoku in the following section. Notice that the results

Simple PMX and simple cycle crossover applied ton convex combination presented in this section refine
parent permutations return always permutations. Th#yose presented earlier within the GPSO framework [15].
also preserve fixed positions. This is because both areTheorem 7:The operator on the product space ob-

geometric under swap distance and in order to generédned by combining vector-wise a set of convex combi-
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nation operators is a convex combination on the produatiginal convex combination operator.
space endowed with the distance obtained by summing Proof: Let C = {¢;} the set offspring obtained by
the distances of the composing convex operators.  CX(a, ) with weightsw, andw, on the original space
Proof: Let us consider the convex combina{S,d). The operatoC'X is a convex combination if and
tion operatorsCX;(S51,51) — 51,CX2(S2,52) — only if for any ¢; we have thatd(a, ;) + d(c;,b) =
S2y .y CX (S, Sn) — Sp. Let the compound op- d(a,b) and thatd(a, c;)/d(c;,b) = wp/w,. By restrict-
erator on the product spac€ = S; x S X ... X ingthe space& to S’ C S, we have that i, b € S’ then
S, CX(S,5) — S be defined asCX(S,S) = the setC’ of their offspring byCX (a, b) with weights
(CX1(51,51),CX3(S2,52), ..., CX,, (S, Sn)). Since w, and w, on the restricted space 6’ C C. The
CX,,CXs,...,CX, are convex combination opera-properties on each of the offspring @' defining the
tors they are also geometric crossover under distana@sivex combination operataf’X on the subspacé’
di,ds, ...,d,. For the product geometric crossover theholds because they hold on for every offspring in the
orem [13], the compound operat6tX is a geometric superset. [ ]
crossover under the distande=d; + ds + ... + d,,. The product space theorem and the sub space theo-
To prove thatCX is a convex combination o, rems apply as well to extension ray operators. Essentially
we need to prove that applying'X;,CXs,...,CX,, the reason is because the equality C X (a,b) involv-
all with the same parent weightss, and w, on ing the convex combinatiol'X with weights w,, ws
their respective space$Si,d1), (S2,d2), ..., (Sn,d,) and the equalityp = ER(a,c) involving the extension
and grouping their offspring in a vector is equivtay recombinationER with weights w,,w;, from a
alent to applying CX on the space(S,d) with declarative point of view are equivalent, as they entail
weights w, and w,. Let bed = CX;(a',V),c” = exactly the same relationship between the paintsand
CX1(a" V"), ....;c™ = CX(a™,b™). We have that ¢, which is, the point is in the line between the points
di(a,c) = di(a',V) - wp,da(a’,c”) = da(a”,b") - andb and their distances to it are inversely proportional
W, -ory A (@™ ™) = d, (@™, (™) - w,. Summing to their weights. The aspect in what the two operators
these equations we obtaid;(a’,c¢’) + do(a”,¢”) + differ is what is considered as known and what unknown.
o+ dp (@™ MY = (dy(a/, V) + da(a”,b") 4+ ... + Inthe case ofC'X, a andb are known and: unknown;
dp(a™ b)) - wy,. This can be rewritten in terms ofin the case ofE R, a andc are known and unknown.
the distancel asd((da’,a”,...,a™), (¢, ", ...,c™)) = Since the theorems above do not rely on this difference,
d((a’,a”,...,a™), (0, b, ...,b(™)) - wy. An analogous they apply to bothC’X and ER.
result holds for the parents,b”,...,b(™ with respect  The correct practical application of these theorems
to the weightw,. This means thaC'X is a weighted may require careful understanding of the difference
combination with respect to the distande B between declarative definition and operational definition
Theorem 8:The operator on the sub space obtaineaf the recombination operators. Also, these theorems
by restricting the domain of application of a convexhold when distances are deterministic objects. However,
combination operator is a convex combination operator the operators defined in this paper distances are treated

on the sub space endowed with the distance of tlas stochastic objects (random variables) and distance
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relationship between points are guaranteed only in egrids. However, wherC X returns unfeasible offspring

pectation. Special care needs to be taken when applyigpgds, C X’ discards them and run€X again until

these theorems on stochastic operators. feasible offspring grids are found and returned. The
subspace convex combination theorem tells ush#t,

D. Convex combination and extension ray recombingke X is a convex combination operator under row-

tion for Sudoku wise swap distance with the same weights and ws.

In this section we use the theoretical results in th€learly, in practice, implementing the operatGX’ in
previous section, to build the convex combination anithis way is inefficient. However, we can implement an
extension ray recombination operators for Sudoku stadperator which has behavior equivalent €X', but
ing from those for permutations under swap distancthat instead of discarding unfeasible offspring, it does
As usual, once we have these specific operators we a@t generate them in the first place. The operator in
plug them in the formal GDE (algorithm 2) to obtainalgorithm 6 does exactly this.

a specific GDE for the space of vectors of permutations Analogously to the product convex combination the-
under row-wise swap distance, hence obtaining a specifiem, the product extension ray theorem allows us to
GDE for Sudoku. build an extension ray recombination operator on entire

The product convex combination theorem allows uSudoku grids by applying row-wise an extension ray
to build a convex combination for an entire Sudoku gridecombination operator defined on permutations (such
by applying row-wise a convex combination operatoas the one in algorithm 7).
defined on permutations. So, let a convex combination  Analogously to the subspace convex combination the-
operators on permutations under swap distance, withem, the subspace extension ray theorem allows us use
weights w, and wy, and p,,py, p. be the two parent the original ER operator to the search the subspace of
permutations and the offspring permutation respectivefigasible grids by discarding unfeasible grids and trying
i.e., p. = cx(paq,pp) (@s the one presented in algorithmagain until a feasible grid is found. Let us consider the
6). By applyingcz to each paired rows of sudoku gridscase of a single row (a permutation) rather then the entire
G, andG, and grouping the offspring permutations in grid. Let say we want to search the subspace obtained
grid G, we obtain a convex combination operatoX by fixing some of the elements in the permutation (i.e.,
on grids under row-wise swap distance, with weights the givens in that particular row). This can be done by
and wy,. using the extension ray recombination on unrestricted

The subspace convex combination theorem allows psrmutation (Algorithm 7) as a base for the above
to restrict the search space to the subspace of Sudgkocedure to search the subspace. However, there is a
grids in which all givens are fixed. Let us call gridssubtle problem with this. This is that the recombination
belonging to this subspace feasible grids. Otherwise thalgorithm guarantees the wanted distance ratio only in
are called unfeasible grids. Let us consider the opera®xpectation, rather than exactly all the time as assumed
CX' derived from the operata® X above, as follows. in the theorem, so the theorem is not necessarily ap-
The operatorC X’ corresponds taCX, when CX is plicable, as it happens in this case. Let see why and

applied to feasible grids and returns feasible offsprindetermine how to modify the Algorithm 7 to obtain the
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wanted recombination operator. If one applies the pras used in our previous papers, one rated as “easy” and
cedure above and simply discards unfeasible offspritige other as “hard” by a Sudoku web site. For each
and reiterates the application of the ER operator unplarameter configuration, the algorithm was run 50 times.
a feasible offspring is found, the algorithm returns aAverage fitness was calculated, as well as the number of
offspring that is not at the wanted expected distance. ThHimes out of 50 the run resulted in a fithess of 243, which
is because the algorithm in order to achieve the wantetkans the grid was solved.

expected distance assumes that with some probability the

fixed elements can be changed. If one prevents the fixed Algorithm | Easy 1| Hard 1
Hillclimber | 35 1

elements to be changed (so obtaining feasible offspring) GA 50 15

its effect is to have less swaps applieditdo obtain GPSO 36 N/A

¢, which is, a shorter expected swap distance betwbeen GDE 50 13

andc. To compensate for this is sufficient to increment TABLE X

. . NUMBER OF RUNS OUT OF50 THE GRID WAS SOLVED, GDE
adequately the probability of swaps to obtain the
COMPARED WITH OTHER SEARCH ALGORITHMS FROM PREVIOUS

wanted expected swap distance betwéesnd c. This PAPERS ON THE SAME TWO SUDOKU GRIDS. THE BEST

prObabl“ty can be eaSily determined by nOtiCing that CONFIGURATIONS FOUND AFTER PARAMETER TUNING ARE

) . ) ) REPORTED FOR ALL ALGORITHMS THE BESTGDE SETTINGS
searching a permutation subspace with permutations of

WERE POPULATION SIZE50, F 1.0, ® 0.6 FOREASY 1, AND
sizen with ng fixed elements is, in fact, equivalent to POPULATION SIZE100, F 0.0, @ 0.6 FORHARD 1.
search a permutation space with permutations of size

n —np obtained by removing the fixed elements that can

be added back when the search is over. So the probability

. L F/Cr | 0.0 0.2 0.4 0.6 0.8 1.0
p for the extension ray recombination operator on thjs

_ 0.0 | 206.24 | 224.08 | 226.84 | 228.22 | 229.0 | 226.52

space isp = SD(py,pe)/(n —ng =1 = SD(pa, pv))- 0.2 | 234.94| 239.46| 241.0 | 240.8 | 241.04| 241.04

0.4 | 240.0 | 241.62 | 241.84 | 241.76 | 242.12 | 241.86

X. EXPERIMENTS WITH GDE ON SUDOKU 0.6 | 242.08| 242.6 | 242.64 | 242.8 | 242.8 | 242.92

We imol red GDE for Sudoku in th | 0.8 | 242.92| 242.96 | 242.76 | 242.92 | 242.96 | 243.0
€ Implemente or sudoku in the same pub= "™ s 92 | 206.4 | 206.24 | 2058 | 205.74 | 205.68

licly available codebase as our previous experiments on
TABLE XI
evolutionary algorithms with geometric operators andparameTeRr SETTINGS AND CORRESPONDING AVERAGE FITNESS
geometric partic|e swarm Optimization [15] [16] As ON THE “EASY 1” SUDOKU GRID , USING POPULATION SIZE50,
. . .WHERE THE BEST SETTING WAS FOUNDTHE F PARAMETER IS ON
our previous results define the state of the art for this
THE HORIZONTAL AXIS, AND CR ON THE VERTICAL. HIGHER
problem, we chose to compare our GDE results with FITNESSES ARE BETTER
our previous results, and have thus not run any additional
experiments for other algorithms than GDE.
The same parameter search was performed as folFrom table X we can see that GDE is on par with a
Sudoku as for TSP (see section VIII for details). Howfinely-tuned GA on both easy and hard Sudoku grids,
ever, instead of 20 randomly generated instances taed significantly outperforms both Geometric PSO and

algorithms were tested on two of the same Sudoku gritidl climbers. It should be noted that more extensive
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tuning was performed for the GA than for GDE for thisA. Homologous crossover and structural hamming dis-
problem, as a number of different geometric crossoveance

and mutation operators were tried; similar attention given The common region is the largest rooted region where
to the GDE might improve the resuilts further. two parent trees have the same topology. In homologous

Table XI presents a comparison of parameter settingg,ssover [8] parent trees are aligned at the root and
for GDE with population size 50 on the easy grid. Weecombined using a crossover mask over the common
can see a general preference for high values of bg{yion. If a node belongs to the boundary of the common

parameters, though the effect is marked for Cr than for fagion and is a function then the entire sub-tree rooted

Additionally, extreme values of Cr (0 and 1) yield muchy, that node is swapped with it.

lower performance, which is understandable as these leade structural distance [1] is an edit distance specific

to a degenerate algorithm. to genetic programming trees. In this distance, two trees

are brought to the same tree structure by adding null

nodes to each tree. The cost of changing one node
XI. GDE FOR GENETIC PROGRAMS . » .
into another can be specified for each pair of nodes

. . ... or for classes of nodes. Differences near the root have
In order to specify the GDE algorithm to the specific

. .._more weight. The structural hamming distance [12] is
space of genetic programs, we need to choose a distance

. . . a variant of the structural distance in which when two
between genetic programs. A natural choice of distance

. . . ubtrees are not comparable (roots of different arities
would be a distance (metric) associated to the Koza-stﬁe P ( )

. . ...they are considered to be at a maximal distance. When
crossover [6]. This would allow us to derive the specific y

, two subtrees are comparable their distance is at most 1.
GDE that searches the same fitness landscape seen\%y P

this crossover operator. Unfortunately, the Koza-style Definition 1: (Structural hamming distance (SHD))

dist(Ty,Ty) = hd(p, q) if arity(p) = arity(q) =0
dist(Ty,To) = 1 if arity(p) # arity(q)

crossover is provably non-geometric under any metric
[14], so there is no distance associated wifhwe can
use as basis for the GDE. Another crossover operator,diSt(Tl’B) = ﬁﬂ(hd(p’ Q)+ e, dist(si; 1))
the homologous crossover [8] is provably geometriié arity(p) = arity(q) = m

under structural hamming distance (SHD) [12] which is a Theorem 9:Homologous crossover is a geometric
variant of the well-known structural distance for genetiErossover under SHD [12].

programming trees [1]. We use this distance as basis for

the GDE because we will be able to use the homologoBs Convex combination

crossover as a term of reference. Notice, however, that in

In the following, we first define a weighted version

principle, we could choose any distance between gene&i]c the homologous crossover. Then we show that this

programming trees as a basis of the GDE. operator is a convex combination in the space of genetic
programming trees endowed with SHD. In other words,
4In the sense that there is no distance such that the offspring tr(;{(t.\]se Welghted homOIOQOUS crossover |mplements a con-

are always within the metric segment between parent trees. vex combinationC' X in this space.
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Definition 2: (Weighted homologous crossover). Lethe positioni by definition of weighted Hamming dis-
P, and P, two parent trees, and; and W, their tance. From the linearity of the expectation operator, we
weights, respectively. Their offspring is generated have thatE[SHD(P,,0)| = E[Y ,SHD;(P;,0)] =
using a crossover mask on the common regio®oand ) . E[SHD;(P;,0)] = > ,w;/W; = 1/W;. The
P5 such that for each position of the common regify, last passage holds true because by definition of SHD
nodes appear in the crossover mask with probability the sum of the weights on the common region equals
and P, nodes appear with probability. 1 (this corresponds to the case of having two trees

Theorem 10:The weighted homologous crossover isnaximally different on the common region and their
(in expectation) a convex combination in the space dlistance is 1). Analogously, for the other parent one
genetic programming trees endowed with SHD. obtains E[SHD(P,,0)] = 1/W,. This completes the

Proof: The weighted homologous crossover is aroof. [ ]
special case of homologous crossover so it is also
geometric under SHD. Therefore, the offspring of th&- Extension ray
weighted homologous crossover are in the segment bedn the following, we first define two weighted homolo-
tween parents as required to be a convex combinatigous recombinations. Then we show that these operators
To complete the proof we need to show that the weighése extension ray recombinations in the space of genetic
Wy and Wy of the weighted homologous crossoveprogramming trees endowed with SHD. The first recom-
are inversely proportional to the expected distancésnation produces offspring with the same tree structure
E[SHD(Py,0)], E[SHD(P,,0)] from the parent?, of the second parent. The second recombination is more
and P, to their offspringO, as follows. general and can produce offspring with tree structure

Given two treesP; and P,, the SHD can be seen asdifferent from both parents. From a geometric viewpoint,
a weighted Hamming distance on the common regidhese weighted homologous recombinations implement
of P, and P, where the weightv; on the distance of two different versions of extension ray recombination
the contribution of a position in the common region ER in the space of genetic programming trees endowed
depends on the arities of the nodes on the path frowith SHD, where the first operator produces a subset of
i to the root node. For each positianof the common the points produced by the second operator.
region, the expected contributiofir7 D,(P;,O) to the To determine a recombination that implements an ex-
distanceSH D(P;, O) of that specific position is directly tension ray operator, it is useful to think of an extension
proportional tow; and inversely proportional to theray operator as the inverse of a convex combination
weight W7 (so, E[SHD;(P;,0)] = w;/W1). This is operator, as follows. Given a paref (the origin of
because, from the definition of weighted homologouse extension ray) and the offspring (the point the
crossoverlV, is the probability that at that position theextension ray passes through), one wants to determine a
offspring O equals the parenP;. So, the higher this parentP, (the point on the extension ray) such th@at
probability, the smaller the expected contribution to theesults from the convex combination &f and P».
distance at that position. Furthermore the contribution The first weighted extension ray homologous recombi-

to the distance is proportional to the weight; of nation is described in Algorithm 8. The second recombi-
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Algorithm 8 Weighted extension ray homologous regifferent structure and contents frou and Sz). Skip
combination 1 - the remaining nodes in the common region covered by
1: inputs: parent treed’y (origin point of the ray)
Sa(i) and Sp(3).

and T (passing through point of the ray), with _ ) o
Notice that in theory any arbitrarily large subtrse

corresponding weights 4 5 andwpg¢ (both weights ) ]
could be generated to be included . However, in
are between 0 and 1 and sum up to 1) o o )
_ ) _ practice its size should be limited. In the experiment, we
2: output: a single offspring tre@x (a point on the ]
) ~_ generateSc with the same number of nodes 6f; and
extension ray beyond’s on the ray originating in
B-
T4 and passing througfiz) ) )
] . Theorem 11:The weighted extension homologous ray
3: compute the structural Hamming distance o ] ] )
recombinations 1 and 2 are (in expectation) extension
SHD(Ts,Tg) betweenTy andTs

ray operators in the space of genetic programming trees
4:set SHD(Tg,T¢) = SHD(TA,TB) . wAB/wBC

endowed with SHD.

Proof: First we prove thatTe = ER(T,T5)
by showing thatTs = CX(Ta,Tc). Then we
prove that the expected distancégSHD(T4,T5)]

probabilityp of flipping nodes in the common region ) .
and E[SHD(Tg,T¢)| are inversely proportional to the

(compute the distance betwedis and T using
the weights)
5:setp = SHD(Tp,Tc)/(1 — SHD(T4,Tp)) (the

away fromTy and T beyondTs) . )
weightswp andwpgc, respectively.
6: setlc =15
o ) Let us consider recombination 1. The offsprifig:
7: for all position: in the common region betweéhy

andTs do

has the same structure @iz. This is becausd - was

) ) _ constructed starting frorfi’z and then for each node of
8:  consider the paired nodd%; (i) andT'4(4) in the )
) the common region betweefy, and Tz, T¢ was not
common region ] )
) changed or it was randomly chosen but preserving the
9: if Tp(i) = Ta(i) and random(0,1X p then . )
. _ arity of that node inl's.
10: setT¢(7) to a random node with the same arity )
The structures of the common regio6&R (T4, Ts)
of Ty (i) and T (1) o o
dit andCR(T4,Tc) coincide. This is because the structure
11:  endi
of the common region between two trees is only function
12: end for ) )
of their structures. So, sincEg and7T- have the same

13: return stringZ as offspring
structure,CR(T4,Tp) andCR(T4,Tc) have the same

structure.

The tree Ty can be obtained by Homologous
nation is the same operator as the first with the followingrossover applied toTs and 7¢ (hence, T =
addition before line 8 in Algorithm 8. In the commonER(T4,T5)). This can be shown considering two sep-
region, if two subtreesS4 (i) and Sp(:) coincide in arate cases, (i) nodes &} inherited from the common
structure and contents (not only if their root nodeq:) region CR(Ta,T¢) and (ii) subtrees ofl's inherited
andTjp(4) coincide), put in the corresponding position from subtrees of4 and7 at the bottom of the common

in the offspringl- a random subtre8. (with in general region. Let us consider nodes on the common region. For
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each node with index in the common region, the node The tree Ty can be obtained by Homologous
Tg(i) matchesT4 (i) or T (i). This is true from the way crossover applied toT4 and T (hence, T =
Tc (i) was chosen on the basis of the valuesiof(i) ER(Ta,T5)). This can be shown similarly as for re-
andTg(i). We have two cases. First (i) was chosen combination 1 but with an extra case to consider. Nodes
at random, whefT'y (i) = T'5(¢). In this casel'z(i) can of Ts corresponding to nodes in the common region
be inherited fronil4 (i), since it may be&l's (i) # T (i) CR(Ta,Tc) can be inherited fromI'y or Tr. The
but Ts(i) = Ta(i). SecondT¢(i) was chosen to equal subtrees oflz at the bottom of the common region
Tp(i), whenTy (i) # Tp(i). In this caseTp(i) can CR(Ta,T¢) can be inherited all fronT¢ (both struc-
be inherited fromI- (7). In either cases, for nodes ontures and contents). The extra case is for the subtrees
the common region the corresponding nodedgfcan of T that are in the part o R(T4, T) that does not
be inherited fromI’y or Tc. The subtrees of's at the cover CR(T4,T¢). These subtrees cannot be inherited
bottom of the common region can be inherited all frorfrom T, which differs formTs by construction, but
Te (both structures and contents). Since by constructidiney can always be inherited froffi,.
T¢ inherited those subtrees frofs without modifying As for the requirement on the expected distances being
them. inversely proportional to the weights, the probability
To show that recombination 1 is a weighted exean be chosen as the case for recombination 1 due to
tension homologous ray recombination, we are lefthe recursive definition of SHD that treats nodes and
to show that the expected distancB§SH D(T4,Tg)] subtrees uniformly. [ |
and E[SHD(Tg,T¢)] are inversely proportional to the Now we have operational definitions of convex com-
weightswap and wpe. The probabilityp of flipping bination and extension ray for the space of genetic
nodes in the common region away froffy and 75 programming trees under SHD. These space-specific
beyond T was chosen as an appropriate functiooperators can be plugged in the formal GDE (algorithm
of wap and wpe and of SHD(T4,Tp) to obtain 2) to obtain a specific GDE for the genetic programming
SHD(Tg,Tc) such that the above requirement hold&rees space, the GDE-GP.
true. It is possible to prove that the chosgnis the
correct one using the same argument used in the proof XII. EXPERIMENTS FORGP-GDE
of theorem 10. This section reports an initial experimental analysis of
Let us consider now recombination 2. In this cas¢he GDE-GP behavior on four standard GP benchmark
the offspring Tc by construction may have structureproblems: Symbolic Regression of the quartic polyno-
different from Ty and Ts. Also, the structures of the mial, Artificial Ant on the Santa Fe trail, 5-Bit Even
common regions®R(T4,Tr) and CR(T4,T¢) do not Parity, and 11-Bit Multiplexer. In all the experiments we
coincide. The structure @f R(T'4, T¢) is covered by the used FF = 0.8 and Cr = 0.9, according to [21]. Both
structure ofCR(T'4,Tp) (CR(T4,T¢) is a substructure extension ray recombinations 1 and 2 were tested, giving
of CR(T4,Tg)). The part ofCR(T4,T) that does not rise to distinct techniques we designate as GDE1 and
coverCR(T4, Tc) comprises subtrees that are identicdBDE2. As a baseline for comparison we used standard

in structures and contents iy andTs. GP with homologous crossover (70%) and reproduction
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(30%), always applying point mutation with probability
1/L, whereL is the number of nodes of the individual.

We call this baseline HGP. All the experiments were  Regression - PopSize 500 Regression — PopSize 1000

IN

w

performed using populations of two different sizes (500 * B
and 1000 individuals) initialized with the Ramped Half-§ 3 E

Best Fitness
N
[}t

-4

[Tt -
),

L1

i,

and-Half procedure [6] with an initial maximum depth of&E 2

8, allowed to evolve for 50 generations. Each experimer°1°t1

),

was repeated 20 times. Statistical significance of theo

) ) ) ) HGP  GDE1 GDE2 HGP  GDE1 GDE2
null hypothesis of no difference was determined with
pairwise Kruskal-Wallis non-parametric ANOVAs at= Artificial Ant - PopSize 500 Artificial Ant - PopSize 1000
0.05. A non-parametric ANOVA was used because the eo; — 60
]
data is not guaranteed to follow a normal distribution,, *°

@ 40
For the same reason, the median was preferred over ﬁgo
?

o
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- ] -
pestFress

[ [H
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mean in all the evolution plots that follow. The medians 2o

)
Fo---

is also more robust to outliers. 10
0 0
Figure 3 shows the boxplots of the best fitness  HGP GDEL GDE2 HGP  GDE1 GDE2
achieved along the run, using populations of 500 individ-
Parity — PopSize 500 Parity — PopSize 1000
uals (left column) and 1000 individuals (right column). ;,——= 14
With a population size of 500, in all four problems 13 13
there is a statistically significant difference between HGE ‘ 2 ‘
LE 12 - — —= LE 12 -+ -
and each of the GDE-GP techniques, and no significat 8 ‘

11 + + + 11 -+
difference between GDE1 and GDE2. GDE-GP is con-
sistently better than HGP, regardless of the extension ray10 HGP  GDEL GDE2 10 HGP  GDEL GDE2
recombination used.

It may be argued that HGP is being crippled by such a  Multiplexer - PopSize 500 Multiplexer - PopSize 1000
. . . . . 800 800
small population size, which may reduce diversity along _ —

700 ! - 7000 - -
the run. This could be true, because when doubling ‘ ! 8 ;
h | G . | 0 §§ 600 E LSZ 600 H
the population size HGP significantly improves its be po =

pop ¢ y imp $ 500 ; ; 8 500
fitness of run in all except the Parity problem. However, 400 | - 400 | L
the GDE-GP techniques also show significant improve- ;. 1

w
o
o

HGP GDEl1 GDE2 HGP GII;El GDE2
ments in most cases, and remain consistently better than

HGP, regardless of the extension ray recombination US%. 3. Boxplots of the best fithess achieved in each problem (
exactly as before. marks the mean). Population sizes of 500 individuals (left column)

However, the observation of diversity, measured &8¢ 1000 individuals (right column)
the percentage of genotypically distinct individuals in

the population, revealed somewhat unexpected results.
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Figure 4 shows the evolution of the median values of| — HGP-PopSize 500~ GDE1 - PapSize 500 —— GDE2 - PopSize 500
“““““““ HGP - PopSize 1000 ====GDE1 - PopSize 1000 ----GDE2 - PopSize 1000

diversity along the run, for both population sizes. Not
. . . Regression
only does not HGP show any clear signs of diversity ‘ ‘

loss, regardless of population size, but GDE-GP ex-

hibits an extraordinarily varied behavior, approaching

ty

both extreme values in different problems (in Regression'

Diversi
N
o

and Artificial Ant it practically reaches 0% while in

Parity it reaches 100%), in some cases undergoing large 201

fluctuations along the run (Multiplexer). Figure 5 shows 0 : ‘

0 10 20 30 40 50
these fluctuations on the individual runs of GDE1 on Generations
Multiplexer, with population size of 500. Also shown are Artificial Ant

the individual runs of HGP which, although also exhibit-  100]

ing some variation, do not present a rather undulating 80

pattern or reach anywhere near the extreme values. 601

Diversity

Finally, in Figure 7 we look at the evolution of the 40t

median values of average program length along the run, 4|

for both population sizes. Once again GDE-GP behaves

- ~

0 L L L L
radically differently from HGP, with both GDE1 and 0 10 ZC(;)enerati?(;(r)\s 40 50
GDE2 presenting large but smooth fluctuations in most

Parity

problems, when compared to the more constrained but

somewhat erratic behavior of HGP. The most interest-

ing case is probably the Artificial Ant, where GDE- 2 60
= I
GP quickly and steadily increases the average program® 40
5 I
length until a plateau is reached, followed by a steep
201
decrease to very low values. Figure 6 shows the average
o 0 : : : : :
program length of the individual runs of both HGP and 0 10 20 30 40 50
o ) ) ) Generations
GDEL1 on Artificial Ant, with population size of 500.
Multiplexer
100f ‘ ‘
XIIl. CONCLUSIONS
- . L 80
Geometric differential evolution is a formal general- _
ization of DE on continuous spaces that retains the orig—'g 60
>
a 40

inal geometric interpretation and that applies to generic

combinatorial spaces. GDE can be formally specified  20f

to specific spaces associated, in principle, to any solu- 0 : : : : :
P P P P Y 0 10 20 _30 40 50
tion representation. In this article, we have illustrated Generations

that this is indeed possible in practice by deriving thgig. 4. Evolution of the median values of diversity in each problem
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Multiplexer ———HGP - PopSize 500 == GDE1 - PopSize 500 ——— GDE2 - PopSize 500
‘ ‘ N HGP - PopSize 1000 ====GDE1 - PopSize 1000 ---~-GDE2 - PopSize 1000
100 1
| Regression
80 25 ‘ .
P E=]
s 60 1 >
2 3
a 40 1 I
g
20 ] g
o
0 A g
0 10 20 30 40 50 IS
Generations Q
< 5 ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50
Fig. 5. Evolution of diversity on individual runs of HGP (grey) and Generations
GDE1 (black) on the Multiplexer problem, with population size 500 Artificial Ant
500
£
Avrtificial Ant o
- : : < 400
> 1000 c
s © 300
—E' 800 2
S oo a 200
g 2
a < 100
o 400 o
g < ‘ ‘ ‘ ‘ ‘
g 200 % 10 20 30 40 50
>
< 0 ) == Generations
0 10 20 30 40 50 .
Generations Parity
< ‘
© 200
Fig. 6. Evolution of average program length on individual runs of 9
HGP (grey) and GDEL1 (black) on the Artificial Ant problem, with %
i . < 150
population size 500 2
a
@
& 100
o
specific GDEs for the Hamming space associated withZ

binary strings, for the space of permutations endowed 0 10 20 30 40 50
Generations

with the swap distance, for the space of vectors of
Multiplexer

permutations endowed with the row-swap distance, and _ 70

for the space of genetic programs endowed with the < 60

Length

structural hamming distance. These are quite different € 50

al

spaces based on non-trivial solution representations. The & 40

P

derived representation-specific GDEs are, in a strong & 30f
©

mathematical sense, the same algorithm doing the same§ 20
<

type of search on different spaces. 105 10 20 30 40 50

We have tested each specific GDE algorithm ex- Generations

perimentally on standard benchmarks and comparedFig. 7. Evolution of the median values of average program length in
each problem
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against a set of classic evolutionary algorithms defined roGP’2000, 2000, pp. 259-270.

é%,]yT. Gong and A. L. Tusonpifferential evolution for binary
encoding Soft Computing in Industrial Applications, Springer,
2007, pp. 251-262.

rithms in the comparison. The GDEs based on permutgs] s. Kauffman,Origins of order: self-organization and selection

tions on the TSP did less well but the GDE on vectors N eévolution Oxford University Press, 1993.

. . [4] J. Kennedy and R. C. Eberha#,discrete binary version of the
of permutations on Sudoku did almost as well as a very

on the same search space and representation. The bin
GDE and the GP-GDE outperformed the other algo-

particle swarm algorithmIEEE Transactions on Systems, Man,
finely-tuned GA. We believe these are very promising  and Cybemetics (1997), 4104—4108.

initial results. GDE is a very recent algorithm and furtherl®l ——, Swarm intelligenceMorgan Kaufmann, 2001.
. . . . . 6] John R. KozaGenetic programming: On the programming of
experimentation is needed to explore its potential mor[e] prog 9 _ prog g
computers by means of natural selectidine MIT Press, 1992.
thorothly' [7] Eugene F. KrauseTaxicab geometry: An adventure in non-

The formal generalization methodology employed to  euclidean geometryCourier Dover Publications, 1986.
generalize differential evolution, which is the same thaf® - kangdon and R. Polifoundations of genetic programming
] ) o Springer-Verlag, 2002.
was used to generalize particle swarm optimization, Ca@] A. Moraglio, Towards a geometric unification of evolutionary

be applied in principle to generalize virtually any search  algorithms Ph.D. thesis, University of Essex, 2007.

algorithm for continuous optimization to combinatoriaft®l A- Moraglio, C. Di Chio, and R. PoliGeometric particle swarm

optimization European Conference on Genetic Programming,

2007, pp. 125-136.

rigorous, conceptually simple and promising as boffi1] A. Moraglio, C. Di Chio, J. Togelius, and R. Polgeometric

GDE and GPSO seem to be quite gOOd algorithms particle swarm optimizationJournal of Artificial Evolution and
Applications2008 (2008), Atrticle ID 143624.

[12] A. Moraglio and R. Poli,Geometric landscape of homologous
this methodology other classical derivation-free methods crossover for syntactic tree®roceedings of IEEE congress on

spaces. Interestingly, this generalization methodology is

in practice. In future work, we will generalize using

for continuous optimization that make use of geometric ~ €volutionary computation, 2005, pp. 427-434.
, Product geometric crossoveProceedings of Parallel

. . . ., [13]
constructions of points to determine the next candldaL(e )
Problem Solving from Nature conference, 2006, pp. 1018-1027.
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