
1

Geometric Differential Evolution for

Combinatorial and Programs Spaces
Alberto Moraglio, Julian Togelius, and Sara Silva

Abstract—Geometric differential evolution (GDE) is a

very recently introduced formal generalization of tradi-

tional differential evolution (DE) that can be used to derive

specific GDE for both continuous and combinatorial spaces

retaining the same geometric interpretation of the dynamics

of the DE search across representations. In this article, we

first review the theory behind the GDE algorithm, then,

we use this framework to formally derive specific GDE

for search spaces associated with binary strings, permuta-

tions, vectors of permutations and genetic programs. The

resulting algorithms are representation-specific differential

evolution algorithms searching the target spaces by acting

directly on their underlying representations. We present

experimental results for each of the new algorithms on a

number of benchmark problems.

Index Terms—Differential evolution, representations,

principled design of search operators, combinatorial spaces,

genetic programming, theory.

I. I NTRODUCTION

Two relatively recent additions to the Evolutionary Al-

gorithms (EAs) family are Particle Swarm Optimization

(PSO) [5], inspired to the flocking behavior of swarms of

A. Moraglio is with the School of Computing, University of Kent,

Canterbury, UK, e-mail: a.moraglio@kent.ac.uk.

J. Togelius is with the School of Computing, IT University of

Copenhagen, Denmark, e-mail: julian@togelius.com.

S. Silva is with the INESC-ID group, Lisbon, Portugal, and with

the Center for Informatics and Systems of the University of Coimbra,

Portugal, e-mail: sara@kdbio.inesc-id.pt, sara@dei.uc.pt.

birds, and Differential Evolution [21], which is similar

to PSO, but it uses different equations governing the

motion of the particles. Despite their relatedness, DE is

known to produce consistently better performance than

PSO on many problems. In fact, DE is one of the most

competitive EAs for continuous optimization [21].

In their initial inception, both PSO and DE were de-

fined only for continuous problems. In both algorithms,

the motion of particles is produced by linear combi-

nations of points in space and has a natural geometric

interpretation. There are a number of extensions of DE

to binary spaces [21] [20], spaces of permutations [2]

[19] and to the space of genetic programs [18]. Some of

these works recast combinatorial optimization problems

as continuous optimization problems and then apply

the traditional DE algorithm to solve these continuous

problems. Other works present DE algorithms defined

directly on combinatorial spaces that, however, are only

loosely related to the traditional DE in that the original

geometric interpretation is lost in the transition from

continuous to combinatorial spaces. Furthermore, every

time a new solution representation is considered, the DE

algorithm needs to be rethought and adapted to the new

representation.

GDE [17] is a very recently devised formal gener-

alization of DE that, in principle, can be specified to

any solution representation while retaining the original

December 1, 2009 DRAFT



2

geometric interpretation of the dynamics of the points in

space of DE across representations. In particular, GDE

can be applied to any search space endowed with a

distance and associated with any solution representation

to derive formally a specific GDE for the target space and

for the target representation. GDE is related to Geometric

Particle Swarm Optimization (GPSO) [10], which is a

formal generalization of the particle swarm optimization

algorithm [5]. Specific GPSOs were derived for different

types of continuous spaces and for the Hamming space

associated with binary strings [11], for spaces associated

with permutations [15] and for spaces associated with

genetic programs [23].

The objective of the present article is to review the

theory behind the GDE algorithm, illustrate how this

framework can be used in practice as a tool for the

principled design of DE search operators for standard

and more complex solution representations associated

with combinatorial spaces, and finally to test experi-

mentally the new GDE algorithms endowed with such

operators on benchmark problems. In particular, as target

spaces for the GDE, we consider combinatorial spaces

associated with binary strings, permutations and vectors

of permutations and computer programs represented as

expression trees.

The remaining part of the article is organized as

follows. Section II contains a gentle introduction to a

formal theory of representations that forms the context

for the generalization of the DE algorithm. Section III

briefly introduces the classic DE algorithm, and section

IV describes the derivation of the general GDE algo-

rithm. Section V presents specific GDE search operators

for binary strings, and section VI reports experimental

results on NK-landscapes and also on a second set of

standard benchmark problems based on binary strings.

Section VII presents specific GDE search operators

for permutations, and section VIII reports experiments

on the TSP. Section IX presents specific GDE search

operators for Sudoku for which candidate solution grids

are represented as vectors of permutations, and section X

reports experimental results for this problem. Section XI

presents specific GDE search operators for expression

trees, and section XII reports the experimental analy-

sis on standard GP benchmark problems. Section XIII

presents conclusions and future work.

II. T HE GEOMETRY OF REPRESENTATIONS

In this section, we introduce the ideas behind a recent

formal theory of representations [9] which forms the

context for the generalization of DE presented in the

following sections.

Familiar geometric shapes in the Euclidean plane such

as circles, ellipses, segments, semi-lines, triangles and

convex polygons can be defined using distances between

points in space. For example, a circle is the locus of

points from which the distance to the centrec is a

given constant value, the radiusr. By replacing in the

definition of a shape, say a circle, the Euclidean distance

with a different distance, say the Hamming distance, we

obtain the definition of a circle in the Hamming space.

A circle in the Hamming space looks quite different

from a circle in the Euclidean plane, however they both

share the same geometric definition. Analogously, if

we replace the Euclidean distance with the Manhattan

distance, we obtain the definition of a circle in the

Manhattan space. A number of simple geometric shapes

based on the Manhattan distance in the plane have been

derived explicitly (see Taxicab Geometry [7]). We can

in fact replace the Euclidean distance in the definition

of any geometric shape with any distance meeting a

minimum number of requirements (metric), obtaining the

corresponding shape in a space with a different geometry.

December 1, 2009 DRAFT



3

We can also raise the level of abstraction and replace

the Euclidean distance with a generic metric, obtaining

an abstract shape, such as for example an abstract

circle. An abstract circle captures what is common to all

circles across all possible geometries. Any property of

an abstract circle is also a property of any space-specific

circle.

Search algorithms can be viewed from a geometric

perspective. The search space is seen as a geometric

space with a notion of distance between points, and

candidate solutions are points in the space. For example,

search spaces associated with combinatorial optimization

problems are commonly represented as graphs in which

nodes corresponds to candidate solutions and edges

between solutions correspond to neighbour candidate

solutions. We can endow these spaces with a distance

between solutions equal to the length of the shortest

path between their corresponding nodes in the graph.

Geometric search operators are defined using geometric

shapes to delimit the region of search space where to

sample offspring solutions relative to the positions of

parent solutions. For example, geometric crossover is

a search operator that takes two parent solutions in

input corresponding to the end-points of a segment, and

returns points sampled at random within the segment

as offspring solutions. The specific distance associated

with the search space at hand is used in the definition of

segment to determine the specific geometric crossover

for that space. Therefore, each search space is associ-

ated with a different space-specific geometric crossover.

However, all geometric crossovers have the same abstract

geometric definition.

In analytic geometry, in which points of the Cartesian

plane are in one-to-one correspondence with pairs of

numbers, their coordinates, the same geometric shape

can be equivalently expressed geometrically as a set

of points in the plane, or algebraically, by an equa-

tion whose solutions are the coordinates of its points.

This is an important duality which allows us to treat

geometric shapes as equations and vice versa. There is

an analogous duality that holds for geometric search

operators. Candidate solutions can be seen as points

in space, geometric view, or equivalently, as syntactic

configurations of a certain type, algebraic view. For

example, a candidate solution in the Hamming space

can be considered as a point in space or as a binary

string corresponding to that point. The binary string

can then be thought as being the coordinates of the

point in the Hamming space. This allows us to think

of a search operator equivalently as (i) an algorithmic

procedure which manipulates the syntax of the parent

solutions to obtain the syntactic configurations of the

offspring solutions using well-defined representation-

specific operations (algebraic view), or (ii) a geometric

description which specifies what points in the space can

be returned as offspring for the given parent points and

with what probability (geometric view). For example,

uniform crossover for binary strings [22] is a recom-

bination operator that produces offspring binary strings

by inheriting at each position in the binary string the

bit of one parent string or of the other parent string

with the same probability. This is an algebraic view of

the uniform crossover that tells how to manipulate the

parent strings to obtain the offspring string. Equivalently,

the same operator can be defined geometrically as the

geometric crossover based on the Hamming distance

that takes offspring uniformly at random in the segment

between parents.

There are two important differences between these

two definitions of the same operator. The geometric

definition is declarative, it defines what offspring the

operator returns given their parents without explicitly

December 1, 2009 DRAFT



4

telling how to actually generate the offspring from the

parents. The algebraic definition, on the other hand, is

operational, since it defines the search operator by telling

for each combination of parents how to build the cor-

responding offspring. The second important difference

is that the geometric description of a search operator

is representation-independent and refers only indirectly

to the specific solution representation via a distance

defined on such representation (i.e. edit distances such

as the Hamming distance which can be defined on the

binary string representation as the minimum number

of bit-flips to obtain one string from the other). In

contrast, the algebraic definition of a search operator is

representation-dependent and uses operations which are

well-defined on the specific solution representation but

that may not be well-defined on other representations

(e.g. bit-flip on a binary string is not well-defined on a

permutation).

The duality of the geometric search operators has

surprising and important consequences [9]. One of them

is the possibility of principled generalization of search

algorithms from continuous spaces to combinatorial

spaces, as sketched in the following.

1) Given a search algorithm defined on continuous

spaces, one has to recast the definition of the

search operators expressing them explicitly in

terms of Euclidean distance between parents and

offspring.

2) Then one has to substitute the Euclidean distance

with a generic metric, obtaining a formal search al-

gorithm generalizing the original algorithm based

on the continuous space.

3) Next, one can consider a (discrete) representation

and a distance associated with it (a combinatorial

space) and use it in the definition of the formal

search algorithm to obtain a specific instance of

the algorithm for this space.

4) Finally, one can use this geometric and declarative

description of the search operator to derive its

operational definition in terms of manipulation of

the specific underlying representation.

This methodology was used to generalize PSO and DE to

any metric space obtaining GPSO [10] and GDE [17] and

then to derive the specific search operators for GPSO for

a number of specific representations and distances. In the

following sections, we illustrate how this methodology

can be used in practice to generalize DE and to specialize

it to specific metric spaces associated with a number

of representations. The same methodology can be used

to generalize to combinatorial spaces other algorithms

naturally based on a notion of distance. This includes

search algorithms such as Response Surface Methods,

Estimation of Distribution Algorithms and Lipschitz

Optimization algorithms, and also Machine Learning

algorithms.

III. C LASSIC DIFFERENTIAL EVOLUTION

In this section, we describe the traditional DE [21]

(see algorithm 1).

The characteristic that sets DE apart from other evo-

lutionary algorithms is the presence of the differential

mutation operator (see line 5 of algorithm 1). This

operator creates a mutant vectorU by perturbing a vector

X3 picked at random from the current population with

the scaled difference of other two randomly selected

population vectorsF · (X1−X2). This operation is un-

derstood being important because it adapts the mutation

direction and its step size to the level of convergence

and spatial distribution of the current population. The

mutant vector is then recombined with the currently

considered vectorX(i) using discrete recombination and

December 1, 2009 DRAFT



5

Algorithm 1 DE with differential mutation and discrete

recombination
1: initialize population ofNp real vectors at random

2: while stop criterion not metdo

3: for all vectorX(i) in the populationdo

4: pick at random 3 distinct vectors from the

current populationX1, X2, X3

5: create mutant vectorU = X3+F · (X1−X2)

whereF is the scale factor parameter

6: setV as the result of the discrete recombination

of U andX(i) with probability Cr

7: if f(V ) ≥ f(X(i)) then

8: set the ith vector in the next population

Y (i) = V

9: else

10: setY (i) = X(i)

11: end if

12: end for

13: for all vectorX(i) in the populationdo

14: setX(i) = Y (i)

15: end for

16: end while

the resulting vectorV replaces the current vector in the

next population if it has better or equal fitness.

The differential mutation parameterF , known as scale

factor, is a positive real normally between 0 and 1, but it

can take also values greater than 1. The recombination

probability parameterCr takes values in[0, 1]. It is the

probability, for each position in the vectorX(i), of the

offspringV inheriting the value of the mutant vectorU .

When Cr = 1, the algorithm 1 degenerates to a DE

algorithm with differential mutation only (becauseV =

U ). WhenF = 0, the algorithm 1 degenerates to a DE

algorithm with discrete crossover only, asU = X3. The

population sizeNp normally varies from 10 to 100.

IV. GEOMETRIC DIFFERENTIAL EVOLUTION

Following the methodology outlined in section II, in

this section we generalize the classic DE algorithm to

general metric spaces. To do this, we recast differential

mutation and discrete recombination as functions of the

distance of the underlying search space, thereby obtain-

ing their abstract geometric definitions. Then, in the fol-

lowing sections, we derive the specific DE algorithms for

binary strings, permutations, vectors of permutations and

genetic programs by plugging distances associated with

these representations in the abstract geometric definition

of the search operators.

A. Generalization of differential mutation

Let X1, X2, X3 be real vectors andF ≥ 0 a scalar.

The differential mutation operator produces a new vector

U as follows:

U = X3 + F · (X1−X2) (1)

The algebraic operations on real vectors in equation 1

can be represented graphically [21] as in figure 1. Real

vectors are represented as points. The termX1 − X2

is represented as a vector originating inX2 and reach-

ing X1. The multiplication with the scaling factorF

produces a vector with the same origin and direction

but with a different length. The addition ofX3 to the

scaled vector corresponds to the translation of the origin

of the scaled vector fromX2 to X3 keeping invariant its

direction and length. The point of the (graphical) vector

so obtained corresponds to the real vectorU .

Unfortunately, this graphical interpretation of equation

1 in terms of operations on vectors does not help us to

generalize equation 1 to general metric spaces because

the notions of vector and operations on vectors are not

December 1, 2009 DRAFT



6

Fig. 1. Construction ofU using vectors.

well-defined at this level of generality. In the following,

we propose a generalization based on interpreting equa-

tion 1 in terms of segments and extension rays, which

are geometric elements well-defined on any metric space.

To do that, we need to rewrite equation 1 in terms of

only convex combinations of two vectors, which are the

algebraic dual of segments. A convex combination of a

set of vectors is a linear combination of these vectors

provided that their weights are all positive and sum up

to one.

Equation 1 can be rewritten as:

U + F ·X2 = X3 + F ·X1 (2)

By dividing both sides by1 + F and lettingW = 1
1+F

we have:

W ·U + (1−W ) ·X2 = W ·X3 + (1−W ) ·X1 (3)

Both sides of equation 3 are convex combinations of

two vectors. On the left-hand side, the vectorsU and

X2 have coefficientsW and1−W , respectively. These

coefficients sum up to one and are both positive because

W ∈ [0, 1] for F ≥ 0. Analogously, the right-hand side

is a convex combination of the vectorsX3 andX1 with

the same coefficients.

There is a interesting duality between the algebraic no-

tion of convex combination of two vectors and the geo-

metric notion of segment in the Euclidean space. Vectors

represent points in space. The pointsPC corresponding

to the vectorsC obtained by any convex combination of

two vectorsA and B lay in the line segment between

their corresponding pointsPA and PB . The vice versa

also holds true: the vectorC corresponding to a point

PC in the segment[PA, PB ] can be obtained as a convex

combination of the vectorsA and B. The weightsWA

andWB in the convex combination localize the point on

the segment[PA, PB ]: distances toPC from PA andPB

are inversely proportional to the corresponding weights,

WA and WB . So, the weightWA of a vectorA can

be thought as the intensity of a linear attraction force

towards a fix pointPA exerted on a movable pointPC .

The stronger the force intensityWA (relative toWB) the

closer the pointPC (understood as the equilibrium point

of the attraction forces exerted byPA andPB) ends up

being toPA.

This duality allows for a geometric interpretation of

equation 3 in terms of convex combinations (see figure

2). Let us callE the vector obtained by the convex

combinations on both sides of equation 3. Geometri-

cally the pointE must be the intersection point of the

segments[U,X2] and [X1, X3]. The distances fromE

to the endpoints of these segments can be determined

from equation 3 as they are inversely proportional to their

respective weights. Since the pointU is unknown (but

its weight is known), it can be determined geometrically

by firstly determiningE as convex combination ofX1

and X3; then, by projectingX2 beyondE (extension

ray) obtaining a pointU such that the proportions of

the distances ofX2 and U to the pointE is inversely

proportional to their weights. In the Euclidean space, the

constructions ofU using vectors (figure 1) and convex

December 1, 2009 DRAFT



7

Fig. 2. Construction ofU using convex combination and extension

ray.

combinations (figure 2) are equivalent (algebraically,

hence geometrically).

Segments and extension rays in the Euclidean space

and their weighted extensions can be expressed in terms

of distances, hence, these geometric objects can be nat-

urally generalized to generic metric spaces by replacing

the Euclidean distance with a generic metric. We will

present their abstract definitions in section IV-C.

The differential mutation operator U =

DM(X1, X2, X3) with scale factorF can now be

defined for any metric space following the construction

of U presented in figure 2 as follows:

1) ComputeW = 1
1+F

2) Get E as the convex combinationCX(X1, X3)

with weights(1−W,W ) (generalizingE = (1−
W ) ·X1 + W ·X3)

3) Get U as the extension rayER(X2, E) with

weights(W, 1−W ) (generalizingU = (E− (1−
W ) ·X2)/W )

B. Generalization of discrete recombination

After applying differential mutation, the DE algo-

rithm applies discrete recombination toU and X(i)

generatingV . Discrete recombination is a geometric

crossover under Hamming distance for real vectors [9].

The Hamming distance (HD) for real vectors is defined

analogously to the Hamming distance between binary

strings: it is the number of sites with mismatching values

across the two vectors. From its definition, we can

derive that theCr parameter of the discrete recombi-

nation is proportional to the expected number of values

that V inherits from U . Therefore,E[HD(U, V )] =

Cr ·HD(U,X(i)) and E[HD(X(i), V )] = (1 − Cr) ·
HD(U,X(i)). Consequently,Cr and 1 − Cr can be

interpreted as the weights ofU and X(i), respectively,

of the convex combination that returnsV in the space

of real vectors endowed with Hamming distance. In

order to generalize the discrete recombination, by re-

placing hamming distance with a generic metric, we

obtain the abstract convex combination operatorCX

introduced in the previous section. So, we have that the

generalized discrete recombination ofU andX(i) with

probability parameterCr generatingV is as follows:

V = CX(U,X(i)) with weights(Cr, 1− Cr).

In the classic DE (algorithm 1), replacing the original

differential mutation and discrete recombination opera-

tors with their generalizations, we obtain the formal Ge-

ometric Differential Evolution (see algorithm 2). When

this formal algorithm is specified on the Euclidean space,

the resulting Euclidean GDE doesnot coincide with

the classic DE. This is because, whereas the original

differential mutation operator can be expressed as a

function of the Euclidean distance, the original discrete

recombination operator can be expressed as a function

of the Hamming distance for real vectors, not of the

Euclidean distance. The Euclidean GDE coincides with

an existing variant of traditional DE [21], which has

the same differential mutation operator but in which the

discrete recombination is replaced with blend crossover.

December 1, 2009 DRAFT



8

Interestingly, blend crossover lives in the same space

as differential mutation and their joint behavior has a

geometric interpretation in space.

Algorithm 2 Formal Geometric Differential Evolution
1: initialize population ofNp configurations at random

2: while stop criterion not metdo

3: for all configurationX(i) in the populationdo

4: pick at random 3 distinct configurations from

the current populationX1, X2, X3

5: set W = 1
1+F where F is the scale factor

parameter

6: create intermediate configurationE as the con-

vex combinationCX(X1, X3) with weights

(1−W,W )

7: create mutant configurationU as the extension

ray ER(X2, E) with weights(W, 1−W )

8: create candidate configurationV as the con-

vex combinationCX(U,X(i)) with weights

(Cr, 1 − Cr) where Cr is the recombination

parameter

9: if f(V ) ≥ f(X(i)) then

10: set theith configuration in the next popula-

tion Y (i) = V

11: else

12: setY (i) = X(i)

13: end if

14: end for

15: for all configurationX(i) in the populationdo

16: setX(i) = Y (i)

17: end for

18: end while

C. Definition of convex combination and extension ray

A notion of convex combination in metric spaces was

introduced in the GPSO framework [10]. The notion

of extension ray in metric spaces was introduced in

the GDE framework [17]. That notion of convex com-

bination requires distances of the fixed points to the

equilibrium point to be a generic decreasing function

of the weights of the fixed points. In the following, we

present a more refined notion of convex combination

in which the function relating weights and distances is

given explicitly. Then the extended ray recombination

can be naturally interpreted as the inverse operation of

the convex combination.

Let us first recall the definition of segment and

extension ray in metric spaces. Let(S, d) be a met-

ric space. A (metric) segment is a set of the form

[x; y] = {z ∈ S|d(x, z) + d(z, y) = d(x, y)} where

x, y ∈ S are called end-points of the segment. The

extension rayER(A,B) in the Euclidean plane is a

semi-line originating inA and passing throughB (note

that ER(A, B) 6= ER(B, A)). The extension ray in

a metric space can be defined indirectly using metric

segments, as follows. Given pointsA andB, the (metric)

extension rayER(A,B) is the set of pointsC that

satisfy C ∈ [A, B] or B ∈ [A,C]. Only the part of

the extension ray beyondB will be of interest because

the point C that we want to determine, which is, the

offspring of the differential mutation operator, is never

betweenA andB by construction.

We can now use these geometric objects as basis

for defining the convex combination operator and the

extended ray recombination operator, as follows.

The convex combination C =

CX((A,WA), (B, WB)) of two points A and B

with weightsWA andWB (positive and summing up to

one) in a metric space endowed with distance function

d returns the set of pointsC such thatC ∈ [A,B] and

d(A,C)/d(B, C) = WB/WA. In words, the weights of

the pointsA and B are inversely proportional to their

December 1, 2009 DRAFT



9

distances toC 1. When specified to Euclidean spaces,

this notion of convex combination coincides with the

traditional notion of convex combination of real vectors.

The extension ray recombinationER is defined as

the inverse operation of the weighted convex combi-

nation CX, as follows. The weighted extension ray

ER((A,wab), (B, wbc)) of the points A (origin) and

B (through) and weightswab and wbc returns those

pointsC such that their convex combination withA with

weightswbc and wab, CX((A,wab), (C,wbc)), returns

the pointB. Notice that from this definition follows that

the weightswab andwbc in ER are positive real numbers

between0 and 1 and sum up to1 because they must

respect this condition inCX. The set of points returned

by the weighted extension rayER can be characterized

explicitly in terms of distances to the input points of

ER, as follows [17].

Lemma 1:The pointsC returned by the weighted

extension rayER((A,wab), (B, wbc)) are exactly those

points which are at a distanced(A,B) · wab/wbc from

B and at a distanced(A,B)/wbc from A.

Proof: From the definition of weighted extension

ray we have thatB = CX((A,wab), (C, wbc))). Hence,

d(A,C) = d(A,B)+d(B, C) and the distancesd(A,B)

and d(B,C) are inversely proportional to the weights

wab and wbc. Consequently,d(A,C) = d(A, B)/wbc

and substituting it ind(B, C) = d(A,C)− d(A, B) we

get d(B, C) = d(A, B) ·wab/wbc, sincewab + wbc + 1.

This characterization is useful to construct procedures

to implement the weighted extension ray for specific

spaces. In fact, we used it, together with representation-

specific properties of the extension ray, in the derivation

1To allow weights and distances to assume value zero and avoid

problems with division by zero, the requirement in the definition can

be changed asd(A, C) ·WA = d(B, C) ·WB .

of the extension ray recombination operators for all

representations in this article.

The above definitions of convex combination and ex-

tension ray can be relaxed to obtain the required relation

between weights and distances to the offspring only

in expectation. These relaxed versions of the operators

have the advantage of being more naturally suited to

combinatorial spaces and being easier to implement for

such spaces.

V. B INARY GDE

In this section, we derive formally specific convex

combination and extension ray recombination for the

Hamming space for binary strings. These specific oper-

ators can then be plugged in the formal GDE (algorithm

2) to obtain a specific GDE for the Hamming space, the

Binary GDE.

A. Convex combination

Let us consider the convex combinationC =

CX((A,WA), (B, WB)) of two points A and B with

weights WA and WB (positive and summing up to

one). In the Euclidean space,C is uniquely determined,

however this is not the case for all metric spaces. In

particular, it does not hold for Hamming spaces. When

CX is specified to Hamming spaces on binary strings, it

can be formally shown that we obtain the recombination

operator outlined in algorithm 3 [10]. This algorithm

returns a offspring binary stringC of parent binary

strings A and B such thatHD(A,C)/HD(B, C) =

WB/WA in expectation, whereHD denotes the Ham-

ming distance between binary strings. This differs from

the Euclidean case where this ratio is guaranteed.

B. Extension ray

In order to gain an intuitive understanding of how an

extension ray looks like in the Hamming space, let us

December 1, 2009 DRAFT



10

Algorithm 3 Binary Convex Combination Operator
1: inputs: binary stringsA andB and weightsWA and

WB (weights must be positive and sum up to 1)

2: for all position i in the stringsdo

3: if random(0,1)≤ WA then

4: setC(i) to A(i)

5: else

6: setC(i) to B(i)

7: end if

8: end for

9: return stringC as offspring

consider an example of extension ray originating inA =

110011 and passing throughB = 111001.

The relationC ∈ [A,B] is satisfied by thoseC that

match the schemaS1 = 11 ∗ 0 ∗ 1. This is the set of the

possible offspring ofA and B that can be obtained by

recombining them using the uniform crossover.

The relationB ∈ [A,C] is satisfied by all thoseC that

matchS2 = ∗∗1∗0∗. This is the set of all thoseC that

when recombined withA using the uniform crossover

can produceB as offspring.

The following theorem characterizes the extension ray

in the Hamming space in terms of schemata.

Theorem 2:Let A and B be fixed binary strings in

the Hamming space:

1) the relationC ∈ [A,B] is satisfied by those strings

C that match the schema obtained by keeping the

common bits inA and B and inserting∗ where

the bits ofA andB do not match.

2) the relationB ∈ [A,C] is satisfied by all those

strings C that match the schema obtained by

inserting∗ where the bits are common inA and

B and inserting the bits coming fromB where the

bits of A andB do not match.

Proof:

Proof of statement 1: the schema so defined corre-

sponds to the set of the possible offspring ofA and

B that can be obtained by recombining them using the

uniform crossover. This crossover operator corresponds

to the uniform geometric crossover under Hamming

distance which returns offspring in the segment between

parents.

Proof of statement 2: all C matching the schemaS

defined in this statement recombined withA can produce

B as offspring. This is because at each position (inA,

B andC) when in the schemaS there is∗ the bit in B

at that position can be inherited fromA. When in the

schema there is a bit (0 or 1) the bit inB at that position

can be inherited fromC. Furthermore, only the strings

C matchingS can produceB when C is recombined

with A.

Using the characterization of the weighted extension

ray in terms of distances (lemma 1) and the characteriza-

tion of the extension ray in the Hamming space in terms

of schemata (theorem 2), we were able to derive the

weighted extension ray recombination for this space (see

algorithm 4). Theorem 3 proves that this recombination

operator conforms to the definition of weighted extension

ray for the Hamming space (in expectation).

Theorem 3:Given parentsA and B, the recombina-

tion in algorithm 4 returns an offspringC such that

E[HD(B,C)]/HD(A, B) = WAB/WBC , where

E[HD(B,C)] is the expected Hamming distance be-

tweenB and the offspringC.

Proof: This can be shown as follows. The number

of bits in which A and B differ are HD(A,B).

The number of bits in whichA and B do not differ

is n − HD(A, B). For the bits in whichA and B

differ, the stringC equalsB. For each bit in which

A and B do not differ, C does not equalB with

December 1, 2009 DRAFT



11

Algorithm 4 Binary Extension Ray Recombination
1: inputs: binary stringsA (origin) andB (through) of

lengthn and weightsWAB andWBC (weights must

be positive and sum up to 1)

2: setHD(A,B) as Hamming distance betweenA and

B

3: setHD(B,C) asHD(A,B) ·wAB/wBC (compute

the distance betweenB andC using the weights)

4: set p as HD(B,C)/(n − HD(A,B)) (this is the

probability of flipping bits away fromA and B

beyondB)

5: for all position i in the stringsdo

6: setC(i) = B(i)

7: if B(i) = A(i) and random(0,1)≤ p then

8: setC(i) to the complement ofB(i)

9: end if

10: end for

11: return stringC as offspring

probability p. So, the expected distance betweenB

and C is E[HD(B, C)] = (n − HD(A,B)) · p. By

substituting p = HD(B, C)/(n − HD(A,B)), we

have E[HD(B, C)] = HD(B, C) = HD(A,B) ·
WAB/WBC . So, E[HD(B, C)]/HD(A,B) =

WAB/WBC .

Theorem 3 holds under the assumption that the di-

ameter of the space is at least as large as the wanted

Hamming distance betweenA and C. That is, that the

requested point on the extension ray does not go beyond

the boundary of the space. When such a condition does

not hold, the offspringC returned by the algorithm 4 is

the point on the extension ray at maximum distance from

A. In this case, the required relation between distance

and weights does not hold.

Now we have operational definitions of convex com-

bination and extension ray for the space of binary strings

under HD. These space-specific operators can be plugged

in the formal GDE (algorithm 2) to obtain a specific

GDE for the space of binary strings.

VI. EXPERIMENTS FORBINARY GDE

We implemented the GDE algorithm for binary spaces

within a Java framework,2 and investigated its perfor-

mance on some benchmark problems. The proposed

algorithm was compared with three other algorithms:

• cGA: A canonical Genetic Algorithm, with

roulette wheel fitness-proportionate selection, uni-

form crossover and bitflip mutation.

• tGA: a Genetic Algorithm with truncation selection,

with a selection threshold ofpopsize/2.

• ES: A µ + λ Evolution Strategy, withµ = λ =

popsize/2 and bitflip mutation.

For the first benchmark suite, we also compared it

with:

• BPSO: Discrete Binary PSO of Kennedy and Eber-

hart, using the results presented in [4].

For the ES and GAs, the bitflip mutation works as

follows: each bit in the chromosome is considered, and

with probability p this bit is flipped. In the experiments

involving these algorithms, this parameter was systemat-

ically varied between0.0 and0.5 in increments of0.01.

For the experiments involving GDE, the key parameters

F and Cr were systematically varied between0.0 and

1.0 in increments of0.1.

In all experiments, the length of any single run was

set to4000 function evaluations, in order to be directly

comparable with the results of Kennedy and Eberhart.

For GDE, GA and ES the population size was varied

systematically: sizes of10, 20, 40, 80 and160 were tried,

2Source code is available upon request from the second author.

December 1, 2009 DRAFT



12

with the numbers of generations limited appropriately:

400, 200, 100, 50 and25.

A. Spears-DeJong functions

We used three of the same benchmark problems

that Kennedy and Eberhart tested their binary PSO on.

These are William Spears’ binary versions of DeJong’s

functionsf1, f2 and f3.3 (We did not usef4 and f5

due to unresolved differences between different versions

of the code, which might be due to differing numerical

precision in different systems; further, Kennedy and

Eberhart do not report precise results forf4.)

Each configuration (parameters and population size)

was tested twenty times, and the average best score of

each run was recorded, as well as how many of the

runs that reached the global optimum. The results are

summarized in table I. The parameters were optimized

separately for each combination of benchmark function

and algorithm, and only the results of the best configura-

tion are reported here. The best parameter settings found

are reported in tables II and III.

The GDE algorithm appears to work best with small

population sizes, 10 or 20 individuals (and thus more

generations). Onf1, there is a clear preference for high

values (e.g. 0.9) of bothF andCr, whereas onf2 the

algorithm seems to work best with values of around 0.3

for both parameters.

In comparison, both GAs always work best with large

populations and relatively high mutation rates (> 0.1).

The ES seems to be relatively insensitive to population

size, as long as the mutation rate is in the region0.05–

0.1.

The compressed fitness structure off1 and f2, with

many local optima with values differing from the global

3The original c source code of these functions can be found at

http://www.cs.uwyo.edu/∼wspears/functs/dejong.c

optimum only in the third decimal, is apparently a bad

match with fitness-proportional selection; the landscape

of f3 has similar characteristics but to a lesser degree.

Therefore, the results of the canonical GA are the worst

on all problems.

Both the evolution strategy and the GA with truncation

selection are strictly better on all benchmarks than the

canonical GA; binary PSO is better than ES in that it

reaches optimum more often onf1 andf2; and GDE is

the best algorithm overall, as it is as good as BPSO on

f2 andf3 but reaches the global optimum almost twice

as often onf1.

Algorithm f1 (78.6) f2 (3905.93) f3 (55.0)

BPSO - 10 - 4 - 20

GDE 78.5999 19 3905.9296 4 55.0 20

cGA 78.2152 0 3905.8052 0 52.1 1

tGA 78.5993 4 3905.9266 2 55.0 20

ES 78.5998 7 3905.9291 2 55.0 20

TABLE I

RESULTS ON THESPEARS-DEJONG BENCHMARK SUITE. THE

MAXIMA OF THE FUNCTIONS ARE REPORTED NEXT TO THEIR

NAMES. FOR EACH COMBINATION OF ALGORITHM AND PROBLEM,

THE RESULTS OF THE BEST PARAMETERIZATION OF THAT

COMBINATION ARE REPORTED. THE FIRST NUMBER IS THE BEST

FITNESS OF THE LAST GENERATION, AVERAGED OVER 20 RUNS.

THE SECOND NUMBER IS THE NUMBER OF THOSE RUNS THAT

REACHED THE GLOBAL OPTIMUM.

Function pop/gen F Cr

f1 10/400 0.9 0.8

f2 20/200 0.3 0.3

f3 * * *

TABLE II

BEST PARAMETER SETTINGS FOUND FORGDE ON THE

SPEARS-DEJONG BENCHMARKS. THE ASTERISKS DENOTE THAT

MANY COMBINATIONS ARE OPTIMAL .

December 1, 2009 DRAFT



13

cGA pop/gen mutation

f1 160/25 0.12

f2 160/25 0.16

f3 80/50 0.39

tGA pop/gen mutation

f1 80/50 0.29

f2 80/50 0.1

f3 80/50 0.45

ES pop/gen mutation

f1 10/400 0.13

f2 160/25 0.1

f3 * *

TABLE III

BEST PARAMETER SETTINGS FOUND FORGA (WITH TRUNCATION

AND ROULETTE-WHEEL SELECTION) AND ES ON THE

SPEARS-DEJONG BENCHMARKS. THE ASTERISKS DENOTE THAT

MANY COMBINATIONS ARE OPTIMAL .

B. NK Landscapes

In order to more systematically test the behaviour of

GDE on landscapes with varying amount of epistasis, we

performed additional experiments using NK fitness land-

scapes, as proposed by Kauffman [3]. NK landscapes

have two paramters:N , the number of dimensions, was

fixed to100 in our experiments;K, the number of depen-

dencies on other loci per locus was varied between0 and

4. The parameters of the algorithms (mutation rate,F

andCr) were varied in the same way as with the Spears-

DeJong experiments above. All evolutionary runs lasted

for 10000 function evaluations, which were allocated

either as population size100 and100 generations or as

population size10 and1000 generations.

The results in table IV show that GDE is a very

competitive algorithm overall. For population size 100,

GDE is the best of the four algorithms forK of 1, 2 and

3, and a close second forK of 0 and 4. For population

size 10, GDE is the best algorithm for allK except

K = 0. The results further show that the ES and the

GA with truncation selection perform significantly better

than the canonical GA for allK.

Table V shows the best parameter settings for GDE

for differentK. Apparently, for lowK larger population

sizes are preferred, and for higherK smaller populations

do better. Interestingly, for allK the best configuration

is very lowF and medium to highCr. Table VI presents

the best parameter settings found for ES and GA. A very

clear trend is that ES works best with small populations

and both GAs with larger populations; ES also generally

prefers lower mutation rate than the GAs.

10 K = 0 K = 1 K = 2 K = 3 K = 4 K = 5

GDE 0.623 0.730 0.732 0.758 0.751 0.741

cGA 0.521 0.509 0.515 0.536 0.519 0.517

tGA 0.597 0.621 0.613 0.621 0.641 0.641

ES 0.667 0.721 0.746 0.740 0.736 0.727

100 K = 0 K = 1 K = 2 K = 3 K = 4 K = 5

GDE 0.665 0.750 0.738 0.756 0.736 0.719

cGA 0.552 0.594 0.613 0.610 0.600 0.610

tGA 0.664 0.707 0.713 0.736 0.737 0.730

ES 0.677 0.696 0.710 0.717 0.717 0.720

TABLE IV

RESULTS ON THENK LANDSCAPE BENCHMARK. AVERAGE

MAXIMUM FITNESS AT THE LAST GENERATION FOR EACH

ALGORITHM USING K VALUES BETWEEN0 AND 5, USING

POPULATION SIZES OF BOTH10 AND 100. 50 RUNS WERE

PERFORMED FOR EACH CONFIGURATION.

VII. PERMUTATION-BASED GDE

In this section, we derive formally specific convex

combination and extension ray recombination for the

space of permutations. We use the swap distance between

permutations as basis for the GDE. These specific oper-

ators can then be plugged in the formal GDE (algorithm

2) to obtain a specific GDE for the space of permutations,

the permutation-based GDE. Notice, however, that in

principle, we could choose any other distance between

December 1, 2009 DRAFT



14

K pop/gen F Cr

0 100/100 0.0 0.8

1 100/100 0.0 0.7

2 100/100 0.0 0.5

3 10/1000 0.1 0.9

4 10/1000 0.1 0.8

5 10/1000 0.1 0.8

TABLE V

BEST PARAMETER SETTINGS FOUND FORGDE ON THE NK

LANDSCAPE BENCHMARK.

K cGA tGA ES

0 0.01 0.35 0.01

1 0.01 0.43 0.03

2 0.28 0.47 0.03

3 0.16 0.19 0.04

4 0.39 0.36 0.02

5 0.20 0.30 0.02

TABLE VI

BEST MUTATION SETTINGS FOUND FORGA AND ES ON THE NK

LANDSCAPE BENCHMARK. THE GAS ALWAYS PERFORMED BEST

WITH POPULATION SIZE 100,AND THE ES WITH POPULATION SIZE

10.

permutations (e.g., adjacent swap distance, reversal dis-

tance, insertion distance, etc.) as a basis of the GDE. In

that case, for each distance, we would obtain a different

permutation-based GDE.

A. Swap distance

The swap distance between two permutations is the

minimum number of swaps needed to order one permu-

tation into the order of the other permutation. It can be

implemented as in Algorithm 5.

B. Convex combination

Algorithm 6 presents a recombination operator for

permutations that was introduced in the GPSO frame-

work [11]. This operator produces an offspring by sorting

Algorithm 5 Swap distance
1: inputs: permutationspa andpb

2: setdist = 0

3: for all position i in the permutationsdo

4: if pa(i) 6= pb(i) then

5: find pa(i) in pb and bej its position inpb

6: swap contents ofpb(i) andpb(j)

7: dist = dist + 1

8: end if

9: end for

10: returndist

by swaps the two parent permutations one towards the

other until they converge to the same permutation. Which

of the two permutations has to be sorted toward the

other at each position is controlled by the contents of a

random recombination mask generated using the parents

weights interpreted as probabilities of the outcome of

tossing a biased coin being the respective parent. This

operator is called ‘convex combination’ because it is

allegedly a convex combination for permutations under

swap distance. However, this needs to be proved.

Theorem 4:The convex combination in Algorithm 6

is a geometric crossover under swap distance [11].

Additionally, in previous work [11], it was shown

that the distances of the parents to the offspring are

decreasing functions of their weights in the convex

combination. In the following, we give a stronger result

that says that that these distances are inversely propor-

tional to the corresponding weights, as required by the

refined definition of convex combination introduced in

this article.

Theorem 5:The convex combination in Algorithm 6

is (in expectation) a convex combination in the space of

permutations endowed with swap distance.

December 1, 2009 DRAFT



15

Algorithm 6 Convex combination
1: inputs: permutationspa andpb, and their weightswa

andwb

2: generate a recombination maskm randomly with ‘a’

and ‘b’ with probabilitieswa andwb

3: for all position i in the permutationsdo

4: if pa(i) 6= pb(i) then

5: if m(i) = a then

6: find pa(i) in pb and bej its position inpb

7: swap contents ofpb(i) andpb(j)

8: else

9: find pb(i) in pa and bej its position inpa

10: swap contents ofpa(i) andpa(j)

11: end if

12: end if

13: end for

14: returnpa as offspring

Proof: The convex combination for permutations is

a geometric crossover under swap distance. Therefore,

the offspring of the convex combination are in the

segment between parents as required to be a convex

combination. To complete the proof, we need to show

that the weightswa and wb of the convex combina-

tion are inversely proportional to the expected distances

E[SD(pa, pc)], E[SD(pb, pc)] from the parentspa and

pb to their offspringpc, as follows.

The recombination maskm contains a set of indepen-

dently generated choices. The effect of each choice is

sortingpa a single swap towardspb with probability wb

and sortingpb a single swap towardspa with probability

wa, whenpa andpb differ at the current position. When

pa andpb are equal at the current position, the effect of

the choice is to leavepa and pb unchanged. When all

choices in the maskm have been appliedpa andpb have

become equal in all positions, hence converged to the

offspringpc. Since the convex combination operator is a

geometric crossover, the offpringpc is on a shortest path

betweenpa andpb (shortest sorting trajectory by swaps).

The expected number of swap moves on the shortest

path frompa towardpb to reachpc, i.e.,E[SD(pa, pc)],

is given by the number of swap moves on the shortest

path, i.e.,SD(pa, pb), multiplied by the probability that

any swap move on the shortest path was obtained by

orderingpa towardpb, i.e.,wb. HenceE[SD(pa, pc)] =

SD(pa, pb) · wb. Analogously for the other parent we

obtain: E[SD(pb, pc)] = SD(pa, pb) · wa. Therefore,

the expected distances of the parents to the offspring

are inversely proportional to their respective weights.

C. Extension ray

Algorithm 7 presents a recombination operator that

is allegedly the extension ray recombination for permu-

tations under swap distance. This operator produces an

offspring permutation by sorting by swaps parent permu-

tationpb away from parent permutationpa. The number

of swaps away is calculated in a way to obtain con-

sistency between weights and distances of the offspring

to the parents as required from the general definition

of extension ray recombination in metric space. The

following theorem proves that this is indeed an extension

ray recombination for permutations under swap distance.

Theorem 6:The extension ray recombination in Al-

gorithm 7 is (in expectation) an extension ray operator in

the space of permutations endowed with swap distance.

Proof: First we prove thatpc = ER(pa, pb) by

proving thatpb is in the segment betweenpa andpc un-

der swap distance. Then we prove that the expected dis-

tancesE[SD(pa, pb)] and E[SD(pb, pc)] are inversely

proportional to the weightswab andwbc, respectively.

December 1, 2009 DRAFT



16

Algorithm 7 Extension ray recombination
1: inputs: parentpa (origin point of the ray) andpb

(passing through point of the ray), with correspond-

ing weightswab andwbc (both weights are between

0 and 1 and sum up to 1)

2: output: a single offspringpc (a point on the extension

ray beyondpb on the ray originating inpa and

passing throughpb)

3: compute the swap distanceSD(pa, pb) betweenpa

andpb

4: set SD(pb, pc) = SD(pa, pb) · wab/wbc (compute

the distance betweenpb andpc using the weights)

5: set p = SD(pb, pc)/(n − 1 − SD(pa, pb)) (the

probability p of swapping elements away frompa

andpb beyondpb)

6: setpc = pb

7: for all position i in the permutationsdo

8: if pc(i) = pa(i) and random(0,1)≤ p then

9: select at random a positionj

10: swap contents ofpc(i) andpc(j)

11: end if

12: end for

13: returnpc as offspring

Every swap move applied topb that increases the

Hamming distance betweenpa and pb generate a per-

mutation p′b such thatpb is on a swap shortest path

betweenpa and p′b. This is because (i)p′b is a swap

away frompb, i.e.,SD(pb, p
′
b) = 1 and (ii) p′b is a swap

further away frompa sinceHD(pa, p′b) > HD(pa, pb),

i.e., SD(pa, pb)+1 = SD(pa, p′b). HenceSD(pa, pb)+

SD(pb, p
′
b) = SD(pa, p′b). This construction can be

continued applying a swap move top′b obtaining ap′′b

such thatp′b andpb are on a swap shortest path between

pa and p′′b . Analogously, for any further reiteration, we

obtain p
(n)
b such thatpb is on a swap shortest path

betweenpa andp
(n)
b . Since the operatorER constructs

the offspringpc (corresponding top(n)
b ) from parentspa

andpb following the above procedure, we have thatpb is

in the segment betweenpa andpc under swap distance.

The probabilityp is the probability of applying a swap

away frompa for each positioni, for whichpa equalspb.

The wanted distanceSD(pb, pc) to have distances and

weights of parents inversely proportional is calculated

from the weightswab andwbc, and the known distance

SD(pa, pb). The probabilityp is then set toSD(pb, pc)

over the number of positions for whichpa equalspb.

This number is well estimated by the maximum number

of swaps away frompa that can be applied topb. The

last number is given by the length of the diameter of

the space (maximum swap distance between any two

permutations), which isn− 1 wheren is the number of

elements in the permutation, minus the swap distance

betweenpa and pb. Hence, the expected number of

swaps away frompb done equals the wanted distance

SD(pb, pc).

As for the case of the Hamming space, the extension

ray recombination operator for permutations cannot re-

turn points which are farther away than the diameter of

the space. When input weights require this, the point

actually returned by the operator is the farthest away

point on the extension ray.

Now we have operational definitions of convex com-

bination and extension ray for the space of permutations

under swap distance. These space-specific operators can

be plugged in the formal GDE (algorithm 2) to obtain a

specific GDE for the space of permutations.

December 1, 2009 DRAFT



17

VIII. E XPERIMENTS WITH GDE ON TSP

We have tested the permutation-based GDE on ran-

domly generated instances of the Travelling Salesman

Problem (TSP), which is perhaps the most famous

permutation-based optimization problem. We do not ex-

pect the GDE to be comparable in performance with the

state-of-the-art search algorithms customized to such a

well-studied problem. Also, the neighborhood structure

on the TSP that works best with local search heuristics

is that based on the 2-opt move which reverses the

order of the elements in a continuous section of the

permutation. Analogously to the swap move, this move

gives rise to a distance between permutations (known

as reversal distance). This would be perhaps the most

suitable distance to use as a base for GDE when applied

to TSP. We will test this in future work.

Local search heuristics based on the swap move are

known to do reasonably well on the TSP. Also, genetic

algorithms with the PMX crossover operator for per-

mutation, which is known to be a geometric crossover

under swap distance, does reasonably well on the TSP.

Therefore, as a reference, we compare the GDE on the

swap space with a stochastic hill-climber based on the

swap move and with a genetic algorithm with rank-based

selection, PMX crossover and swap mutation.

The TSP instances used in our experiments are ran-

domly generated, with either 50 cities for small problems

or 200 cities for large problems. The distance between

each pair of cities lies between 0 and 1, and the instances

are symmetric but not Euclidean. Twenty TSP instances

were generated at the beginning of the experiments;

every algorithm configuration is run once per instance,

and the fitness averaged over all instances.

Moderately extensive tuning experiments were per-

formed for the population-based algorithms. All algo-

rithms (GDE, GA and hill climber) were run for 100000

(hundred thousand) function evaluations. For GDE and

GA, population sizes of 10, 20, 50, 100, 1000 were tried,

with the number of generations set to100000/popsize.

For both algorithms, their two respective key parameters

were varied between 0 and 1 in increments of 0.2; for

GDE, the parameters areF andCr. For the GA, these

parameters were defined as the elite proportion (how

large part of the rank-ordered population is used as the

elite; the lesser fit rest of the population is replaced each

generation) and mutation probability (the probability

that a new offspring is created through swap mutation

from the previous individual at the same position in

the population rather than using PMX crossover of two

randomly selected individuals in the population). We

note that some extreme settings yield degenerate versions

of both algorithms. Alas, for the hillclimber, there is

nothing to tune.

Algorithm Fitness Population Parameters

Hillclimber 5.37 - -

GA 5.13 10 elite 0.2, mut 0.6

GDE 5.35 10 F 0.0, Cr 0.2

TABLE VII

RESULTS ONTSP INSTANCES OF SIZE50. LOWER FITNESSES ARE

BETTER.

Algorithm Fitness Population Parameters

Hillclimber 14.83 - -

GA 21.92 10 elite 0.2, mut 0.4

GDE 4461 10 F 0.2, Cr 0.2

TABLE VIII

RESULTS ONTSP INSTANCES OF SIZE200. LOWER FITNESSES ARE

BETTER.

The results (table VII) show that a well-tuned GDE

December 1, 2009 DRAFT



18

F/Cr 0.0 0.2 0.4 0.6 0.8 1.0

0.0 20.91 22.03 21.58 21.89 21.63 21.37

0.2 5.35 6.96 7.08 7.22 7.43 7.53

0.4 9.38 8.44 9.83 10.77 11.43 11.92

0.6 11.46 7.91 11.61 12.83 13.4 13.93

0.8 13.8 9.79 12.15 13.63 13.93 13.41

1.0 19.23 14.63 13.86 12.86 13.15 13.22

TABLE IX

PARAMETER SETTINGS AND CORRESPONDING AVERAGE FITNESS

ON TSP INSTANCES OF SIZE50, USING POPULATION SIZE10,

WHERE THE BEST SETTING WAS FOUND. THE F PARAMETER ON

THE HORIZONTAL AXIS, AND CR ON THE VERTICAL. LOWER

FITNESSES ARE BETTER.

outperforms a hillclimber and is competitive with a well-

tuned GA (it outperforms many settings of the GA) on

small instance sizes. On larger instances, it seems GDE

is no longer competitive with the GA, at least for not for

the parameter settings explored here (see Table VIII).

Table IX presents a comparison of the performance of

GDE with population size 10 on small instances under

different settings of the parameters F and Cr. It is clear

that the Cr parameter should be small but non-zero; with

the current search granularity, a Cr setting of 0.2 is

optimal for all settings of F. The setting of F is less

obvious, as it is possible to find good Cr settings for

all values of F; however, in general lower settings are

better. It should be pointed out that a parameter search

with finer granularity would reveal even better settings,

as informal investigations have revealed.

IX. GDE FOR SUDOKU

The Sudoku puzzle is a perfect candidate to test new

algorithmic ideas because it is entertaining and instruc-

tive as well as a non-trivial constrained combinatorial

problem. We have used it in previous work to test GPSO

[15] and a GA [16] with geometric operators based on a

vector-of-permutations solution representation, which is

a natural representation for Sudoku grids, associated with

row-wise swap distance. In this section, we derive the

specific GDE for Sudoku based on this space. Then, in

section X, we present experimental results and compare

the performance of GA, GPSO and GDE.

A. Sudoku solving as optimization problem

Sudoku is a logic-based placement puzzle. The aim

of the puzzle is to enter a digit from 1 through 9 in

each cell of a 9x9 grid made up of 3x3 subgrids (called

“regions”), starting with various digits given in some

cells (the “givens”). Each row, column, and region must

contain only one instance of each digit. Sudoku puzzles

with a unique solution are called proper sudoku, and the

majority of published grids are of this type. The general

problem of solving Sudoku puzzles onn2 × n2 boards

of n x n blocks is known to be NP-complete [24].

Sudoku is a constraint satisfaction problem with 4

types of constraints:

1) Fixed elements

2) Rows are permutations

3) Columns are permutations

4) Boxes are permutations

It can be cast as an optimization problem by choosing

some of the constraints as hard constraints that all

solutions have to respect, and the remaining constraints

as soft constraints that can be only partially fulfilled and

the level of fulfillment is the fitness of the solution. We

consider a space with the following characteristics:

• Hard constraints: fixed positions and permutations

on rows

• Soft constraints: permutations on columns and

boxes

• Distance: sum of swap distances between paired

rows (row-swap distance)

December 1, 2009 DRAFT



19

Fitness function (to maximize): sum of number of

unique elements in each row, plus, sum of number of

unique elements in each column, plus, sum of number

of unique elements in each box. So, for a9× 9 grid we

have a maximum fitness of9 ·9+9 ·9+9 ·9 = 243 for a

completely correct Sudoku grid and a minimum fitness

little more than9 · 1 + 9 · 1 + 9 · 1 = 27 because for

each row, column and square there is at least one unique

element type.

It is possible to show that the fitness landscapes

associated with this space is smooth, making the search

operators proposed a good choice for Sudoku.

B. Geometric crossovers and mutation for Sudoku

In previous work [16], we presented geometric

crossovers and mutations based on the space of vectors

of permutations endowed with the row-swap distance.

The geometric mutation swaps two non-fixed elements in

a row. The geometric crossovers are the row-wise PMX

and row-wise cycle crossover.

This mutation preserves both fixed positions and per-

mutations on rows because swapping elements within

a row that is a permutation returns a permutation. The

mutation is 1-geometric under row-swap distance.

Row-wise PMX and row-wise cycle crossover recom-

bine parent grids applying respectively PMX and cycle

crossover to each pair of corresponding rows. In case

of PMX the crossover points can be selected to be the

same for all rows, or be random for each row. In terms

of offspring that can be generated, the second version

of row-wise PMX includes all the offspring of the first

version.

Simple PMX and simple cycle crossover applied to

parent permutations return always permutations. They

also preserve fixed positions. This is because both are

geometric under swap distance and in order to generate

offspring on a minimal sorting path between parents

using swaps (sorting one parent into the order of the

other parent) they have to avoid swaps that change

common elements in both parents (elements that are

already sorted). Therefore also row-wise PMX and row-

wise cycle crossover preserve both hard constraints.

Using the product geometric crossover theorem [13],

it is immediate that both row-wise PMX and row-

wise cycle crossover are geometric under row-swap

distance, since simple PMX and simple cycle crossover

are geometric under swap distance. Since simple cycle

crossover is also geometric under Hamming distance

(restricted to permutations), row-wise cycle crossover is

also geometric under Hamming distance.

Finally, notice that to restrict the search to the space

of grids with fixed positions and permutations on rows,

the initial population must be seeded with feasible ran-

dom solutions taken from this space. Generating such

solutions can be done still very efficiently.

C. Extension ray and Convex combination in product

spaces and subspaces

In the following, we present general theoretical results

that allow us to build new convex combination (or ex-

tension ray recombination) by combining operators that

are known to be convex combinations (or extension ray

recombinations) and by restricting the domain of known

convex combinations (or extension ray recombinations).

These results are very useful to deal in a natural way

with the compound structure of Sudoku solutions and

their hard constraints. We illustrate their application to

Sudoku in the following section. Notice that the results

on convex combination presented in this section refine

those presented earlier within the GPSO framework [15].

Theorem 7:The operator on the product space ob-

tained by combining vector-wise a set of convex combi-

December 1, 2009 DRAFT



20

nation operators is a convex combination on the product

space endowed with the distance obtained by summing

the distances of the composing convex operators.

Proof: Let us consider the convex combina-

tion operatorsCX1(S1, S1) → S1, CX2(S2, S2) →
S2, ..., CXn(Sn, Sn) → Sn. Let the compound op-

erator on the product spaceS = S1 × S2 × ... ×
Sn CX(S, S) → S be defined asCX(S, S) =

(CX1(S1, S1), CX2(S2, S2), ..., CXn(Sn, Sn)). Since

CX1, CX2, ..., CXn are convex combination opera-

tors they are also geometric crossover under distances

d1, d2, ..., dn. For the product geometric crossover the-

orem [13], the compound operatorCX is a geometric

crossover under the distanced = d1 + d2 + ... + dn.

To prove thatCX is a convex combination ond,

we need to prove that applyingCX1, CX2, ..., CXn

all with the same parent weightswa and wb on

their respective spaces(S1, d1), (S2, d2), ..., (Sn, dn)

and grouping their offspring in a vector is equiv-

alent to applying CX on the space(S, d) with

weights wa and wb. Let be c′ = CX1(a′, b′), c′′ =

CX1(a′′, b′′), ..., c(n) = CX(a(n), b(n)). We have that

d1(a′, c′) = d1(a′, b′) · wb, d2(a′′, c′′) = d2(a′′, b′′) ·
wb, ..., dn(a(n), c(n)) = dn(a(n), b(n)) · wb. Summing

these equations we obtaind1(a′, c′) + d2(a′′, c′′) +

... + dn(a(n), c(n)) = (d1(a′, b′) + d2(a′′, b′′) + ... +

dn(a(n), b(n))) · wb. This can be rewritten in terms of

the distanced asd((a′, a′′, ..., a(n)), (c′, c′′, ..., c(n))) =

d((a′, a′′, ..., a(n)), (b′, b′′, ..., b(n))) · wb. An analogous

result holds for the parentsb′, b′′, ..., b(n) with respect

to the weightwa. This means thatCX is a weighted

combination with respect to the distanced.

Theorem 8:The operator on the sub space obtained

by restricting the domain of application of a convex

combination operator is a convex combination operator

on the sub space endowed with the distance of the

original convex combination operator.

Proof: Let C = {ci} the set offspring obtained by

CX(a, b) with weightswa andwb on the original space

(S, d). The operatorCX is a convex combination if and

only if for any ci we have thatd(a, ci) + d(ci, b) =

d(a, b) and thatd(a, ci)/d(ci, b) = wb/wa. By restrict-

ing the spaceS to S′ ⊂ S, we have that ifa, b ∈ S′ then

the setC ′ of their offspring byCX(a, b) with weights

wa and wb on the restricted space isC ′ ⊂ C. The

properties on each of the offspring inC ′ defining the

convex combination operatorCX on the subspaceS′

holds because they hold on for every offspring in the

supersetC.

The product space theorem and the sub space theo-

rems apply as well to extension ray operators. Essentially

the reason is because the equalityc = CX(a, b) involv-

ing the convex combinationCX with weights wa, wb

and the equalityb = ER(a, c) involving the extension

ray recombinationER with weights wa, wb, from a

declarative point of view are equivalent, as they entail

exactly the same relationship between the pointsa, b and

c, which is, the pointc is in the line between the pointsa

andb and their distances to it are inversely proportional

to their weights. The aspect in what the two operators

differ is what is considered as known and what unknown.

In the case ofCX, a andb are known andc unknown;

in the case ofER, a and c are known andb unknown.

Since the theorems above do not rely on this difference,

they apply to bothCX andER.

The correct practical application of these theorems

may require careful understanding of the difference

between declarative definition and operational definition

of the recombination operators. Also, these theorems

hold when distances are deterministic objects. However,

in the operators defined in this paper distances are treated

as stochastic objects (random variables) and distance

December 1, 2009 DRAFT



21

relationship between points are guaranteed only in ex-

pectation. Special care needs to be taken when applying

these theorems on stochastic operators.

D. Convex combination and extension ray recombina-

tion for Sudoku

In this section we use the theoretical results in the

previous section, to build the convex combination and

extension ray recombination operators for Sudoku start-

ing from those for permutations under swap distance.

As usual, once we have these specific operators we can

plug them in the formal GDE (algorithm 2) to obtain

a specific GDE for the space of vectors of permutations

under row-wise swap distance, hence obtaining a specific

GDE for Sudoku.

The product convex combination theorem allows us

to build a convex combination for an entire Sudoku grid

by applying row-wise a convex combination operator

defined on permutations. So, letcx a convex combination

operators on permutations under swap distance, with

weights wa and wb, and pa, pb, pc be the two parent

permutations and the offspring permutation respectively,

i.e., pc = cx(pa, pb) (as the one presented in algorithm

6). By applyingcx to each paired rows of sudoku grids

Ga andGb and grouping the offspring permutations in a

grid Gc, we obtain a convex combination operatorCX

on grids under row-wise swap distance, with weightswa

andwb.

The subspace convex combination theorem allows us

to restrict the search space to the subspace of Sudoku

grids in which all givens are fixed. Let us call grids

belonging to this subspace feasible grids. Otherwise they

are called unfeasible grids. Let us consider the operator

CX ′ derived from the operatorCX above, as follows.

The operatorCX ′ corresponds toCX, when CX is

applied to feasible grids and returns feasible offspring

grids. However, whenCX returns unfeasible offspring

grids, CX ′ discards them and runsCX again until

feasible offspring grids are found and returned. The

subspace convex combination theorem tells us thatCX ′,

like CX, is a convex combination operator under row-

wise swap distance with the same weightswa and wb.

Clearly, in practice, implementing the operatorCX ′ in

this way is inefficient. However, we can implement an

operator which has behavior equivalent toCX ′, but

that instead of discarding unfeasible offspring, it does

not generate them in the first place. The operator in

algorithm 6 does exactly this.

Analogously to the product convex combination the-

orem, the product extension ray theorem allows us to

build an extension ray recombination operator on entire

Sudoku grids by applying row-wise an extension ray

recombination operator defined on permutations (such

as the one in algorithm 7).

Analogously to the subspace convex combination the-

orem, the subspace extension ray theorem allows us use

the original ER operator to the search the subspace of

feasible grids by discarding unfeasible grids and trying

again until a feasible grid is found. Let us consider the

case of a single row (a permutation) rather then the entire

grid. Let say we want to search the subspace obtained

by fixing some of the elements in the permutation (i.e.,

the givens in that particular row). This can be done by

using the extension ray recombination on unrestricted

permutation (Algorithm 7) as a base for the above

procedure to search the subspace. However, there is a

subtle problem with this. This is that the recombination

algorithm guarantees the wanted distance ratio only in

expectation, rather than exactly all the time as assumed

in the theorem, so the theorem is not necessarily ap-

plicable, as it happens in this case. Let see why and

determine how to modify the Algorithm 7 to obtain the

December 1, 2009 DRAFT



22

wanted recombination operator. If one applies the pro-

cedure above and simply discards unfeasible offspring

and reiterates the application of the ER operator until

a feasible offspring is found, the algorithm returns an

offspring that is not at the wanted expected distance. This

is because the algorithm in order to achieve the wanted

expected distance assumes that with some probability the

fixed elements can be changed. If one prevents the fixed

elements to be changed (so obtaining feasible offspring)

its effect is to have less swaps applied tob to obtain

c, which is, a shorter expected swap distance betweenb

and c. To compensate for this is sufficient to increment

adequately the probabilityp of swaps to obtain the

wanted expected swap distance betweenb and c. This

probability can be easily determined by noticing that

searching a permutation subspace with permutations of

size n with ng fixed elements is, in fact, equivalent to

search a permutation space with permutations of size

n−np obtained by removing the fixed elements that can

be added back when the search is over. So the probability

p for the extension ray recombination operator on this

space isp = SD(pb, pc)/(n− ng − 1− SD(pa, pb)).

X. EXPERIMENTS WITH GDE ON SUDOKU

We implemented GDE for Sudoku in the same pub-

licly available codebase as our previous experiments on

evolutionary algorithms with geometric operators and

geometric particle swarm optimization [15] [16]. As

our previous results define the state of the art for this

problem, we chose to compare our GDE results with

our previous results, and have thus not run any additional

experiments for other algorithms than GDE.

The same parameter search was performed as for

Sudoku as for TSP (see section VIII for details). How-

ever, instead of 20 randomly generated instances the

algorithms were tested on two of the same Sudoku grids

as used in our previous papers, one rated as “easy” and

the other as “hard” by a Sudoku web site. For each

parameter configuration, the algorithm was run 50 times.

Average fitness was calculated, as well as the number of

times out of 50 the run resulted in a fitness of 243, which

means the grid was solved.

Algorithm Easy 1 Hard 1

Hillclimber 35 1

GA 50 15

GPSO 36 N/A

GDE 50 13

TABLE X

NUMBER OF RUNS OUT OF50 THE GRID WAS SOLVED; GDE

COMPARED WITH OTHER SEARCH ALGORITHMS FROM PREVIOUS

PAPERS, ON THE SAME TWO SUDOKU GRIDS. THE BEST

CONFIGURATIONS FOUND AFTER PARAMETER TUNING ARE

REPORTED FOR ALL ALGORITHMS. THE BESTGDE SETTINGS

WERE POPULATION SIZE50, F 1.0, CR 0.6 FOR EASY 1, AND

POPULATION SIZE100, F 0.0, CR 0.6 FOR HARD 1.

F/Cr 0.0 0.2 0.4 0.6 0.8 1.0

0.0 206.24 224.08 226.84 228.22 229.0 226.52

0.2 234.94 239.46 241.0 240.8 241.04 241.04

0.4 240.0 241.62 241.84 241.76 242.12 241.86

0.6 242.08 242.6 242.64 242.8 242.8 242.92

0.8 242.92 242.96 242.76 242.92 242.96 243.0

1.0 205.92 206.4 206.24 205.8 205.74 205.68

TABLE XI

PARAMETER SETTINGS AND CORRESPONDING AVERAGE FITNESS

ON THE “ EASY 1” SUDOKU GRID , USING POPULATION SIZE50,

WHERE THE BEST SETTING WAS FOUND. THE F PARAMETER IS ON

THE HORIZONTAL AXIS, AND CR ON THE VERTICAL. HIGHER

FITNESSES ARE BETTER.

From table X we can see that GDE is on par with a

finely-tuned GA on both easy and hard Sudoku grids,

and significantly outperforms both Geometric PSO and

hill climbers. It should be noted that more extensive

December 1, 2009 DRAFT



23

tuning was performed for the GA than for GDE for this

problem, as a number of different geometric crossover

and mutation operators were tried; similar attention given

to the GDE might improve the results further.

Table XI presents a comparison of parameter settings

for GDE with population size 50 on the easy grid. We

can see a general preference for high values of both

parameters, though the effect is marked for Cr than for F.

Additionally, extreme values of Cr (0 and 1) yield much

lower performance, which is understandable as these lead

to a degenerate algorithm.

XI. GDE FOR GENETIC PROGRAMS

In order to specify the GDE algorithm to the specific

space of genetic programs, we need to choose a distance

between genetic programs. A natural choice of distance

would be a distance (metric) associated to the Koza-style

crossover [6]. This would allow us to derive the specific

GDE that searches the same fitness landscape seen by

this crossover operator. Unfortunately, the Koza-style

crossover is provably non-geometric under any metric

[14], so there is no distance associated with it4 we can

use as basis for the GDE. Another crossover operator,

the homologous crossover [8] is provably geometric

under structural hamming distance (SHD) [12] which is a

variant of the well-known structural distance for genetic

programming trees [1]. We use this distance as basis for

the GDE because we will be able to use the homologous

crossover as a term of reference. Notice, however, that in

principle, we could choose any distance between genetic

programming trees as a basis of the GDE.

4In the sense that there is no distance such that the offspring trees

are always within the metric segment between parent trees.

A. Homologous crossover and structural hamming dis-

tance

The common region is the largest rooted region where

two parent trees have the same topology. In homologous

crossover [8] parent trees are aligned at the root and

recombined using a crossover mask over the common

region. If a node belongs to the boundary of the common

region and is a function then the entire sub-tree rooted

in that node is swapped with it.

The structural distance [1] is an edit distance specific

to genetic programming trees. In this distance, two trees

are brought to the same tree structure by adding null

nodes to each tree. The cost of changing one node

into another can be specified for each pair of nodes

or for classes of nodes. Differences near the root have

more weight. The structural hamming distance [12] is

a variant of the structural distance in which when two

subtrees are not comparable (roots of different arities)

they are considered to be at a maximal distance. When

two subtrees are comparable their distance is at most 1.

Definition 1: (Structural hamming distance (SHD))

dist(T1, T2) = hd(p, q) if arity(p) = arity(q) = 0

dist(T1, T2) = 1 if arity(p) 6= arity(q)

dist(T1, T2) = 1
m+1 (hd(p, q) +

∑
i=1...m dist(si, ti))

if arity(p) = arity(q) = m

Theorem 9:Homologous crossover is a geometric

crossover under SHD [12].

B. Convex combination

In the following, we first define a weighted version

of the homologous crossover. Then we show that this

operator is a convex combination in the space of genetic

programming trees endowed with SHD. In other words,

the weighted homologous crossover implements a con-

vex combinationCX in this space.

December 1, 2009 DRAFT



24

Definition 2: (Weighted homologous crossover). Let

P1 and P2 two parent trees, andW1 and W2 their

weights, respectively. Their offspringO is generated

using a crossover mask on the common region ofP1 and

P2 such that for each position of the common region,P1

nodes appear in the crossover mask with probabilityW1,

andP2 nodes appear with probabilityW2.

Theorem 10:The weighted homologous crossover is

(in expectation) a convex combination in the space of

genetic programming trees endowed with SHD.

Proof: The weighted homologous crossover is a

special case of homologous crossover so it is also

geometric under SHD. Therefore, the offspring of the

weighted homologous crossover are in the segment be-

tween parents as required to be a convex combination.

To complete the proof we need to show that the weights

W1 and W2 of the weighted homologous crossover

are inversely proportional to the expected distances

E[SHD(P1, O)], E[SHD(P2, O)] from the parentsP1

andP2 to their offspringO, as follows.

Given two treesP1 andP2, the SHD can be seen as

a weighted Hamming distance on the common region

of P1 and P2 where the weightwi on the distance of

the contribution of a positioni in the common region

depends on the arities of the nodes on the path from

i to the root node. For each positioni of the common

region, the expected contributionSHDi(P1, O) to the

distanceSHD(P1, O) of that specific position is directly

proportional to wi and inversely proportional to the

weight W1 (so, E[SHDi(P1, O)] = wi/W1). This is

because, from the definition of weighted homologous

crossover,W1 is the probability that at that position the

offspring O equals the parentP1. So, the higher this

probability, the smaller the expected contribution to the

distance at that position. Furthermore the contribution

to the distance is proportional to the weightwi of

the positioni by definition of weighted Hamming dis-

tance. From the linearity of the expectation operator, we

have thatE[SHD(P1, O)] = E[
∑

i SHDi(P1, O)] =
∑

i E[SHDi(P1, O)] =
∑

i wi/W1 = 1/W1. The

last passage holds true because by definition of SHD

the sum of the weights on the common region equals

1 (this corresponds to the case of having two trees

maximally different on the common region and their

distance is 1). Analogously, for the other parent one

obtainsE[SHD(P2, O)] = 1/W2. This completes the

proof.

C. Extension ray

In the following, we first define two weighted homolo-

gous recombinations. Then we show that these operators

are extension ray recombinations in the space of genetic

programming trees endowed with SHD. The first recom-

bination produces offspring with the same tree structure

of the second parent. The second recombination is more

general and can produce offspring with tree structure

different from both parents. From a geometric viewpoint,

these weighted homologous recombinations implement

two different versions of extension ray recombination

ER in the space of genetic programming trees endowed

with SHD, where the first operator produces a subset of

the points produced by the second operator.

To determine a recombination that implements an ex-

tension ray operator, it is useful to think of an extension

ray operator as the inverse of a convex combination

operator, as follows. Given a parentP1 (the origin of

the extension ray) and the offspringC (the point the

extension ray passes through), one wants to determine a

parentP2 (the point on the extension ray) such thatO

results from the convex combination ofP1 andP2.

The first weighted extension ray homologous recombi-

nation is described in Algorithm 8. The second recombi-

December 1, 2009 DRAFT



25

Algorithm 8 Weighted extension ray homologous re-

combination 1
1: inputs: parent treesTA (origin point of the ray)

and TB (passing through point of the ray), with

corresponding weightswAB andwBC (both weights

are between 0 and 1 and sum up to 1)

2: output: a single offspring treeTC (a point on the

extension ray beyondTB on the ray originating in

TA and passing throughTB)

3: compute the structural Hamming distance

SHD(TA, TB) betweenTA andTB

4: set SHD(TB , TC) = SHD(TA, TB) · wAB/wBC

(compute the distance betweenTB and TC using

the weights)

5: set p = SHD(TB , TC)/(1 − SHD(TA, TB)) (the

probabilityp of flipping nodes in the common region

away fromTA andTB beyondTB)

6: setTC = TB

7: for all positioni in the common region betweenTA

andTB do

8: consider the paired nodesTB(i) andTA(i) in the

common region

9: if TB(i) = TA(i) and random(0,1)≤ p then

10: setTC(i) to a random node with the same arity

of TA(i) andTB(i)

11: end if

12: end for

13: return stringTC as offspring

nation is the same operator as the first with the following

addition before line 8 in Algorithm 8. In the common

region, if two subtreesSA(i) and SB(i) coincide in

structure and contents (not only if their root nodesTA(i)

andTB(i) coincide), put in the corresponding positioni

in the offspringTC a random subtreeSC (with in general

different structure and contents fromSA andSB). Skip

the remaining nodes in the common region covered by

SA(i) andSB(i).

Notice that in theory any arbitrarily large subtreeSC

could be generated to be included inTC . However, in

practice its size should be limited. In the experiment, we

generateSC with the same number of nodes ofSA and

SB .

Theorem 11:The weighted extension homologous ray

recombinations 1 and 2 are (in expectation) extension

ray operators in the space of genetic programming trees

endowed with SHD.

Proof: First we prove thatTC = ER(TA, TB)

by showing that TB = CX(TA, TC). Then we

prove that the expected distancesE[SHD(TA, TB)]

andE[SHD(TB , TC)] are inversely proportional to the

weightswAB andwBC , respectively.

Let us consider recombination 1. The offspringTC

has the same structure ofTB . This is becauseTC was

constructed starting fromTB and then for each node of

the common region betweenTA and TB , TC was not

changed or it was randomly chosen but preserving the

arity of that node inTB .

The structures of the common regionsCR(TA, TB)

andCR(TA, TC) coincide. This is because the structure

of the common region between two trees is only function

of their structures. So, sinceTB andTC have the same

structure,CR(TA, TB) andCR(TA, TC) have the same

structure.

The tree TB can be obtained by Homologous

crossover applied toTA and TC (hence, TC =

ER(TA, TB)). This can be shown considering two sep-

arate cases, (i) nodes ofTB inherited from the common

region CR(TA, TC) and (ii) subtrees ofTB inherited

from subtrees ofTA andTC at the bottom of the common

region. Let us consider nodes on the common region. For

December 1, 2009 DRAFT



26

each node with indexi in the common region, the node

TB(i) matchesTA(i) or TC(i). This is true from the way

TC(i) was chosen on the basis of the values ofTA(i)

andTB(i). We have two cases. First,TC(i) was chosen

at random, whenTA(i) = TB(i). In this caseTB(i) can

be inherited fromTA(i), since it may beTB(i) 6= TC(i)

but TB(i) = TA(i). Second,TC(i) was chosen to equal

TB(i), when TA(i) 6= TB(i). In this caseTB(i) can

be inherited fromTC(i). In either cases, for nodes on

the common region the corresponding nodes ofTB can

be inherited fromTA or TC . The subtrees ofTB at the

bottom of the common region can be inherited all from

TC (both structures and contents). Since by construction

TC inherited those subtrees fromTB without modifying

them.

To show that recombination 1 is a weighted ex-

tension homologous ray recombination, we are left

to show that the expected distancesE[SHD(TA, TB)]

andE[SHD(TB , TC)] are inversely proportional to the

weights wAB and wBC . The probabilityp of flipping

nodes in the common region away fromTA and TB

beyond TB was chosen as an appropriate function

of wAB and wBC and of SHD(TA, TB) to obtain

SHD(TB , TC) such that the above requirement holds

true. It is possible to prove that the chosenp is the

correct one using the same argument used in the proof

of theorem 10.

Let us consider now recombination 2. In this case,

the offspring TC by construction may have structure

different from TA and TB . Also, the structures of the

common regionsCR(TA, TB) andCR(TA, TC) do not

coincide. The structure ofCR(TA, TC) is covered by the

structure ofCR(TA, TB) (CR(TA, TC) is a substructure

of CR(TA, TB)). The part ofCR(TA, TB) that does not

coverCR(TA, TC) comprises subtrees that are identical

in structures and contents inTA andTB .

The tree TB can be obtained by Homologous

crossover applied toTA and TC (hence, TC =

ER(TA, TB)). This can be shown similarly as for re-

combination 1 but with an extra case to consider. Nodes

of TB corresponding to nodes in the common region

CR(TA, TC) can be inherited fromTA or TB . The

subtrees ofTB at the bottom of the common region

CR(TA, TC) can be inherited all fromTC (both struc-

tures and contents). The extra case is for the subtrees

of TB that are in the part ofCR(TA, TB) that does not

cover CR(TA, TC). These subtrees cannot be inherited

from TC , which differs form TB by construction, but

they can always be inherited fromTA.

As for the requirement on the expected distances being

inversely proportional to the weights, the probabilityp

can be chosen as the case for recombination 1 due to

the recursive definition of SHD that treats nodes and

subtrees uniformly.

Now we have operational definitions of convex com-

bination and extension ray for the space of genetic

programming trees under SHD. These space-specific

operators can be plugged in the formal GDE (algorithm

2) to obtain a specific GDE for the genetic programming

trees space, the GDE-GP.

XII. E XPERIMENTS FORGP-GDE

This section reports an initial experimental analysis of

the GDE-GP behavior on four standard GP benchmark

problems: Symbolic Regression of the quartic polyno-

mial, Artificial Ant on the Santa Fe trail, 5-Bit Even

Parity, and 11-Bit Multiplexer. In all the experiments we

usedF = 0.8 and Cr = 0.9, according to [21]. Both

extension ray recombinations 1 and 2 were tested, giving

rise to distinct techniques we designate as GDE1 and

GDE2. As a baseline for comparison we used standard

GP with homologous crossover (70%) and reproduction

December 1, 2009 DRAFT



27

(30%), always applying point mutation with probability

1/L, whereL is the number of nodes of the individual.

We call this baseline HGP. All the experiments were

performed using populations of two different sizes (500

and 1000 individuals) initialized with the Ramped Half-

and-Half procedure [6] with an initial maximum depth of

8, allowed to evolve for 50 generations. Each experiment

was repeated 20 times. Statistical significance of the

null hypothesis of no difference was determined with

pairwise Kruskal-Wallis non-parametric ANOVAs atp =

0.05. A non-parametric ANOVA was used because the

data is not guaranteed to follow a normal distribution.

For the same reason, the median was preferred over the

mean in all the evolution plots that follow. The median

is also more robust to outliers.

Figure 3 shows the boxplots of the best fitness

achieved along the run, using populations of 500 individ-

uals (left column) and 1000 individuals (right column).

With a population size of 500, in all four problems

there is a statistically significant difference between HGP

and each of the GDE-GP techniques, and no significant

difference between GDE1 and GDE2. GDE-GP is con-

sistently better than HGP, regardless of the extension ray

recombination used.

It may be argued that HGP is being crippled by such a

small population size, which may reduce diversity along

the run. This could be true, because when doubling

the population size HGP significantly improves its best

fitness of run in all except the Parity problem. However,

the GDE-GP techniques also show significant improve-

ments in most cases, and remain consistently better than

HGP, regardless of the extension ray recombination used,

exactly as before.

However, the observation of diversity, measured as

the percentage of genotypically distinct individuals in

the population, revealed somewhat unexpected results.

HGP GDE1 GDE2
0

1

2

3

4

B
es

t F
itn

es
s

Regression − PopSize 500

HGP GDE1 GDE2
0

1

2

3

4

B
es

t F
itn

es
s

Regression − PopSize 1000

HGP GDE1 GDE2
0

10

20

30

40

50

60

B
es

t F
itn

es
s

Artificial Ant − PopSize 500

HGP GDE1 GDE2
0

10

20

30

40

50

60

B
es

t F
itn

es
s

Artificial Ant − PopSize 1000

HGP GDE1 GDE2
10

11

12

13

14

B
es

t F
itn

es
s

Parity − PopSize 500

HGP GDE1 GDE2
10

11

12

13

14

B
es

t F
itn

es
s

Parity − PopSize 1000

HGP GDE1 GDE2
300

400

500

600

700

800

B
es

t F
itn

es
s

Multiplexer − PopSize 500

HGP GDE1 GDE2
300

400

500

600

700

800

B
es

t F
itn

es
s

Multiplexer − PopSize 1000

Fig. 3. Boxplots of the best fitness achieved in each problem (×
marks the mean). Population sizes of 500 individuals (left column)

and 1000 individuals (right column)

December 1, 2009 DRAFT



28

Figure 4 shows the evolution of the median values of

diversity along the run, for both population sizes. Not

only does not HGP show any clear signs of diversity

loss, regardless of population size, but GDE-GP ex-

hibits an extraordinarily varied behavior, approaching

both extreme values in different problems (in Regression

and Artificial Ant it practically reaches 0% while in

Parity it reaches 100%), in some cases undergoing large

fluctuations along the run (Multiplexer). Figure 5 shows

these fluctuations on the individual runs of GDE1 on

Multiplexer, with population size of 500. Also shown are

the individual runs of HGP which, although also exhibit-

ing some variation, do not present a rather undulating

pattern or reach anywhere near the extreme values.

Finally, in Figure 7 we look at the evolution of the

median values of average program length along the run,

for both population sizes. Once again GDE-GP behaves

radically differently from HGP, with both GDE1 and

GDE2 presenting large but smooth fluctuations in most

problems, when compared to the more constrained but

somewhat erratic behavior of HGP. The most interest-

ing case is probably the Artificial Ant, where GDE-

GP quickly and steadily increases the average program

length until a plateau is reached, followed by a steep

decrease to very low values. Figure 6 shows the average

program length of the individual runs of both HGP and

GDE1 on Artificial Ant, with population size of 500.

XIII. C ONCLUSIONS

Geometric differential evolution is a formal general-

ization of DE on continuous spaces that retains the orig-

inal geometric interpretation and that applies to generic

combinatorial spaces. GDE can be formally specified

to specific spaces associated, in principle, to any solu-

tion representation. In this article, we have illustrated

that this is indeed possible in practice by deriving the

0 10 20 30 40 50
0

20

40

60

80

100

Regression

Generations

D
iv

er
si

ty

0 10 20 30 40 50
0

20

40

60

80

100

Artificial Ant

Generations

D
iv

er
si

ty

0 10 20 30 40 50
0

20

40

60

80

100

Parity

Generations

D
iv

er
si

ty

0 10 20 30 40 50
0

20

40

60

80

100

Multiplexer

Generations

D
iv

er
si

ty

Fig. 4. Evolution of the median values of diversity in each problem

December 1, 2009 DRAFT



29

0 10 20 30 40 50
0

20

40

60

80

100

Multiplexer

Generations

D
iv

er
si

ty

Fig. 5. Evolution of diversity on individual runs of HGP (grey) and

GDE1 (black) on the Multiplexer problem, with population size 500

0 10 20 30 40 50
0

200

400

600

800

1000

Artificial Ant

Generations

A
ve

ra
ge

 P
ro

gr
am

 L
en

gt
h

Fig. 6. Evolution of average program length on individual runs of

HGP (grey) and GDE1 (black) on the Artificial Ant problem, with

population size 500

specific GDEs for the Hamming space associated with

binary strings, for the space of permutations endowed

with the swap distance, for the space of vectors of

permutations endowed with the row-swap distance, and

for the space of genetic programs endowed with the

structural hamming distance. These are quite different

spaces based on non-trivial solution representations. The

derived representation-specific GDEs are, in a strong

mathematical sense, the same algorithm doing the same

type of search on different spaces.

We have tested each specific GDE algorithm ex-

perimentally on standard benchmarks and compared it

0 10 20 30 40 50
5

10

15

20

25
Regression

Generations

A
ve

ra
ge

 P
ro

gr
am

 L
en

gt
h

0 10 20 30 40 50
0

100

200

300

400

500
Artificial Ant

Generations

A
ve

ra
ge

 P
ro

gr
am

 L
en

gt
h

0 10 20 30 40 50

100

150

200

Parity

Generations

A
ve

ra
ge

 P
ro

gr
am

 L
en

gt
h

0 10 20 30 40 50
10

20

30

40

50

60

70
Multiplexer

Generations

A
ve

ra
ge

 P
ro

gr
am

 L
en

gt
h

Fig. 7. Evolution of the median values of average program length in

each problem

December 1, 2009 DRAFT



30

against a set of classic evolutionary algorithms defined

on the same search space and representation. The binary

GDE and the GP-GDE outperformed the other algo-

rithms in the comparison. The GDEs based on permuta-

tions on the TSP did less well but the GDE on vectors

of permutations on Sudoku did almost as well as a very

finely-tuned GA. We believe these are very promising

initial results. GDE is a very recent algorithm and further

experimentation is needed to explore its potential more

thoroughly.

The formal generalization methodology employed to

generalize differential evolution, which is the same that

was used to generalize particle swarm optimization, can

be applied in principle to generalize virtually any search

algorithm for continuous optimization to combinatorial

spaces. Interestingly, this generalization methodology is

rigorous, conceptually simple and promising as both

GDE and GPSO seem to be quite good algorithms

in practice. In future work, we will generalize using

this methodology other classical derivation-free methods

for continuous optimization that make use of geometric

constructions of points to determine the next candidate

solution (e.g. Nelder and Mead method and Controlled

Random Search method).

ACKNOWLEDGEMENTS

We would like to thank William Spears for his as-

sistance in adapting the code for the De Jong bench-

mark functions to Java. Additionally, we would like

to thank Riccardo Poli for passing us the code of

the Homologous Crossover for Genetic Programs. The

third author also acknowledges project PTDC/EIA-

CCO/103363/2008 from FCT, Portugal.

REFERENCES

[1] A. Ekart and S. Z. Nemeth,A metric for genetic programs

and fitness sharing, Genetic Programming, Proceedings of Eu-

roGP’2000, 2000, pp. 259–270.

[2] T. Gong and A. L. Tuson,Differential evolution for binary

encoding, Soft Computing in Industrial Applications, Springer,

2007, pp. 251–262.

[3] S. Kauffman,Origins of order: self-organization and selection

in evolution, Oxford University Press, 1993.

[4] J. Kennedy and R. C. Eberhart,A discrete binary version of the

particle swarm algorithm, IEEE Transactions on Systems, Man,

and Cybernetics5 (1997), 4104–4108.

[5] , Swarm intelligence, Morgan Kaufmann, 2001.

[6] John R. Koza,Genetic programming: On the programming of

computers by means of natural selection, The MIT Press, 1992.

[7] Eugene F. Krause,Taxicab geometry: An adventure in non-

euclidean geometry, Courier Dover Publications, 1986.

[8] W. Langdon and R. Poli,Foundations of genetic programming,

Springer-Verlag, 2002.

[9] A. Moraglio, Towards a geometric unification of evolutionary

algorithms, Ph.D. thesis, University of Essex, 2007.

[10] A. Moraglio, C. Di Chio, and R. Poli,Geometric particle swarm

optimization, European Conference on Genetic Programming,

2007, pp. 125–136.

[11] A. Moraglio, C. Di Chio, J. Togelius, and R. Poli,Geometric

particle swarm optimization, Journal of Artificial Evolution and

Applications2008 (2008), Article ID 143624.

[12] A. Moraglio and R. Poli,Geometric landscape of homologous

crossover for syntactic trees, Proceedings of IEEE congress on

evolutionary computation, 2005, pp. 427–434.

[13] , Product geometric crossover, Proceedings of Parallel

Problem Solving from Nature conference, 2006, pp. 1018–1027.

[14] , Inbreeding properties of geometric crossover and non-

geometric recombinations, Proceedings of the workshop on the

Foundations of Genetic Algorithms, 2007, (to appear).

[15] A. Moraglio and J. Togelius,Geometric pso for the sudoku

puzzle, Proceedings of the Genetic and Evolutionary Computation

Conference, 2007, pp. 118–125.

[16] A. Moraglio, J. Togelius, and S. Lucas,Product geometric

crossover and the sudoku puzzle, Proceedings of IEEE congress

on evolutionary computation, 2006, pp. 470–476.

[17] Alberto Moraglio and Julian Togelius,Geometric differential

evolution, Proceedings of the 11th Annual conference on Genetic

and evolutionary computation, 2009, pp. 1705–1712.

[18] Michael O’Neill and Anthony Brabazon,Grammatical differen-

tial evolution, Proceedings of the 2006 International Conference

on Artificial Intelligence, CSREA Press, 2006, pp. 231–236.

[19] G. C. Onwubolu and D. Davendra (eds.),Differential evolution: A

handbook for global permutation-based combinatorial optimiza-

tion, Springer, 2009.

December 1, 2009 DRAFT



31

[20] G. Pampara, A.P. Engelbrecht, and N. Franken,Binary differ-

ential evolution, IEEE Congress on Evolutionary Computation,

2006.

[21] K. V. Price, R. M. Storm, and J. A. Lampinen,Differential

evolution: A practical approach to global optimization, Springer,

2005.

[22] G. Sywerda,Uniform crossover in genetic algorithms, Proceed-

ings of the third international conference on Genetic algorithms,

1989.

[23] Julian Togelius, Renzo De Nardi, and Alberto Moraglio,Geo-

metric pso + gp = particle swarm programming, Proceedings of

the Congress on Evolutionary Comptutation (CEC), 2008.

[24] T. Yato,Complexity and completeness of finding another solution

and its application to puzzles, Master’s thesis, University of

Tokyo, Japan, 2003.

December 1, 2009 DRAFT


