

Introduction

It is our pleasure to introduce you to the proceedings of the School of Computing’s annual Postgraduate Conference
2010. !Students were invited to submit two page papers and posters for peer review, received reviews of their papers
and posters and were asked to produce camera-ready copy. We are pleased that so many students contributed and took
part in the process.

The quality of submissions was universally high and we feel it reflects the School’s vibrant and active postgraduate
research community. We are delighted to see a wide range of research groups represented in the proceedings.

We are indebted to many people for their help and advice including Sally Fincher, Sandra Shine, Sonnary Var and Mark
Wheadon, whose valued input and assistance has made arranging this conference possible in such a short space of time.
We look forward to enjoying the continuation of this series next year, by other intrepid souls.

Laurence Hellyer
Carl G. Ritson
Jon Simpson
(Editors.)

April 2010.

Contents

Modelling fim in Escherichia coli
Patrick de Vries

1

Complexity Analysis of Evolved Programs
Tom Castle & Colin G. Johnson

4

Design of a Privacy Protected Policy-Based Authorisation System
Kaniz Fatema & David Chadwick

7

Force-Directed Layout for Euler Diagrams
Luana Micallef & Peter Rodgers

10

Dynamic Generation of Adaptation Plans of Self-adaptive Software Systems
Carlos de Silva

13

Provenance-Awareness in R
C.A.Silles & A.R.Runnalls

15

Modelling fim in Escherichia coli

Patrick de Vries
School of Computing

University of Kent
Canterbury, UK, CT2 7NF

pd79@kent.ac.uk

ABSTRACT
Trying to figure out how a biological process works can be tricky
as there are so many different elements involved. Targeted muta-
tions to the DNA can be used to disable binding or transcription
of a certain protein, but this could have an effect on other parts.
Modelling this using an agent-based model can be a good solution
as long as you have reliable data from experiments. This includes
binding probabilities of protein. However such data may not al-
ways be available or accurate enough. The subject of this paper is
to show the possibility of testing a hypothesis and simultaneously
get a good idea of the parameters with an agent-based model us-
ing to a genetic algorithm to come up with the parameters for the
model.

1. INTRODUCTION
Fimbriae are hair-like attachments that E.coli bacteria can grow.
With these fimbriae they can attach themselves to host cells and
can even penetrate them. Because of their ability to penetrate cells,
infections with E.coli bacteria are very hard to treat, so it is imper-
ative we learn more about the way the fimbriae are regulated.
The main method of researching the processes within a bacterial
cell is by making focused mutations of the DNA. However, a mu-
tation can have further effects within the cell, then just the process
focussed upon. therefore an effect attributed to a certain DNA frag-
ment or protein can in fact have an impact via a different mecha-
nism. One can try using a computer model to simulate the process,
but for this one needs additional parameters to work to model. This
paper is to show an attempt in testing the model with a minimum
amount of experimental data, and is a first in combining agent-
based modelling with genetic algorithms.
Here the focus will be on the hypothesis that the protein H-NS will
act as a repressor for fimB expression and the protein SlyA will be
acting as an antagoniser of H-NS preventing it from binding to the
DNA. Identified are two SlyA binding sites called OSA1 and OSA2

and a possible third site called OSA3 The sites OSA1 and OSA3

overlap not only with each-other, but also with an H-NS binding
site.
H-NS represses fimB expression and is antagonised by SlyA. FimB
in turn will switch the fim-switch (fimS) ON which will start the
production of fimbriae. While the switch is turned ON FimE will
be formed which will stimulate fimS to switch OFF.

2. PREVIOUS WORK
Previous attempts have been made at modelling certain aspects of
E.coli bacteria, for example by means of differential equations [4,
5], where there is focus on the individual cell and the processes
within or the focus is on the entire population [3].

These models are very useful for understanding how a single cell
operates in terms such as cell growth or nutrient uptake and metaboli-
sation, but when looking at a process which is not continuous, such
as cell division, it does not resemble actual bacteria. For this rea-
son we can use agent-based models [9, 11]. These two models had
the fortune of having good experimental data available to acquire
parameters for there model.
One of the parameters required is binding affinity, and therefore we
test the hypothesis by using an agent-based model supported by ge-
netic algorithms.
A reason for using this method is that there is no direct way of mea-
suring binding affinity of the protein SlyA. SlyA has a dissociation
constant KD over the entire DNA of 16− 24nM . Normally when
doing these gel shifts at different concentrations of the protein for
testing its binding affinity clear bands appear for the parts where
the protein is bound to the DNA. These bands also should appear
at every experiment at roughly the same location as for example
LRP as shown by [12]. For unknown reasons gel shifts with SlyA
produce irregular banding. The only band at the same location is
that of the unassociated DNA. If this were the case then we could
have used a similar method as [13] used in their model for calcium-
calmodulin interaction.
The genetic algorithm should help in finding the missing parame-
ters, although the goal of this research is not to find these parame-
ters, but use the parameters found as a second test.
There are many interpretations on how fim expression is regulated
in Escherichia coli [10, 12]. A main regulatory process in the ex-
pression is down to a fragment of DNA that can be expelled and
reinserted in opposite direction [2, 1]. It can be seen as a real [8,
14] switch turning from OFF to ON and back. Also is known that
the switch is regulated by the protein FimB and FimE, where FimB
is expected to turn the switch from OFF to ON and FimE favours
the OFF position.
It is not clear how the processes work that regulate fimB expression.
An idea is that H-NS (Histone-like nucleoid-structuring) protein [7]
represses fimB expression and SlyA — a protein first discovered in
Salmonella — antagonises H-NS [6]. These are just a fraction of
the several different regulatory binding sites for FimB.

3. MATERIALS AND METHODS
To test the hypothesis 5 models were created (table 1). The compu-
tational model starts out with generation a population of solutions
for the parameters we call genes. The solutions are tested and get
a fitness assigned. This is stored in an output-file. The test is done
by feeding the solutions into a test environment, where it will be
assigned to the behaviour of the individual cells.
The model is to be fit on experimental data obtained from replace-
ment mutation experiments. These mutations include RM39, RM40

1

Model Summary
1 Basic model
2 As model 1, but no effect of RM39 and

RM42 on H-NS
3 As model 1, but effect of OSA1 and OSA3

are forced to be 50% or more
4 Combination of the models 2 and 3
5 Effects of binding of SlyA to the different

sites is separate from effect of replacement
mutations + inclusion of SlyA mutation

Table 1: Summary of differences in the 5 models.

and RM42, where RM39 replaces OSA1, RM40 replaces OSA2 and
RM42 replaces OSA3. RM39 and RM42 have a direct effect on the
binding of H-NS. In wild type background the absence of H-NS
is tested and as with the other experiments either with or without
SlyA present.
The first generations of genes/parameters are randomly created.
After being tested for their fitness, the best solution is kept for
the next generations and the rest of the solutions are generated by
means of cross-over. The candidates for cross-over are selected by
tournament selection, where from a selection of four solutions the
two strongest are mixed. The new solutions are then subjected to
random mutation, where one of the genes is altered.
For every test a new environment is created in which a fixed num-
ber of afimbriate cells start out. Each individual run is saved as a
text file, containing the number of fimbriate and afimbriate cells at
each iteration.
The parameters found are part of a second test. Firstly the model
should go towards an optimum and secondly, the parameters pro-
duced should be scrutinised with what we know about the process
from biology.
The basic model includes effects of binding of OSA1, OSA2 and
OSA3 and the combinations of 1+2 and 2+3 on H-NS binding, as
does RM39 and RM42. The effect of the replacement mutations is
assumed to be the same as the effect as OSA1 or OSA3 binding to
the DNA. The difference between the 5 different models is shown
in table 1. In total there are 14 parameters or genes in the genetic
algorithm.

4. RESULTS

The genetic algorithm goes in most circumstances to an optimum.
For models 1, 2, 4 and 5 the final results compare very favourably
with the experimental results. Still, the acquired parameters have
some problems with their biological validity.
The parameters show in model 1, 2 and 4 that both OSA1 and OSA3

(overlapping with the H-NS site) have no effect on the binding of
H-NS, or the effect of H-NS on fimB expression. As binding of
SlyA and the effect of mutation in these models is assumed to be
the same, the effect of RM39 and RM42 is also expected to be zero.
This cannot be the case as these two binding sites overlap directly
with H-NS and should thus have a direct effect on H-NS.
In model 5 the effect of the mutation and the binding of SlyA is
separated. In this case we see an effect of binding of SlyA to both
OSA1 and OSA3, but the effect of RM39 and RM42 comes out as
0% and 1% respectively. RM40 which has no overlap with the H-
NS site is expected to have an effect of 8%.
A further discrepancy is that the fim switch is easily switched from
ON-to-OFF, but quite difficult to switch from OFF-to-ON. The
model produces fimbriate cells in the same ratio as in biological
experiments, so maybe the switch behaves like this in real life.

5. DISCUSSION

The validity of the assumptions in two ways, firstly the model has
to reach an optimum by genetic algorithms. From this perspective
we see that the models 1, 2, 4 and 5 seem to do this. The only
model that doesn’t go to an optimum is Model 3. The restriction
causes it to not go to an optimum, with a least square error (lse)
of 10. Model 4 which is based on model 2 and 3 comes closer but
has a big variation, where the lse goes down to 2.9. This value is
combined with a large variation in results.
The next step is to look at the parameters generated. We can ignore
the results for model 3 as it failed to reach an optimum in our first
test and also model 4 can be put in doubt, certainly with the rather
large errors.
Firstly observing the parameters that say at what concentration of
FimB the switch has a 50% probability of going from Off to On
and at what concentration the switch has 50% probability of turning
Off. In the values obtained here in every model it is quite unlikely
for the switch to be in the ON position, or if it does happen only
very briefly. We have to note here that in experiments normally is
found that only 1% of the cells is in fimbriate state.
The results from model 1 it is implied that neither SlyA binding to
the DNA at OSA1 or OSA3 has any effect on H-NS, nor the muta-
tions of these sites, RM39 or RM42. In Model 5 we see an effect
for SlyA binding to OSA1 and OSA3 but no effect of RM39 and
only slight effect of RM42 (G12 and G14). Since these sites over-
lap directly with H-NS we expect there to be a definite effect.
Model 2 is ignored out of hand even though it has the lowest lse of
the five models, but the assumption, like in model 4, that the muta-
tions RM39 and RM42 have no effect on H-NS cannot be accepted
as biologically valid.
Since we don’t find that the parameters can be seen as biologically
valid, this may point to a flaw in the hypothesis. Further testing
is necessary in the actual computer model and further research to
the correct hypothesis has to be continued. Our estimation is that a
further identified H-NS site should be taken into consideration, as
well as a possible repressor site located further upstream from the
fimB site.
Further indications on running the computer model without having
SlyA bind to OSA3 seem to indicate that this site may not actually
be a SlyA binding site. this is backed up by the fact that the OSA3

site does not conform to the consensus of the normal SlyA binding
site. OSA1 and OSA2 have a relatively close fit with the consensus
for SlyA, but OSA3 is a bit off.
A quick test using the same computer model, but preventing SlyA
from binding to OSA3 seems to indicate that this may be the case,
but still doesn’t fit perfectly with experimental results, therefore
implying that there must be further interaction taking place. There
are some small clues towards these other interactions, but further
modelling as well as further experiments need to be done to con-
firm the existence of these other interactions and binding sites.
Recent, but yet to be published research seem to support the idea
of just two SlyA binding sites, and seems to go as suggesting four
H-NS site, with direct overlap with both of the SlyA sites.

2

6. REFERENCES
[1] A. M. Adiciptaningrum, I. C. Blomfield, and S. J. Tans.

Direct observation of Type 1 fimbrial switching. EMBO

reports, 10(5):527–532, March 2009.
[2] I. C. Blomfield, D. H. Kulasekara, and B. I. Eisenstein.

Integration host factor stimulates both FimB- and
FimE-mediated site-specific DNA inversion that controls
phase variation of type 1 fimbriae expression in Escherichia

coli. Molecular Microbiology, 23(4):707–717, 1997.
[3] T. Chen, H. L. He, and G. M. Church. Modeling gene

expression with differential equations. Pac Symp Biocomput,
pages 29–40, 1999.

[4] D. Chu and I. C. Blomfield. Orientational control is an
efficient control mechanism for phase switching in the E. coli

fim system. Journal of Theoretical Biology, 244(3):541–551,
2007.

[5] D. Chu, J. Roobol, and I. Blomfield. A theoretical
interpretation of the transient sialic acid toxicity of a nanR

mutant of Escherichia coli. Journal of Molecular Biology,
375:875–889, 2008.

[6] D. Corbett, H. J. Bennet, H. Askar, J. Green, and I. S.
Roberts. SlyA and H-NS regulate trascription of the
Escherichia coli K5 capsule gene cluster, and expression of
slyA in Escherichia coli is temperature dependent, positively
autoregulated, and independent of H-NS. Journal of

Biological chemistry, 282(46):33326–33335, 2007.
[7] R. T. Dame, M. S. Luijsterburg, E. Krin, P. N. Bertin,

R. Wagner, and G. J. L. Wuite. DNA bridging: a property
shared among H-NS-like proteins. Journal of Bacteriology,
187(5):1845–1848, 2005.

[8] T. S. Gardner, C. R. Cantor, and J. J. Collins. Construction of
a genetic toggle switch in Escherichia coli. Nature,
403:339–342, January 2000.

[9] R. Karmakar and I. Bose. Stochastic model of transcription
factor-regulated gene expression. Physical Biology,
3:200–208, 2006.

[10] P. Klemm. Two regulatory fim genes, fimB and fimE, control
the phase variation of type 1 fimbriae in Escherichia coli.
The EMBO Journal, 5(6):1389–1393, 1986.

[11] S. Ramsey, D. Orrell, and H. Bolouri. Dizzy: Stochastic
simulation of large-scale genetic regulatory networks.
Journal of Bioinformatics and Computational Biology,
3:415–436, 2005.

[12] P. L. Roesch and I. C. Blomfield. Leucine alters the
interaction of the leucine-responsive regulatory protein (Lrp)
with the fim switch to stimulate site-specific recombination
in Escherichia coli. Molecular Microbiology, 27(4):751–761,
1998.

[13] N. V. Valeyev, D. G. Bates, P. Heslop-Harrison,
I. Postlethwaite, and N. V. Kotov. Elucidating the mechanism
of cooperative calcium-calmodulin interactions: a structural
systems biology approach. BMC Systems Biology, 48(2),
2008.

[14] D. M. Wolf and A. P. Arkin. 15 minutes of fim: Control of
phase variation in E.coli. OMICS: A Journal of Integrative

Biology, 6(1):91–114, January 2002.

3

Complexity Analysis of Evolved Programs

Tom Castle and Colin G. Johnson
Computing Laboratory

University of Kent
Canterbury, UK, CT2 7NZ

{tc33, C.G.Johnson} @ kent.ac.uk

ABSTRACT
Program evaluation is typically the most computationally expen-

sive part of evolutionary approaches to automatic programming.

This research looks at the feasibility of using complexity metrics

as a way of avoiding unnecessary expensive evaluations. Our anal-

ysis of program complexity indicates that, for different problems,

certain ranges of complexity do give a higher density of highly fit

programs.

1. INTRODUCTION
In evolutionary optimisation algorithms it is necessary to evalu-

ate the quality of candidate solutions to determine their chance of

survival through to later generations. Where the candidate solutions

are programs, such as in Genetic Programming [8], the individu-

als must be executed, often multiple times. This is an expensive

process, particularly for tasks such as image processing problems.

Improving the performance of the evaluation step, or reducing the

number of evaluations required, will therefore be hugely beneficial

to the rate at which the search space can be navigated. The work

we present here is a preliminary study into the feasibility of using

complexity metrics as part of a system to give such a performance

boost.

2. BACKGROUND
The problem of evaluation performance has been tackled with a

number of different techniques in the literature. Some approaches

focus on parallelising the code [1, 7] or otherwise seeking raw per-

formance gains through inventive uses of hardware, such as GPUs [6].

Others take a less bruteforce approach, by caching subtree fitness [10],

or compilation of genomes down to machine code [4].

All these techniques seek to optimise individual evaluations. In

contrast, the system we propose in section 5, attempts to avoid eval-

uation of many programs entirely. This would be achieved by se-

lectively choosing which programs to evaluate according to their

complexity score. For this to be possible, a sufficient relationship

must exist between the program’s fitness and complexity scores.

Establishing whether this is the case is the primary purpose of this

paper.

Complexity metrics are often used in the field of software mea-

surement to provide a quantifiable measure of software quality.

Many different complexity metrics have been proposed [9, 3, 5],

primarily with the purposes of identifying software modules that

will be difficult to test or maintain, or to hint at the reliability of

the code. McCabe’s cyclomatic complexity [9] is possibly the most

well known of these, and so is the one we consider here.

Cyclomatic complexity is a measure of the number of control

paths through a program. For example, a program devoid of condi-

tional statements or loops would have just one execution path and

so have a cyclomatic complexity of 1, whereas a program with one

’if’ statement would have a score of 2, due to having two indepen-

dent paths possible. Significantly, the cyclomatic complexity is not

merely a measure of program length or depth and is only loosely

related to those measures. Throughout the rest of this paper, cyclo-

matic complexity will be referred to simply as complexity.

3. METHOD
It is hoped that this work will be applicable to all evolutionary

programming systems but for the purposes of presenting experi-

mental data, this study will use the grammar guided approach out-

lined by Whigham [11], which he calls Context Free Grammar GP

(CFG-GP) as provided by the EpochX GP framework [2]. 100 runs

of the algorithm were performed on each of even-five parity, Santa

Fe trail and 6-bit multiplexer. The parameters used for each run are

outlined in tables 1, 2 and 3. After each generation of each run,

the fitness and complexity of all candidate programs in the pop-

ulation were calculated and logged. Standardised fitness is used

here, where zero is the best achievable fitness score. If any solu-

tions obtained a zero fitness score then that run was terminated and

execution continued with the next run.

Table 1: Even-five parity parameter tableau for CFG-GP
Raw & standardised fitness: Number of inputs producing in-

correct outputs, on all 25 possi-

ble cases.

Population size: 500

Number of generations: 100

Maximum program depth: 8

Mutation probability: 0.1

Crossover probability: 0.9

Table 2: Santa Fe trail parameter tableau for CFG-GP
Raw fitness: Number of pieces of food be-

fore the ant times out with 600

operations.

Standardised fitness: Total number of pieces of food,

minus the raw fitness.

Population size: 500

Number of generations: 100

Maximum program depth: 10

Mutation probability: 0.1

Crossover probability: 0.9

4. RESULTS AND DISCUSSION

4

Table 3: 6-bit multiplexer parameter tableau for CFG-GP

Raw & standardised fitness: Number of inputs producing in-
correct outputs, on all 26 possi-
ble cases.

Population size: 500
Number of generations: 100
Maximum program depth: 8
Mutation probability: 0.1
Crossover probability: 0.9

The results of our experiments are shown as heatmap charts in
figures 1, 2 and 3. The charts show the density of programs found
at each fitness/complexity point throughout all runs. A brighter
cell indicates a greater density of programs, while black signals no
programs.

Each of the charts illustrates particular problem traits. The boolean
problems of even-five parity and 6-bit multiplexer show a higher
density of programs of middle fitness or better. This should be ex-
pected since on a boolean problem, any candidate solution which
attains more incorrect results than correct merely needs to undergo
a mutation to negate the entire program to give a more than 50%
correct program. This is in contrast with the Santa Fe trail chart
where the highest density of programs is at the lowest fitness score.

Figure 1: Density of programs discovered with each fit-

ness/complexity score on the even-five parity problem.

It is worth noting that the results for the Santa Fe trail show that
no zero fitness programs were located, so further work will be re-
quired to ensure that a suitable parameter set is being used here, but
it is expected that the spread of complexities would remain similar.

The 6-bit multiplexer and Santa Fe trail both show a region of
very low complexity which appears to be insufficiently complex
to sustain highly fit programs. This is not the case with even-five
parity, which concurs with what we know about the problem; that
it is essentially easier to solve. The property that is of real interest
in the context of this paper, is that the most fit programs are found
with a lower density at higher complexities. This implies that it
should be possible to focus evaluation efforts at lower complexities
without damaging the search’s ability to locate solutions.

5. FUTURE WORK

The results discussed above show that there is a potential use
for the cyclomatic complexity metric in the evaluation of evolved
programs. But, for it to be useful in practice it needs to be shown
to hold for a wider set of problems. In particular, testing its ap-
plicability to any class of problems with an expensive evaluation

Figure 2: Density of programs discovered with each fit-

ness/complexity score on the Santa Fe trail problem.

Figure 3: Density of programs discovered with each fit-

ness/complexity score on the 6-bit multiplexer problem.

procedure, such as image processing tasks, would be valuable. It
would also be necessary to analyse the specific ranges of complex-
ities that are of interest in different problems. Beyond further anal-
ysis the next step would be the actual implementation and use of
these metrics to improve performance of real runs.

An alternative benefit that has not been discussed in this paper is
the use of complexity metrics to improve the readability of code by
humans. This is another area for future work.

5

6. REFERENCES
[1] D. Andre and J. R. Koza. Parallel genetic programming on a

network of transputers. In J. P. Rosca, editor, Proceedings of

the Workshop on Genetic Programming: From Theory to

Real-World Applications, pages 111–120, Tahoe City,
California, USA, 9 July 1995.

[2] T. Castle and L. Beadle. Epochx: genetic program software
for research. http://www.epochx.org/, 2007.

[3] J. L. Elshoff. An analysis of some commercial PL/I
programs. IEEE Transactions on Software Engineering,
2(2):113–120, 1976.

[4] A. Fukunaga, A. Stechert, and D. Mutz. A genome compiler
for high performance genetic programming. In J. R. Koza,
W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel,
M. H. Garzon, D. E. Goldberg, H. Iba, and R. Riolo, editors,
Genetic Programming 1998: Proceedings of the Third

Annual Conference, pages 86–94, University of Wisconsin,
Madison, Wisconsin, USA, 22-25 July 1998. Morgan
Kaufmann.

[5] M. H. Halstead. Natural laws controlling algorithm
structure? SIGPLAN Not., 7(2):19–26, 1972.

[6] S. Harding and W. Banzhaf. Fast genetic programming on
GPUs. In M. Ebner, M. O’Neill, A. Ekárt, L. Vanneschi, and
A. I. Esparcia-Alcázar, editors, Proceedings of the 10th

European Conference on Genetic Programming, volume
4445 of Lecture Notes in Computer Science, pages 90–101,
Valencia, Spain, 11 - 13 Apr. 2007. Springer.

[7] S. Kent and D. Dracopoulos. Bulk synchronous
parallelisation of genetic programming. Technical Report
CSTR-96-13 ; CNES-96-02, Brunel University, Uxbridge,
Middlesex, UK, July 1996.

[8] J. R. Koza. Genetic Programming: On the Programming of

Computers by Means of Natural Selection. MIT Press,
Cambridge, MA, USA, 1992.

[9] T. J. McCabe. A complexity measure. In ICSE ’76:

Proceedings of the 2nd international conference on Software

engineering, page 407, Los Alamitos, CA, USA, 1976. IEEE
Computer Society Press.

[10] M. E. Roberts. The effectiveness of cost based subtree
caching mechanisms in typed genetic programming for
image segmentation. In G. R. Raidl, S. Cagnoni, J. J. R.
Cardalda, D. W. Corne, J. Gottlieb, A. Guillot, E. Hart, C. G.
Johnson, E. Marchiori, J.-A. Meyer, and M. Middendorf,
editors, Applications of Evolutionary Computing,

EvoWorkshops2003: EvoBIO, EvoCOP, EvoIASP,

EvoMUSART, EvoROB, EvoSTIM, volume 2611 of LNCS,
pages 444–454, University of Essex, UK, 14-16 Apr. 2003.
Springer-Verlag.

[11] P. A. Whigham. Grammatically-based genetic programming.
In J. P. Rosca, editor, Proceedings of the Workshop on

Genetic Programming: From Theory to Real-World

Applications, pages 33–41, Tahoe City, California, USA, 9
July 1995.

6

7

Design of a Privacy Protected Policy-Based
Authorisation System

Kaniz Fatema
Computing Laboratory

University of Kent,
Canterbury, CT2 7NZ
kf66@kent.ac.uk

David Chadwick
Computing Laboratory

University of Kent,
Canterbury, CT2 7NZ

D.W.Chadwick@kent.ac.uk

ABSTRACT
An access control system based on policy is more flexible than a
hard coded id-based access control system. Recently privacy has
become an important concern with regard to electronic data.
Hence the necessity has arisen to include privacy policy in the
access control system. These privacy policies can come from
different authors such as issuer, data subject or keeper of that
personal data. Organizations dealing with private data need to
include these privacy policies coming from different authorities
with their access control policies. In this paper a design is
proposed for a system which can handle the inclusion of privacy
policies from different authorities through the use of sticky policy
paradigm and has capability to include multiple policy languages
in the same infrastructure.

Keywords
Privacy policy, PDP, Application dependent PEP, Application
Independent PEP, Master-PDP, Obligation, Obligations Service.

1. INTRODUCTION
Privacy protection of personal data is an important requirement
placed upon the organisations handling electronic private data.
Organisations need to collect personal data for different business,
promotional, research and operational purposes. The organisations
need to ensure the privacy of these data. Now-a-days people are
being more concerned about the privacy of their personal data.
Different laws [2, 12] also exist to support protection of privacy of
personal data. To support these pressures a system designed to
provide privacy of personal data should have the following
capabilities:

1. Sticky Policy Paradigm: A mechanism to have privacy
rules from different authorities such as issuer, data
subject or keeper of the personal data. In a traditional
access control system only the organisation’s authority
can set the access control policy which makes the
system unsuitable for privacy protection. Our proposed
system will accept policies from different authorities
and will include them with the access control policy
through the use of a sticky policy paradigm (where data
and the related policy are stuck together).

2. User Friendly Interface: Need to have a user friendly
interface in order to allowing the creation of privacy
policy by non-technical people. We plan to provide such
a user friendly interface, where users can define policy
with simple tick boxes.

3. Obligations: Need to include obligations (for example
notifying the subject or deleting the data after a certain

period) with the access decision which a traditional
access control system is unable to do.

4. Distributed Enforcement: Need to have a mechanism
for distributed enforcement of privacy policy. In our
proposed system the privacy policy will not only be
stuck with the private data within the system or while
leaving the system but also will be enforced by any
receiving organisation.

5. Multiple Policy Languages: Need to include multiple
policy languages. In a distributed environment it cannot
always be assumed that all the systems will use the
same policy language. If a privacy policy with the
private data arrives at a system which does not support
that particular policy language then the system will not
be able to implement the policy. Our proposed system
will co-ordinate many different policy languages.
Conflict resolution strategies are also designed to
resolve conflicts among decisions returned by many
different Policy Decision Points (PDPs).

Section 2 includes a literature review of the current research in
this field. A brief description of the system is provided in section
3; conclusions and acknowledgements are covered in section 4
and 5.

2. REVIEW OF RELATED RESEARCH
IBM’s security research group has been doing research on privacy
protection of customer's data collected by enterprises [4-6, 1, 10].
They used sticky policy paradigm where personal data are
associated to the privacy policy and passed together while
exchanging data among enterprises. This research on privacy does
not provide a way to accommodate different policy languages.
The obligations of obligation model are simply activity names
such as log, notify, getConsent etc. without a way to actually
enforce the obligation [6]; where our model provides a way to
implement the application independent obligations.

Marco Casassa Mont of HP has provided a way of transmitting
encrypted confidential data with obligations to other parties[8],
[9]. They used the sticky policy as an IBE (Identity Based
Encryption) key for obfuscation of data [9]. The trusted authority
will issue the decryption key only if the requester acknowledges
the compliance to the disclosure policies. Nevertheless, this model
does not include multiple policy languages and the trusted
authority could be considered a single point of failure. Our model
ensures the distributed enforcement of sticky policy through the
use of obligation.

8

3. ARCHITECTURE OF THE SYSTEM
In our model the conventional PEP (Policy Enforcement Point) of
XACML [11] is replaced by two components – AppDep PEP,
which works as a conventional PEP and Application Independent
PEP which acts as an interface to the application and helps to
implement application independent obligations.

Figure 1. Privacy protected authorisation model

Obligations are actions that must be performed when a certain
event occurs. When the event is an authorisation decision, then the
obligations are actions that must be performed before, after or
along with the enforcement of the authorisation decision.
Obligations Service is the component responsible for enforcing
these obligations which we distinguished as before, after and with
obligations.
The CVS (Credential Validation Service) does the validation of
credentials issued by different authorities.
The Policy Store stores each policy with a given unique ID - the
Policy ID (PID). The Sticky Store keeps binding of PIDs to
Resource ID (RID). The Master PDP is the component that calls
multiple subordinate PDPs (Policy Decision Point) and combines
the decisions returned by the PDPs to form a single access
decision. The Master PDP has a conflict resolution policy that
resolves the conflict among the authorisation decisions returned
from the multiple subordinate PDPs
Each subordinate PDP is comprised of the policies. When an
access request comes to a PDP it consults the policies and returns
a decision and optionally obligations. Each PDP has the following
attributes:

• the PID of the policy it is loaded with
• the author of the policy (used to determine the policy

authority)
• the date that the policy was written
• the list of resource types covered by the policy (used to

determine its specificity)

3.1 Conflict Resolution Policy
A conflict resolution policy (CRP) consists of multiple conflict
resolution rules (CRRs). The default CRP is read in at program
initialisation time and additional CRRs obtained from the
subjects’ and issuers’ sticky policies can be dynamically added to

it. Each conflict resolution rule (CRR) comprises a condition, a
decision combining rule (DCR), an author and a time of creation.
The conditions of the CRRs are tested against the request context
by the Master PDP to see which decision combining rule to use.

All the PDPs are ordered according to a built-in precedence rule.
When the DCR of the chosen CRR is first applicable the Master
PDP calls each subordinate PDP in order, and stops processing
when the first grant or deny decision is obtained. Any not
applicable results are ignored whilst any indeterminate results are
only returned to the AIPEP if there is a problem with the request
context such as format mismatch.

For deny overrides and permit overrides the Master PDP will call
all the subordinate PDPs and will combine the decisions with the
following semantics:
- DenyOverrides – A Deny result overrides all other results. If

there is no Deny result, then Indeterminate overrides Permit
and NotApplicable. If there is no Indeterminate or Deny
result, Permit overrides NotApplicable.

- PermitOverrides – A Permit result overrides all other results.
If there is no Permit result, then Indeterminate overrides
Deny and NotApplicable. If there is no Indeterminate and
Permit result then Deny overrides NotApplicable.

3.1.1 Precedence Rules
The built-in precedence rules determine the precedence to resolve
conflicts of PDP and CRR.

The following precedence rules are used, in order:
1. The higher authority overrides lower authority [7]. Higher
authority is determined from the authority hierarchy. The
highest authority is the Law, and then the issuer of the data,
then the data subject and finally the keeper of the data has the
least precedence.
2. If more than one policy or CRR is written by the authority
at the same level of hierarchy, then the specific overrides the
general [3],[7], [13] precedence is used.
3. If more than one policy is available for the same specific
resource/subject, then the new overrides the old [7]
precedence is used. This is determined from the date the
policy was written.

4. CONCLUSION
We have designed the system in a way that when implemented
organisations can integrate it with a minimum alteration to their
existing systems and the systems can do the privacy enforcement
automatically.

ACKNOWLEDGEMENTS
Thanks to the TAS3 project for funding this work.

9

5. REFERENCES
[1] Berghe, C. V., Schunter, M. 2006. Privacy Injector —

Automated Privacy Enforcement through Aspects.
6th Workshop on Privacy Enhancing Technologies
Robinson College, Cambridge, United Kingdom.

[2] Data protection Act 1998, available on
!""#$%%&&&'(#)*'+(,'-.%/0")%/0")1223%-.#+45122
3667258951

[3] Dunlop N., Indulska, J., Raymond, K.2003. Methods for
Conflict Resolution in Policy-Based Management
Systems, Proceedings of Seventh International
Enterprise Distributed Object Computing Conference,
16-19 Sept. 2003.

[4] Karjoth G., Schunter, M. 2002. A Privacy Policy Model
for Enterprises, 15th IEEE Computer Foundations
Workshop, June 24-26, 2002.

[5] Karjoth G., Schunter, M., Waidner, M. 2002. Platform
for Enterprise Privacy Practices: Privacy-enabled
Management of Customer Data. 2nd Workshop on
Privacy Enhancing Technologies (PET 2002), San
Francisco, CA, USA. April 14-15, 2002.

[6] Karjoth, G., Schunter, M., Waidner, M. 2002. Privacy-
enabled services for enterprises. Proceedings of the 13th
International Workshop on Database and Expert
Systems Applications, 2-6 Sept. 2002.:

[7] Linington, P., Milosevic, Z., Raymond, K. 1998.
Policies in Communities: Extending the ODP Enterprise
Viewpoint. Proceedings of the second International

Enterprise DISTRIBUTED Object Computing
Workshop (EDOC '98), La Jolla, California, USA, Nov
1998.

[8] Mont M. C., Pearson S., Bramhall P. 2003. Towards
Accountable Management of Identity and Privacy:
Sticky Policy and Privacy. Trusted System Laboratory,
HP Laboratories, Bristol, HPL-2003-49.

[9] Mont, M. C. 2004. Dealing with Privacy Obligations:
Important Aspects and Technical Approaches.
International conference on trust and privacy in digital
business No1, Zaragoza.

[10] Nelson, M. R., Schunter, M., McCullough, M.R., Bliss,
J.S. 2005. Trust on Demand — Enabling Privacy,
Security, Transparency, and Accountability in
Distributed Systems.
33rd Research Conference on Communication,
Information and Internet Policy (TPRC), September 23-
25, Arlington VA, USA.

[11] OASIS .eXtensible Access Control Markup Language
(XACML) Version 2.0. OASIS Standard, 1 Feb 2005.

[12] OECD Guidelines on the Protection of Privacy and
Transborder Flows of Personal Data, available on
http://www.oecd.org/document/18/0,3343,en_2649_342
55_1815186_1_1_1_1,00.html

[13] Russello, G., Dong, C., Dulay, N. 2007. Authorisation
and conflict resolution for Hierarchical Domains. Eight
IEEE International Workshop on Policies for
Distributed systems and Networks (POLICY '07).

!

"#!
!

!"#$%&'()'*+","-.'/'-+0'123$%4&'0"-#%-56'7.&8,'39.$5+'2'-:'-+0'
,;&"%'8"+-.'.-<9$,6'=%90$3&0'><'9$%'89%3&20"%&3,&0'-==%9-3;'

7%"#;,'39.$5+'2'>:)!

"#$%&! "#$%'!
!

"##$%&! "##$%'!
!

"###$%&! "###$%'!
!

"#($%&! "#($%'!
!

!"#$%&'(#%$)%*+,-."/)+0"#+1/2%#+'(-3#-45
)*&+&!,#-&../0!
1+#(/23#45!60!7/+4!
8&+4/2'*259!17!

.:;<=>?/+4@&-@*?!

A/4/2!B6CD/23!
1+#(/23#45!60!7/+4!
8&+4/2'*259!17!

A@E@B6CD/23>?/+4@&-@*?

?@ABC?DB'
$%&'(!)*+,(+-.! +('! /0'! 12&3!)*+,(+-.! /0+/! *2/%*/*4'&3! ('5('.'2/!
612/+*2-'2/7! *2/'(.'6/*12! +2)! '86&%.*12! 19!)+/+7! :%/! 212'! 19! /0'!
6%(('2/! +%/1-+/*6!)*+,(+-! &+31%/! /'602*;%'.! 5(1)%6'!)'.*(+:&'!
&+31%/.!*2!+!('+.12+:&'!/*-'<!!='!+)15/!+!91(6'>)*('6/')!+55(1+60!
/1!+%/1-+/*6+&&3!&+3!1%/!+'./0'/*6+&&3!5&'+.*2,!$%&'(!)*+,(+-.!*2!+!
('&+/*4'&3! 9+./! /*-'<! ?! @+4+! 5(1/1/35'!)'-12./(+/'.! 1%(! 214'&!
91(6'!-1)'&<!

()+ *EBCFGHDB*FE'
$%&'(!)*+,(+-.!6+2!*2/%*/*4'&3!('5('.'2/!612/+*2-'2/7!*2/'(.'6/*127!
'86&%.*12! +2)! 1/0'(! ('&+/*12.0*5.! :'/A''2!)+/+! .'/.<!
B12.';%'2/&37! /0'.'!)*+,(+-.! +('! %.')! *2! +! A*)'! 4+(*'/3! 19!
+55&*6+/*12! +('+.7! .%60! +.! :*1&1,*6+&! 4*.%+&*C+/*12! DEF7! +2)!
6&+..*9*6+/*12!+2)!;%'(3*2,!19!&+(,'!)+/+:+.'.!DGF<!?.!*&&%./(+/')!*2!
H*,%('! "7! /0'.'!)*+,(+-.! +('! 61-51.')!19! .*-5&'! 6&1.')!6%(4'.<!
?.! /0'.'! 6%(4'.! -''/7! /0'! 5&+2'! *.! .5&*/! %5! *2/1! C12'.! /0+/! +('!
%2*;%'&3!*)'2/*9*')!:3!/0'!6%(4'.!/0+/!612/+*2!/0'-<!

I(1)%6*2,! +2! +'./0'/*6+&&3! 5&'+.*2,! $%&'(!)*+,(+-! &+31%/! *.! +!
)*99*6%&/! /+.J<! K'6'2/&37! +55(1+60'.! .%60! +.! '41&%/*12+(3!
15/*-*C+/*12! DEF7! 0*&&! 6&*-:*2,! +2)! +'./0'/*6! &+31%/! -'/(*6.! DLF!
A'('! +)15/')! /1! +%/1-+/*6+&&3! &+3! 1%/! /0'.'!)*+,(+-.<! M%60!
-'/01).! +('! 61-5%/+/*12+&&3! '85'2.*4'! +2)! /0%.7! /0'3! +('!
*-5(+6/*6+&!91(!&+3*2,!1%/!)*+,(+-.!A*/0!+!&+(,'!2%-:'(!19!6%(4'.<!

='!+)+5/!/0'!A'&&>J21A2!+2)!.%66'..9%&!91(6'>)*('6/')!+55(1+60!
%.')!*2!,(+50!)(+A*2,!DNF!/1!&+3!1%/!$%&'(!)*+,(+-.<!H1(!,(+50.7!+!
.3./'-! 19! .5(*2,.! O/0'! '),'.P! +2)! '&'6/(*6+&&3! 60+(,')! 5+(/*6&'.!
O/0'!4'(/*6'.P!91(-.!+!91(6'!-1)'&7!A0*60!*.!:(1%,0/!/1!./+:*&*/3!*2!
+! .';%'26'! 19! */'(+/*12.<! Q1/*2,! /0+/! 6&1.')! 6%(4'.! *2! +2! $%&'(!
)*+,(+-!6+2!:'!('5('.'2/')!+.!51&3,12.7!91(6'.!:'/A''2!4'(/*6'.7!
&*2'.7!+2)!/0'!51&3,12.!/0'-.'&4'.!+('!%.')!/1!5(1)%6'!2*6'&3!&+*)!
1%/!)*+,(+-.<!?!-+R1(!60+&&'2,'7!A0*60!*.!21/!+!5(1:&'-!*2!,(+50!
&+31%/7! *.! /0'!)'4'&15-'2/! 19! +2! +55(15(*+/'! 91(6'! -1)'&! /0+/!
-+*2/+*2.! /0'!1(*,*2+&!./(%6/%('!19! /0'!)*+,(+-<!S3!/0*.!A'!-'+2!
/0+/! +&&! /0'! C12'.! /0+/! +('! *2! /0'!1(*,*2+&!)*+,(+-!+('! ./*&&! *2! /0'!
&+*)!1%/!)*+,(+-7!+2)!/0+/!21!2'A!C12'.!+('!+))')<!

H1(6'>)*('6/')!5&+6'-'2/!0+.!21/!5('4*1%.&3!:''2!%.')!/1!&+3!1%/!
$%&'(!)*+,(+-.7!:%/!9(1-!/0'!12,1*2,!('.'+(60!)'.6(*:')!0'('7!A'!
0+4'! &'+(2/! /0+/! ,11)! &+31%/.! 6+2! :'! 5(1)%6')! 9(1-! 5('4*1%.&3!
,'2'(+/')!)*+,(+-.!*2!+!('+.12+:&'!/*-'<!!

I)+ FHC'?JJCF?DK''
?%/1-+/*6!,'2'(+/*12!-'/01).! 91(!$%&'(!)*+,(+-.!.%60!+.! DT7!UF!
5(1)%6'!)*99*6%&/!/1!61-5('0'2)!('5('.'2/+/*12.!O.''!H*,%('!"7!&'9/!
61&%-2P<!V0%.7!+9/'(!,'2'(+/*127! /0'.'!('5('.'2/+/*12.!0+4'!/1!:'!
('9*2')!+2)!*-5(14')!:3!1/0'(!.5'6*9*6!&+31%/!/'602*;%'.<!!

W2! 1%(! 6+.'7! 1%(! *2*/*+&!)*+,(+-.! +('! ,'2'(+/')! :3! +! /'602*;%'!
:+.')! 12! /0+/! ,*4'2! *2! DUF<! V0'.'!)*+,(+-.! +('! A'&&91(-')! +2)!
/0%.7! /0'3! 0+4'! 21! 511(! ./(%6/%(+&! 9'+/%('.! .%60! +.! /(*5&'! 51*2/.7!
6126%(('263!1(!)*.6122'6/')!C12'.!DTF<!?.!+!('.%&/7!/0'!/'602*;%'!
2!DUF!)1'.!21/!,'2'(+/'!+&&!51..:&'!)*+,(+-.<!

X*4'2! +2! *2*/*+&!)*+,(+-7! 1%(! +55(1+60! .*-%&+/'.! /0'! '99'6/! 19! +!
,(1%5!19!+//(+6/*4'!+2)!('5%&.*4'!91(6'.!91(!+!2%-:'(!19!*/'(+/*12.<!
V0'! 51&3,12.! +('! 60+2,')! +2)! /0'!)*+,(+-! *.! *-5(14')! %2/*&!
9*2+&&37!./+:*&*/3!*.!('+60')<!V0'!-+*2!1:R'6/*4'.!19!/0'!91(6'.!+('!
/1Y! *P! +//+*2! (',%&+(7! .-11/0! +2)! .*-*&+(&3! .0+5')! 51&3,12.Z! **P!
-+*2/+*2! /0'! 1(*,*2+&! ./(%6/%('! 19! /0'!)*+,(+-Z! +2)! ***P! '2.%('!
+)';%+/'&3!.*C')!51&3,12.!+2)!C12'.<!

!

!

!

""!
!

!"#$%&'()!!"*+,',+-.$/0'1%.2$3&2'4-'567)!
!

"#$! "##$!

()8! !.%3&0''
#$%$&'(&)! *+!,('-./0'123! 4+(52/3$(25*23!'--(+'5.216! *7+! *)-21!+4!
4+(521! '(2! 8123! $9! +8(! %+32&:! '**('5*$;2! '93! (2-8&1$;2! 4+(521<!
=**('5*$;2!4+(521!'(2!3$(25*&)!-(+-+(*$+9'&!*+!*.2!3$1*'952!02*7229!
7+!;2($5216!'93!(2-8&1$;2!4+(521!'(2!$9;2(12&)!-(+-+(*$+9'&!*+!*.2!
1>8'(23!3$1*'952!02*7229!*7+!;2(*$521<!!

?7+!4+(521! '**2%-*! *+! '**'$9! 1%++*.!'93! (2,8&'(!-+&),+91:! 9+:''!
(2-8&1$;2! 4+(52! 02*7229! 2;2()! -'$(! +4! ;2(*$521! +4! *.2! 1'%2!
-+&),+9@! '93! 94:' '9! '**('5*$;2! 4+(52! 02*7229! 2;2()! -'$(! +4!
'3A'529*!;2(*$521!+4!*.2!1'%2!-+&),+9<!?.816!'1!'&&!*.2!;2(*$521!+4!'!
-+&),+9!%+;2!'7')! 4(+%!2'5.!+*.2(6! *.2! &$921! B'5*$9,!'1! 1-($9,1C!
'**('5*!92$,.0+8($9,!;2(*$521!1+!*.'*!'!1%++*.!-+&),+9!$1!4+(%23<!!

D+72;2(6!1$952!(2,8&'(!-+&),+91!%$,.*!9+*!'&7')1!02!'--(+-($'*2!
+! (2-(2129! *.2! (2>8$(23! E+921! '1! *.2! 1*(85*8(2! +4! *.2! 3$',('%!
%81*! 02! %'$9*'$9236! '! 12*! +4! +*.2(! 4+(521! *.'*! .'93&2! '&&! *.2!
-+11$0&2!-+&),+9/*+/-+&),+9!(2&'*$+91.$-1!'(2!(2>8$(23<!?.816!$4!$9!
*.2!+($,$9'&!3$',('%!*7+!-+&),+91!!"#$"%#&$%'()'*%6!93:';2(*$521!+4!
*.2!*7+!3$442(29*!-+&),+91!(2-8&12!'7')!4(+%!2'5.!+*.2(<!F4!$9!*.2!
58((29*! &')+8*! *.212! -+&),+91! $9*2(125*6! 92:' ;2(*$521! B+4! *.2!
3$442(29*! -+&),+91C! *.'*! '(2! 58((29*&)! 0(2'G$9,! *.2! 1*(85*8(2!
'**('5*<! F4! $9! *.2!+($,$9'&!3$',('%!-+&),+91! &$%'()'*%6! 9&:';2(*$521!
B+4!*.2!3$442(29*!-+&),+91C!*.'*!'(2!58((29*&)!$9!*.2!5+%%+9!E+92!
(2-8&12!'7')!4(+%!2'5.!+*.2(<!?.$1!.2&-1!*+!2918(2!*.2!2H$1*2952!
+4! *.2! E+92<! F4! $9! *.2! 58((29*! &')+8*! *.212! -+&),+91! 3+! 9+*!
$9*2(125*6! '! 1-25$'&! '**('5*$;2! 4+(526! 9;:' 7.$5.! $1! $9;2(12&)!
-(+-+(*$+9'&! *+! *.2! 1>8'(23!3$1*'952!02*7229!;2(*$521!+4! *.2! 4$(1*!
'93!125+93!-+&),+96!$1!925211'()!*+!(25+;2(!*.2!&+1*!E+92<!F4!$9!*.2!
+($,$9'&!3$',('%6!'!-+&),+9!*"$%+&$)!'9+*.2(!-+&),+96!9#:';2(*$521!
+4! *.2! *7+! -+&),+91! (2-8&12! '7')! 4(+%! 2'5.! +*.2(<! F4! $9! *.2!
58((29*!3$',('%6!*.2!4$(1*!-+&),+9!3+21!9+*!5+9*'$9!*.2!125+936!9<:'
;2(*$521! B+4! *.2! 3$442(29*! -+&),+91C! *.'*! '(2! $9;'&$3'*$9,! *.2!
1*(85*8(2!'**('5*<!#$952!*.2(2!%$,.*!02!5'121!7.2(2!'!;2(*2H!+4!+92!
-+&),+9!$1!5&+121*! *+!'!-+$9*!+9!'! &$92!02*7229!*7+!;2(*$521!+4!'!
125+93!-+&),+96!*.2!'0+;2!%29*$+923!4+(521!'(2!'--&$23!02*7229!
*.2!;2(*2H!+4!*.2!4$(1*!-+&),+9!'93!*.2!5&+121*!-+$9*!+9!*.2!&$92!+4!
*.2! 125+93!-+&),+9<! F9! *.$1!7')6! *.2!1)1*2%!.2&-1! *+! 2918(2! *.'*!
9+92!+4!*.2!%+;$9,!;2(*$521!$9;'&$3'*2!*.2!3$',('%!1*(85*8(2<!

?.2! 4$9'&! 12*! +4! 4+(521! '(2! 1-25$4$5'&&)! 321$,923! *+! 2918(2!
'32>8'*2&)! 1$E23! -+&),+91! '93! E+921<! I+*$9,! *.'*! *.2!
5+%-(2.291$+9!+4!3$',('%1!5+91$1*$9,!+4!;'($+81!$/58(;2!E+921!B$!
(242(1! *+! *.2!98%02(!+4! -+&),+91! $9!7.$5.! *.2! E+92! &$21C! 5'9!02!
$%-(+;23! 0)! $95(2'1$9,! *.2! 1$E2! +4! +8*2(! E+921! B7.$5.! .';2! '!
1%'&&!$C!'93!325(2'1$9,!*.2!1$E2!+4!*.2!$992(!E+921!B7.$5.!.';2!'!
0$,!$C6!*.2!$32'&!1$E2!4+(!2;2()!$/58(;2!E+92!$1!5'&58&'*23!0)!,-.,$!
B7.2(2!-!$1!*.2!98%02(!+4!58(;21!$9!*.2!3$',('%C<!?+!$95(2'12!*.2!
1$E2!+4! *.2! E+926! *.2! 1$E2! +4! *.2! 5+9*'$9$9,!-+&),+9! $1! $95(2'123!
'93!*.2!-+&),+9!$1!%+;23<!?+!$95(2'12!*.2!1$E2!+4!*.2!-+&),+96!*.2!
(2-8&1$;2! 4+(52! *.'*! .'93&21! $*1! 1%++*.9211! /! 4+(52! B'C! /! $1!
-(+,(211$;2&)! $95(2'123<!?+! $95(2'12! *.2! '5*8'&! E+92! 1$E26! 9":' *.2!
-+&),+91! 5+9*'$9$9,! *.2! E+92! '(2! %+;23! 0)! '9! '**('5*$;2! 4+(52!
02*7229!*.2$(!529*(+$3!'93!*.2!E+92!529*(+$3<!F4!'!9276!897'9*236!
E+92!$1! $9*(+385236!9=:' *.2!-+&),+91!5+9*'$9$9,!*.2!927!E+92!'(2!
%+;23!'7')!0)!'! (2-8&1$;2! 4+(52!02*7229! *.2$(! 529*(+$3!'93! *.2!
E+92! 529*(+$3<! F4! '&*2(9'*$;2&)! '! 7'9*23! E+92! $1! &+1*6! 9>:' *.2!
-+&),+91! *.'*! 1.+8&3! 5+9*'$9! *.2! E+92! '(2! -81.23! *+7'(31! 2'5.!
+*.2(! 0)! '9! '**('5*$;2! 4+(52! 02*7229! *.2$(! 529*(+$31<! #85.!
5+((25*$;2!4+(521!'(2!21129*$'&!*+!5+((25*!'9)!4&'71!$9!*.2!1*(85*8(2!
38($9,! *.2! &')+8*! -(+5211<! #*$&&! (2&'*23! *+! 3$',('%! '21*.2*$516! 9,:'
5+9*'$923!-+&),+91!'(2!'**('5*23!*+!*.2!529*(+$3!+4!*.2!5+9*'$9$9,!
-+&),+9!+(!E+92!*+!529*(2!$9*2(9'&!58(;21<!

?)! @ABCDEB'
J2! $%-&2%29*23! '! K';'! -(+*+*)-2! 4+(! +8(! 4+(52/3$(25*23! &')+8*!
'--(+'5.! '93! 72! *21*23! $*! 81$9,! ;'($+81! L6! M! '93! N/58(;2!
72&&4+(%23!3$',('%1! ,292('*23!0)! OPQ<!R$,8(2!"! $&&81*('*21! 1+%2!
024+(2!'93!'4*2(!&')+8*1<!?.2!4$9'&!&')+8*!4+(!'&&!*.2!S!L/58(;2!'93!
'&&! *.2!""M!M/58(;2! 3$',('%1!%'$9*'$923! *.2! +($,$9'&! 3215($-*$+9!
'93! 72! A83,23! *.2%! *+! .';2! '552-*'0&2! &')+8*<! T9! ';2(',26! L/
58(;2!3$',('%1!72(2!&'$3!+8*!$9!U!125+931"!'93!M/58(;2!3$',('%1!
72(2!&'$3!+8*!$9!VP!125+931<!R+(!N/58(;2!3$',('%16!VWX!+8*!+4!LMV!
4$9'&! &')+8*1!185521148&&)!%'$9*'$923!*.2!+($,$9'&!3215($-*$+9!'93!
0)!+8(! A83,2%29*! *.2)!.'3!'9!'552-*'0&2! &')+8*<!T9!';2(',26!N/
58(;2!3$',('%1!72(2!&'$3!+8*!$9!UU!125+931<!!

6)! FGHFDCBIGHB'JHK'!CEC@A'LG@M'
J2!.';2!32;2&+-23!'!9+;2&! 4+(52!%+32&! *+!-(+3852!'21*.2*$5'&&)!
-&2'1$9,! '93! 5+%-(2.291$0&2! L6! M! '93! N/58(;2! Y8&2(! 3$',('%!
&')+8*16! (2&'*$;2&)! >8$5G&)<! ?.$1! $1! 1*$&&! +9,+$9,! (212'(5.! '93!
.29526!(24$92%29*1!*+!*.2!4+(52!%+32&!'93!'&,+($*.%!'(2!&$G2&)!*+!
'5.$2;2!48(*.2(!'21*.2*$5!'93!-2(4+(%'952!$%-(+;2%29*1<!

=! %'$9! 3('70'5G! +4! *.$1! '--(+'5.! $1! *.'*! 4+(! 1+%2! 5'1216!
-'(*$58&'(&)! 32912! 3$',('%16! *.2! $9*2('5*$9,! 4+(521! 025+%2!
89%'9',2'0&2!'93!*.816!$*!$1!3$44$58&*!*+!321$,9!'!4+(52!%+32&!*.'*!
.'93&21! '&&! -+11$0&2! 3$',('%1<! D+72;2(6! (218&*1! $93$5'*2! *.'*! $*!
7+(G1!4+(!'&&!L6!M/58(;2!'93!%+1*!N/58(;2!3$',('%1<!

=9!$1182!7$*.!*.$1!7+(G!$1!*.2!2;'&8'*$+9!+4!*.2!>8'&$*)!+4!*.2!4$9'&!
&')+8*1<!Z'($+81!'21*.2*$5!%2*($51!.';2!0229!32;2&+-23!4+(!,('-.!
3('7$9,6! 08*! 427! '(2! ';'$&'0&2! 4+(! Y8&2(! 3$',('%1<! T9&)! +92!
2%-$($5'&! 1*83)! .'1!0229! 5'(($23!+8*! O"Q! '93! 4(+%! *.$16! *.2!9223!
4+(!5($*2($'! *+!';+$3!-+&),+9!A',,2392116!$92>8'&$*)!+4!E+92!'(2'1!
'93!58(;2! 5&+1292116! .'1!0229! $329*$4$23<!=&*.+8,.! *.212! 5($*2($'!
'(2! 32'&*! 7$*.! 0)! +8(! 4+(52! %+32&6! 48(*.2(! 2;'&8'*$+9! 0'123! +9!
2%-$($5'&! 1*83$21! '93! ,292('&! $94+(%'*$+9! ;$18'&$E'*$+9! '93!
-2(52-*8'&!-(95-&21!OXQ6!92231! *+!02!5+9385*23<! F*! $1!-+11$0&2! *+!
5+%-'(2! &')+8*1! B$C/0! '93! B$$C/0! $9! R$,8(2! "! B-(+38523! 0)! +8(!
'--(+'5.C!7$*.! *.2!5+((21-+93$9,! &')+8*1! B$C! '93! B$$C! $9!R$,8(2!V!
B-(+38523! 0)! OMQC<!J2! 02&$2;2! *.'*! *.2! &')+8*1! -(+38523! 0)! +8(!
4+(52!%+32&!'(2!%+(2!'21*.2*$5'&&)!-&2'1$9,!'93!5+%-(2.291$0&2<!

!

[8((29*&)6! +9&)! 72&&4+(%23! 3$',('%1! '(2! .'93&23<! #$952!
,292('*$+9! '&,+($*.%1! 5'9! -(+3852! 3$',('%1! *.'*! '(2! 9+*!
72&&4+(%236! 58((29*! 4+(521! $9! +8(!%+32&! 5+8&3! 02! %+3$4$23! '93!
927!+921!5+8&3!02!'33236!*+!2918(2!*.2!185521148&!&')+8*!+4!185.!
3$',('%1<!!

?.2! 5+32! $1! 1*$&&! 2H-2($%29*'&! '93! 244$5$295)! $1! 58((29*&)! 9+*! '!
-($%'()!5+952(9<![&2'(&)6!%'9)!244$5$295)!,'$91!5'9!02!%'32!0)!
,292('&! 5+32! 1-2238-1! '93! 0)! '--&)$9,! G9+79! +-*$%$E'*$+9!
%2*.+31!8123!$9!+*.2(!4+(52/3$(25*23!'--(+'5.21<!!
!!

"! =9! F9*2&! [+(2! V! \8+! []^! YUVWW! _! V<NL`DE! 7$*.! M`a! b=c!!
!!!(899$9,!c$5(+1+4*!LV/0$*!J$93+71!d]!](+4211$+9'&! B;2(1$+9!VWWV6!!!
!!#2(;$52!]'5G!LC!'93!K';'!Zc!;2(1$+9!"<P<We"X/0WU!7'1!8123<!

!

"#!
!

!"! #$%$#$&'$()
$"%! &'! ()*+,! -*.! /'! 0+.1)23'! 45-67-89*1! 8:)!;+<=2):)*39+*! +>! 476)2!

?9-12-<3'!!"#$%!&'()**+@!=-1)3!AA"BAAC'!D444'!
$#%! /'!4-.)3'!E!F)729389G!>+2!H2-=:!?2-I9*1'!,#-."/0010(213/"4-5613@!

J#K"JLB"MN@!"LCJ'!
$O%! P'! &6+I)2! -*.! P'! F+I3)'! H)*)2-89*1! 476)2! ?9-12-<3'! !"#$%!

764."430()**)8(92,:();<+@!=-1)3!M"BAQ'!R=29*1)2'!
$J%! P'! &6+I)2@! /'! 0+.1)23@! -*.! /'! S788+*'! T-,+78! S)829G3! >+2! 476)2!

?9-12-<3'!!"#$%(&'()**;@!=-1)3!#A#B#CN'!D444'!
$Q%! F'!E'!U)386)2@!)8!-6'!V)**S-38)2K!E2)-W=2+=+289+*-6!476)2!.9-12-<3!

>+2! >7*G89+*-6! HX! -*-6,393! +>! <9G2+-22-,3'! =>,(=6#6-?#"3456$0@!
LY"Z@!#NNC'!

$M%! /'! 0+.1)23@! T'! [:-*1@! H'! R8-=6)8+*@! -*.! E'! &93:'! 4<\)..9*1!
])66>+2<).!476)2!?9-12-<3'!!"#$'!&'()**@@!=-1)3!QCQBQLO'!D444'!

$A%! E'!V)22+738!-*.!S'WT'!V9-7.'!4*3729*1!8:)!?2-I-\9698,!+>!4^8)*.).!
476)2!?9-12-<3! >+2! 7=! 8+! C! R)83'!764."430()**A8(92,:()B@*@! =='!
"#CB"J"'!R=29*1)2'!

$C%! ;'!]-2)'!&-?#"3456#-('6014C6D456#-E(!/"$/F56#-(?#"(7/06.-'!S+21-*!
U-7><-**!/7\693:)23!D*G'@!R-*!&2-*G93G+@!;E@!_RE@!#NNJ'!

Dynamic Generation of Adaptation Plans for Self-adaptive
Software Systems

Carlos de Silva
Computing Laboratory

University of Kent
Canterbury, UK, CT2 7NZ
ces26 @ kent.ac.uk

ABSTRACT
The generation of adaptation plans, one of the activities of a self-
adaptive software system, is a complex process that depends on
several factors, which may change during the system operational
lifetime, such as its operational state and environment. Hence, self-
adaptive software systems should be able to generate adaptation
plans during run-time. In this direction, this paper presents a gen-
eral overview of our research for developing a framework for the
automatic generation of adaptation plans based on the use of sys-
tem models, artificial intelligence planning techniques and work-
flows. In order to evaluate the proposed approach, we have con-
ducted some experiments where this framework is used for generat-
ing during run-time the workflows that coordinate the architectural
reconfiguration of a self-adaptive software system.

1. INTRODUCTION
It is commonly agreed that a self-adaptive software system should
be able to modify its own structure and/or behaviour at run-time due
to changes in the system, its requirements, or the environment in
which it is deployed. In order to determine the actions to be taken to
adapt itself, a self-adaptive software system observes and analyses
itself and its environment, and if an adaptation is deemed to be
necessary, an adaptation plan is generated for altering the system
in a controlled manner. These activities are usually captured in
terms of a feedback control loop containing four key phases, that
is, monitoring, analysis, planning and execution.

The process associated with the self-adaptation of software depends
on several factors that may change during the system operational
lifetime. Hence, adaptation plans should be dynamically generated
for dealing with the variability and uncertainty involved in the self-
adaptation process. Some existing approaches for self-adaptation
focus on the definition of mechanisms for the selection of adap-
tation plans using policy-based languages for the specification of
adaptation plans [2, 3], while others have focused on the infras-
tructure for executing adaptation plans [6, 7]. These approaches
require the definition at design-time of each possible adaptation
plan and each system condition that triggers an adaptation. How-
ever, at design-time it is not possible to anticipate all possible con-
texts of self-adaptation. For example, when dealing with archi-
tectural reconfiguration of web services, one is not able to know
at design-time, all available resources and possible configurations
from which the reconfiguration plans are defined.

This problem has been partially solved by using Artificial Intel-
ligence (AI) planning technology to generate adaptation plans to-
gether with the system architectural configuration [1]. However,

by mixing the selection of a configuration with the generation of
plans, the scalability of the planning task has been affected. More-
over, this approach also requires the definition at design-time of a
different planning model for each application being targeted. An-
other solution that has looked into the same problem has explored
techniques for comparing models and priority rules for identify-
ing adaptation plans, which allows the reconfiguration of a soft-
ware architecture by promoting its reuse in different applications
and execution platforms [4]. However, this approach also requires
the definition at design-time of all possible variations in the sys-
tem architecture, and all possible adaptation rules. Moreover, it has
been shown that the use of priority rules is not enough for generat-
ing plans [5] (e.g., dealing with the reconfiguration of components
in arbitrary states and complex dependencies relationships among
them).

In this context, the aim of this research is to investigate the au-
tomatic generation of adaptation plans for self-adaptive software
systems. Our objective is to develop a framework for dynamically
generating adaptation plans based on the use of model-based, AI
planning and workflow management technologies. We want to pro-
vide a dynamic solution that does not need to know at design-time
all the possible architectural configurations for the system, and that
improves the scalability of the process for generating adaptation
plans.

2. SOLUTION OVERVIEW
We follow the trend in which the generation of adaptation plans is
divided in two problems: i) the selection of a configuration; and ii)
the generation of the workflow for instantiating the selected con-
figuration. In this context, our work is focused on the problem
of generating a reconfiguration plan (a workflow) for a given con-
figuration, assuming the existence of mechanisms responsible for
selecting a configuration for the system.

Our approach for the generation of reconfiguration plans is fur-
ther divided in two levels of abstraction: strategy and tactics. At
the strategy level, we generate abstract workflows considering the
workflow objective and its structure in terms of its constituent tasks
and the control flow relationship among them, without identifying
the actual resources that will be used during the plan execution. At
the tactics level, we generate concrete workflows by identifying the
actual resources that will be used during the plan execution. It is
important to note that at the strategy level, the resources associ-
ated with the tasks are referred to by a logical name, which should
be sufficient to identify the actual resources at the tactics level. In
this way, an abstract workflow can be implemented using different
combinations of resources.

13

the actual resources that will be used during the plan execution. At
the tactics level, we generate concrete workflows by identifying the
actual resources that will be used during the plan execution. It is
important to note that at the strategy level, the resources associ-
ated with the tasks are referred to by a logical name, which should
be sufficient to identify the actual resources at the tactics level. In
this way, an abstract workflow can be implemented using different
combinations of resources.

Following the division of reconfiguration plans in strategy and tac-
tics, configuration models are also divided in two levels of abstrac-
tions. Hence, an abstract configuration model describes a system
configuration in terms of the functional properties of its architec-
tural elements, identifying the structure of the system, but abstract-
ing away from the actual instances of the architectural elements.
On the other hand, a concrete configuration model describes a sys-
tem configuration in terms of the actual architectural instances, and
their respective attributes. Therefore, in a manner similar to plans,
an abstract architectural configuration can be instantiated into dif-
ferent concrete configurations depending on the availability of ac-
tual architectural instances.

Figure 1: Overview of the workflow generation process.

An overview of the generation process is presented in Figure 1.
At the strategy level, we obtain the current system configuration
and the selected abstract configuration. The configuration models
are translated into a planning problem that is used as input to an AI
planner. The planner output is then translated into a workflow spec-
ification. The activities of this level are represented by the Gener-
ated abstract workflow activity. At the tactics level, an abstract
workflow is converted into a concrete workflow by replacing the
logical names with the actual resources identified in the selected
concrete configuration. In case there is a problem while executing
a concrete workflow, a new concrete configuration is selected and
a new concrete workflow is generated. If it is not possible to gen-
erate a concrete workflow (e.g., there are not enough resources),
the process goes back to the strategy level, where a new abstract
workflow is generated. This division between strategy and tactics
helps to reduce the time necessary for finding a plan, since it is not
necessary to know about all available resources in the environment,
but only about the resources involved, which are represented using
logical names.

3. PRELIMINARY RESULTS

In order to evaluate our work, we have developed a prototype in-
frastructure for supporting the generation process, and used this
infrastructure for conducting some experiments. We have also de-
veloped a second generation process based on the work presented
in [1], where the system configuration is selected by an AI plan-
ner. These experiments considered the time necessary for generat-
ing a concrete workflow for deploying a configuration, where we

changed the number of components and connections involved in
the configuration for changing the size of the generated workflow.
Our initial results comparing both processes is presented in Figure
2.

Figure 2: Initial experimental results.

Our initial results demonstrate the feasibility of our approach for
generating adaptation plans. However, more experiments are nec-
essary to fully evaluate our approach, including configurations with
bigger number of components for evaluating its scalability, the use
of other planning techniques, and further comparison with other
existing approaches.

4. CONCLUSIONS AND FUTURE WORK

The main focus of our work is the definition of a framework for au-
tomatic generation of workflows. In this paper, we have presented
a general overview of our generation framework and its application
in the context of self-adaptive software systems. Our next steps in-
clude the investigation of exception handling mechanisms for deal-
ing with failures during the execution of dynamically generated
workflows, and the application of the defined generation process
in the context of self-adaptation of business processes.

5. REFERENCES
[1] N. Arshad et al. Deployment and dynamic reconfiguration

planning for distributed software systems. Software Quality J.,
15(3):265–281, 2007.

[2] S.-W. Cheng, D. Garlan, and B. Schmerl. Architecture-based
self-adaptation in the presence of multiple objectives. In Proc.

of the ICSE SEAMS’06, pages 2–8, 2006.
[3] J. C. Georgas and R. N. Taylor. Towards a knowledge-based

approach to architectural adaptation management. In Proc. of

the WOSS’04, pages 59–63, 2004.
[4] B. Morin et al. An aspect-oriented and model-driven approach

for managing dynamic variability. In Proc. of the

MoDELS’08, volume 5301 of LNCS, pages 782–796, 2008.
[5] C. Shankar and R. Campbell. Ordering management actions in

pervasive systems using specification-enhanced policies. In
Proc. of the PERCOM’06, pages 234–238. IEEE Computer
Society, 2006.

[6] S. Shrivastava et al. A workflow and agent based platform for
service provisioning. In Proc. of the EDOC’00, pages 38–47,
2000.

[7] G. Valetto and G. Kaiser. Using process technology to control
and coordinate software adaptation. In Proc. of the ICSE’03,
pages 262–272, 2003.

Figure 1: Overview of the workflow generation process.

Following the division of reconfiguration plans in strategy and tac-
tics, configuration models are also divided in two levels of abstrac-
tions. Hence, an abstract configuration model describes a system
configuration in terms of the functional properties of its architec-
tural elements, identifying the structure of the system, but abstract-
ing away from the actual instances of the architectural elements.
On the other hand, a concrete configuration model describes a sys-
tem configuration in terms of the actual architectural instances, and
their respective attributes. Therefore, in a manner similar to plans,
an abstract architectural configuration can be instantiated into dif-
ferent concrete configurations depending on the availability of ac-
tual architectural instances.

An overview of the generation process is presented in Figure 1.
At the strategy level, we obtain the current system configuration
and the selected abstract configuration. The configuration models
are translated into a planning problem that is used as input to an AI
planner. The planner output is then translated into a workflow spec-
ification. The activities of this level are represented by the Gener-
ated abstract workflow activity. At the tactics level, an abstract
workflow is converted into a concrete workflow by replacing the
logical names with the actual resources identified in the selected
concrete configuration. If there is a problem while executing a con-
crete workflow, a new concrete configuration is selected and a new
concrete workflow is generated. If it is not possible to generate a
concrete workflow (e.g., there are not enough resources), the pro-
cess goes back to the strategy level, where a new abstract workflow
is generated. This division between strategy and tactics helps to re-
duce the time necessary for finding a plan, since it is not necessary
to know about all available resources in the environment, but only
the resources involved, represented using logical names.

3. PRELIMINARY RESULTS

In order to evaluate our work, we have developed a prototype in-
frastructure for supporting the generation process, and used this
infrastructure for conducting some experiments. We have also de-
veloped a second generation process based on the work presented
in [1], where the system configuration is selected by an AI plan-
ner. These experiments considered the time necessary for gener-
ating a concrete workflow for deploying a configuration, where we
changed the number of components and connections involved in the
configuration for changing the size of the generated workflow. Our
initial results comparing both processes is presented in Figure 2.

Our initial results demonstrate the feasibility of our approach for
generating adaptation plans. However, more experiments are nec-
essary to fully evaluate our approach, including configurations with
bigger number of components for evaluating its scalability, the use
of other planning techniques, and further comparison with other
existing approaches.

the actual resources that will be used during the plan execution. At
the tactics level, we generate concrete workflows by identifying the
actual resources that will be used during the plan execution. It is
important to note that at the strategy level, the resources associ-
ated with the tasks are referred to by a logical name, which should
be sufficient to identify the actual resources at the tactics level. In
this way, an abstract workflow can be implemented using different
combinations of resources.

Following the division of reconfiguration plans in strategy and tac-
tics, configuration models are also divided in two levels of abstrac-
tions. Hence, an abstract configuration model describes a system
configuration in terms of the functional properties of its architec-
tural elements, identifying the structure of the system, but abstract-
ing away from the actual instances of the architectural elements.
On the other hand, a concrete configuration model describes a sys-
tem configuration in terms of the actual architectural instances, and
their respective attributes. Therefore, in a manner similar to plans,
an abstract architectural configuration can be instantiated into dif-
ferent concrete configurations depending on the availability of ac-
tual architectural instances.

Figure 1: Overview of the workflow generation process.

An overview of the generation process is presented in Figure 1.
At the strategy level, we obtain the current system configuration
and the selected abstract configuration. The configuration models
are translated into a planning problem that is used as input to an AI
planner. The planner output is then translated into a workflow spec-
ification. The activities of this level are represented by the Gener-
ated abstract workflow activity. At the tactics level, an abstract
workflow is converted into a concrete workflow by replacing the
logical names with the actual resources identified in the selected
concrete configuration. In case there is a problem while executing
a concrete workflow, a new concrete configuration is selected and
a new concrete workflow is generated. If it is not possible to gen-
erate a concrete workflow (e.g., there are not enough resources),
the process goes back to the strategy level, where a new abstract
workflow is generated. This division between strategy and tactics
helps to reduce the time necessary for finding a plan, since it is not
necessary to know about all available resources in the environment,
but only about the resources involved, which are represented using
logical names.

3. PRELIMINARY RESULTS

In order to evaluate our work, we have developed a prototype in-
frastructure for supporting the generation process, and used this
infrastructure for conducting some experiments. We have also de-
veloped a second generation process based on the work presented
in [1], where the system configuration is selected by an AI plan-
ner. These experiments considered the time necessary for generat-
ing a concrete workflow for deploying a configuration, where we

changed the number of components and connections involved in
the configuration for changing the size of the generated workflow.
Our initial results comparing both processes is presented in Figure
2.

Figure 2: Initial experimental results.

Our initial results demonstrate the feasibility of our approach for
generating adaptation plans. However, more experiments are nec-
essary to fully evaluate our approach, including configurations with
bigger number of components for evaluating its scalability, the use
of other planning techniques, and further comparison with other
existing approaches.

4. CONCLUSIONS AND FUTURE WORK

The main focus of our work is the definition of a framework for au-
tomatic generation of workflows. In this paper, we have presented
a general overview of our generation framework and its application
in the context of self-adaptive software systems. Our next steps in-
clude the investigation of exception handling mechanisms for deal-
ing with failures during the execution of dynamically generated
workflows, and the application of the defined generation process
in the context of self-adaptation of business processes.

5. REFERENCES
[1] N. Arshad et al. Deployment and dynamic reconfiguration

planning for distributed software systems. Software Quality J.,
15(3):265–281, 2007.

[2] S.-W. Cheng, D. Garlan, and B. Schmerl. Architecture-based
self-adaptation in the presence of multiple objectives. In Proc.

of the ICSE SEAMS’06, pages 2–8, 2006.
[3] J. C. Georgas and R. N. Taylor. Towards a knowledge-based

approach to architectural adaptation management. In Proc. of

the WOSS’04, pages 59–63, 2004.
[4] B. Morin et al. An aspect-oriented and model-driven approach

for managing dynamic variability. In Proc. of the

MoDELS’08, volume 5301 of LNCS, pages 782–796, 2008.
[5] C. Shankar and R. Campbell. Ordering management actions in

pervasive systems using specification-enhanced policies. In
Proc. of the PERCOM’06, pages 234–238. IEEE Computer
Society, 2006.

[6] S. Shrivastava et al. A workflow and agent based platform for
service provisioning. In Proc. of the EDOC’00, pages 38–47,
2000.

[7] G. Valetto and G. Kaiser. Using process technology to control
and coordinate software adaptation. In Proc. of the ICSE’03,
pages 262–272, 2003.

Figure 2: Initial experimental results.

4. CONCLUSIONS AND FUTURE WORK

The main focus of our work is the definition of a framework for au-
tomatic generation of workflows. In this paper, we have presented
a general overview of our generation framework and its application
in the context of self-adaptive software systems. Our next steps in-
clude the investigation of exception handling mechanisms for deal-
ing with failures during the execution of dynamically generated
workflows, and the application of the defined generation process
in the context of self-adaptation of business processes.

5. REFERENCES

[1] N. Arshad et al. Deplotment and dynamic reconfiguration
planning for distributed software systems. Software Quality J.,
15(3):265–281, 2007.

[2] S. W. Cheng, D. Garlan, and B. Schmerl. Architecture-based
self-adaptation in the presence of multiple objectives. In Proc.

of ICSE SEAMS‘06, pages 2–8, 2007.
[3] J. C. Georgas and R. N. Taylor. Towards a knowledge-based

approach to architectural adaptation management. In Proc. of

the WOSS‘04, pages 59–63, 2004.
[4] B. Morin et al. An aspect-oriented and model-driven approach

for managing dynamic variability. In Proc. of the

MoDELS‘08, volume 5301 of LNCS, pages 782–796, 2008.
[5] C. Shankar and R. Campbell. Ordering management actions in

pervasive systems using specification-enhanced policies. In
Proc. of PERCOM‘06, pages 234–238, 2006.

[6] S. Shrivastava et al. A workflow and agent based platform for
service provisioning. In Proc. of EDOC‘00, pages 38–47,
2000.

[7] G. Valetto and G. Kaiser. Using process technology to control
and coordinate software adaptation. In Proc. of ICSE‘03,
pages 262–272, 2003.

14

Provenance-Awareness in R

C.A.Silles and A.R.Runnalls
Computing Laboratory

University of Kent
Canterbury, UK, CT2 7NZ

{C.A.Silles,A.R.Runnalls}@kent.ac.uk

ABSTRACT

The use of computer systems for recording information has pro-

liferated in recent years; however, facilities for recording how this

data has come to be in its present state have only recently started to

catch up. The goal of the provenance-aware computing field is to

enable computer systems to record the provenance — a record of

lineage or pedigree — of data in such a way that enables users to

query and effectively use this previously unrecorded information.

In this paper we look at how facilities for recording and retriev-

ing provenance have been introduced to the interactive statistical

environment and programming language CXXR, which is a C++

flavour of the popular R project.

1. INTRODUCTION

The term provenance has — according to the Oxford English

Dictionary — been in use since the 18th century to mean “The fact

of coming from some particular source or quarter; origin, deriva-

tion”, and since the 19th century to refer to “The history of the

ownership of a work of art or an antique, used as a guide to authen-

ticity or quality; a documented record of this”. Today, provenance

is a well-understood concept in many different areas, including art,

antiques and memorabilia; however, it is only relatively recently

that the term has been used in the context of computing.

1.1 Provenance-Aware Computing

We consider the provenance of an item of data to be “the pro-

cess that led to that piece of data" [5]. Information that describes

the origin of data is becoming not only of increasing use, but also

necessity, as computer systems have taken on significant roles in

many disciplines recording and managing data. There is currently

significant interest in creating provenance-aware computer systems

for use in areas as diverse as e-science, medical physics (CT, MRI,

fMRI, PET etc.), proteomics, finance and weather monitoring. This

field has developed rapidly over the last decade, and is now reach-

ing maturity with the Open Provenance Model for the representa-

tion and exhange of provenance information [7].

1.2 CXXR

CXXR is a variant of R, which is an open-source implementa-

tion of S. S is a language and interactive environment for statistical

computing, graphics and exploratory data analysis [1]. It was de-

veloped during the mid-1970s at Bell Labs by John Chambers and

Richard Becker. S emerged from Bell Labs at around the same time

as the C programming language, and this is reflected in both its

syntax and name. Despite this, S uses the semantics of a functional

programming language, including employment of lazy evaluation.

The most significant landmark in the history of S was reached

in 1988 when ‘New S’ was released in 1988, sporting a new fea-

ture entitled S AUDIT [2]. While a user operated a session within

New S, a record was maintained of each top-level expression eval-

uated, as well as objects read from and written to during the course

of evaluation. The accompanying S AUDIT program was able to

process this record and allow the user discover details of the ses-

sion, including the full sequence of statements evaluated; which

statements are responsible for reading from, or writing to, a partic-

ular object; or simply providing a list of all objects in the session.

Therefore, New S became one of the first provenance-aware soft-

ware applications, and even featured a primitive provenance visu-

alisation in the shape of an audit plot: features that were at the time

innovative, and remain novel to this day.

While S as an application continues life as a commercial product

called S+ retailed by TIBCO [10], the language, library and en-

vironment have been reimplemented as part of the open-source R

project [9]. Crucially, R has never had S AUDIT-like capabilities.

CXXR is a project to reengineer the fundamental components of

the R interpreter from C into C++ while fully preserving function-

ality of the standard R distribution [8].

Within R — and CXXR likewise — the user evaluates expres-

sions on a command line. An expression entered on the command

line is referred to as a top-level expression, as opposed to a subex-

pression such as 1+2 in the top-level expression a <- 1+2. When

this top-level expression is evaluated, a binding is created between

the symbol a and the object that results from evaluating the sub-

expression 1+2 — an integer vector comprising a single element,

3.

1.3 Provenance-Aware CXXR

The principal objective of this work is to enable CXXR to iden-

tify the following information of a given binding: -

• The process that led to it – the sequence of commands exe-

cuted;

• Its ancestors – which other bindings it depends on;

• Its descendants – which other bindings depend on it.

Due to the divorce of object values from the symbols by which

they are referenced, a novel approach to provenance attribution is

required. Rather than recording reads from and writes to objects,

we need to record reads from and writes to bindings.

2. IMPLEMENTATION

The fundamental addition to CXXR required for recording prove-

nance is the introduction of read and write monitors, which are trig-

gered when a binding is either read from or is created or overwrit-

ten.

15

Figure 1: Class collaboration diagram

2.1 Storing

Three C++ containers have been introduced to store various as-

pects of provenance information.

The Provenance class is central to storing provenance for a

binding. It is composed of the timestamp of when the binding was

created; the top-level expression that was being evaluated; the sym-
bol that is bound; and references to the parentage and children of

the binding.

Binding B1 is a parent of binding B2 (and conversely B2 is a

child of B1) if binding B1 was read in the course of evaluating

the top-level expression that gave rise to binding B2. Parentage is

represented by the Parentage class, which inherits from the C++

Standard Template Library (STL) std::vector class, and stores

pointers to Provenance objects.

A ProvSet of provenance objects is used to store references to

Provenance objects. This collection is an std::set, and its mem-

bers are ordered by time of creation. It is used primarily for storing

references to children.

The class collaboration diagram for the relationship between new

classes and existing CXXR classes is shown in Fig 1.

2.2 Recording

The mechanism responsible for reading commands from the stan-

dard input, evaluating them, and printing the result is known as the

Read-Evaluate-Print-Loop (REPL). Provenance for each REPL it-

eration is recorded according to the following algorithm: -

• Begin with the following empty collections:

– Seen set: Provenance of bindings either read from or

written to;

– Parentage list: Provenance of bindings read from (in

sequence).

• On read of binding to symbol x:

– If x is not in the Seen set, add it to Parentage and Seen.

• On write of binding to symbol y:

– Create a new Provenance object comprising:

∗ A reference to the current top-level expression;

∗ A reference to symbol y;

∗ A reference to the current Parentage;

∗ The current timestamp;

∗ An empty set of children;

– Register the new Provenance object as a child of each

of its parents, as recorded by the current Parentage list;

– Associate this Provenance object with the Binding of y;

– Add y to Seen.

2.3 Retrieval

In order for the user to be able to interrogate provenance infor-

mation a couple of new R commands have been introduced. The

provenance(x) function returns a list detailing the provenance of

the current binding of x: the date and time of its creation, the ex-

pression immediately responsible for its current state, its symbol,

and a list of both its parent and child Provenances.

The pedigree(x) function describes the full sequence of com-

mands executed that led to the current binding of x. A full ancestry

is collated by recursively looking at each Provenance’s parentage

starting from x; ordering all ancestors by time of binding creation;

and printing their respective expressions, which are by definition

relevant and their order chronological.

3. CONCLUSION

This work demonstrates how it is possible to introduce facilities

for provenance-awareness into an interactive, command-line driven

statistical environment.

Recording process documentation for the purpose of reproducible

computing in R has previous been researched in Sweave [4], a sys-

tem based on concepts of literate programming [6]. Making appli-

cations provenance-aware is not in itself a new concept [3]; how-

ever, CXXR presents some unique challenges. These include the

way in which provenance is represented conceptually as an attribute

of a binding is novel; the user interface concerns; as well as how

individual language features are necessarily modelled to capture

complete provenance.

Looking forward, one of our foremost priorities is to enable cross-
session provenance tracking. That is to say, when the user termi-

nates a session, the objects are serialised along with relevant prove-

nance information so the user is able to restore the session with

not only object data, but also the provenance of how the data was

derived.

CXXR is currently only provenance-aware in two areas: the user

workspace, and the standard library. Provenance-awareness will

eventually be extended to cover all other areas, such as local func-

tions, and new methods for inspecting provenance will need to be

designed.

16

4. REFERENCES
[1] R. A. Becker. A brief history of S. Computational Statistics –

Papers Collected on the Occasion of the 25th Conference on

Statistical Computing at Schloss Reisensburg, pages 81–110,
1994.

[2] R. A. Becker and J. M. Chambers. Auditing of Data
Analyses. SIAM Journal on Scientific and Statistical

Computing, 8:747–760, 1988.
[3] S. P. Callahan, J. Freire, C. E. Scheidegger, C. T. Silva, and

H. T. Vo. Towards provenance-enabling paraview. pages
120–127, 2008.

[4] R. Gentleman. Reproducible research: A bioinformatics case
study. Statistical Applications in Genetics and Molecular

Biology, 4(1):Article 2, 2005.
[5] P. Groth, S. Miles, V. Tan, and L. Moreau. Architecture for

provenance systems, October 2005.
[6] D. E. Knuth. Literate programming. Comput. J.,

27(2):97–111, 1984.
[7] L. Moreau, B. Clifford, J. Freire, Y. Gil, P. Groth, J. Futrelle,

N. Kwasnikowska, S. Miles, P. Missier, J. Myers,
Y. Simmhan, E. Stephan, and J. V. den Bussche. The open
provenance model — core specification (v1.1). Future

Generation Computer Systems, December 2009.
[8] A. R. Runnalls. CXXR project.

http://www.cs.kent.ac.uk/projects/cxxr.
[9] The R Foundation. The R Project for Statistical Computing.

http://www.r-project.org.
[10] TIBCO Software Inc. Spotfire S+.

http://spotfire.tibco.com.

17

