
HITPROTO: a Tool for the Rapid Prototyping of Haptic Interactions for
Haptic Data Visualization

Sabrina A. Panëels∗
School of Computing
University of Kent, UK

Jonathan C. Roberts†

School of Computer Science
Bangor University, UK

Peter J. Rodgers‡

School of Computing
University of Kent, UK

ABSTRACT

The use of haptic devices is becoming widespread, particularly with
their growth in the home-games market and on mobile phones.
Likewise, the number of haptic devices and APIs is increasing.
However, it is still difficult to program and develop haptic appli-
cations. Consequently, there is a need to hide the complexity of
programming a haptic application or interactions by providing pro-
totyping tools or frameworks. In particular, one growing applica-
tion area is haptic data visualization (also called haptification): the
use of haptic devices to represent and realize information and data.
This paper presents a visual prototyping tool for haptic interactions
for data visualization. Users can easily and quickly create haptic
interactions through a visual programming interface with tunable
parameters. This paper also presents a user evaluation aimed at
demonstrating that non-programmers can create simple haptic in-
teractions and which also indicates potential improvements to the
tool.

Index Terms: H.5.2 [Information Interfaces and Presentation
(I.7)]: User Interfaces (D.2.2, H.1.2, I.3.6)—Haptic I/O, Prototyp-
ing; I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques

Keywords: Haptic Data Visualization, Haptics, Haptification,
Rapid Prototyping, Haptic Interactions Techniques

1 INTRODUCTION

Haptics is a growing research area. It is also reaching the con-
sumer market through the gaming industry. Consequently, the range
of available haptic devices is increasing, from custom devices de-
veloped by research laboratories to commercial devices. For in-
stance, high resolution devices such as the PHANTOM Omni are
suitable for medical applications or research, whilst devices such
as the Nintendo Wii and the Novint Falcon are aimed at the home
market. However, developing haptic applications and interactions
is still difficult and time-consuming, and although various APIs are
available (which provide a generic interface to multiple devices),
they still require the user to have good programming skills, a good
understanding of haptic interactions and technical knowledge of the
devices to be used.

Consequently, there is a need for prototyping tools that can be
used to quickly implement and test haptic interactions. This is a
natural continuation, driven by the rapid expansion of haptics. The
demand for such toolkits has long been identified and satisfied in
related research areas, such as virtual reality, where industry has
access to CAD software and, more generally, there are user-oriented
authoring tools to create virtual worlds. The ability of designers to
quickly design and test interaction metaphors enables the creation
of an enriched experience for users of the virtual world.

∗e-mail: sap28@kent.ac.uk
†e-mail:j.c.roberts@bangor.ac.uk
‡e-mail:p.j.rodgers@kent.ac.uk

In the area of haptic data visualization, also referred to as ‘hap-
tification’, the aim is to provide an understanding of the underlying
data through effective data mappings and user interactions using the
sense of touch. Rather than merely attempting to render the world,
haptic feedback in visualization is used to convey the information
about the data being presented through well designed and efficient
metaphors. It is useful for visually impaired people or in situations
where the visual (or audio) sense is overloaded with information.
For example, various applications have been developed that con-
vey chart data or maps to visually impaired people; vector fields or
flight information for pilots have been displayed haptically, which
is useful as the visual display is already heavily loaded with infor-
mation, see [26] for an overview.

However, the use of haptic interactions for visualization is not
widespread [26, 29]. Accordingly, a system that would allow the
rapid development of haptic interactions, especially in the context
of data visualization, should bridge this gap and encourage the de-
velopment and exploration of new haptic interactions, as well as
permitting a wider audience to explore the possibilities of haptic
visualization.

This paper presents a visual prototyping tool for haptic interac-
tions (HITPROTO). The aim of the prototype is to allow developers
with no or little programming skills, such as blind students’ teach-
ers or designers, to explore interactions and more generally to stim-
ulate the development of interactions to access the data haptically.
In Section 2 we discuss various related work for prototyping inter-
actions and more specifically haptic interactions. In Section 3 we
describe the design of the prototyping tool HITPROTO. Section 4
presents a usability evaluation of the tool. Finally, in Section 5 we
conclude and give some directions for further work.

2 BACKGROUND & RELATED WORK

Our motivation is to create a tool that provides rapid prototyping of
haptic interactions for haptic data visualization. In this section we
discuss the two principal concepts: (1) rapid prototyping of applica-
tions and interactions, especially haptic interactions and (2) haptic
data visualization.

2.1 Rapid Prototyping of Applications and Interactions
In software engineering, the term prototyping refers to the rapid
development of a software solution. There are typically two forms:
firstly throw-away prototyping where subsequent systems are cre-
ated and then discarded in turn before the final development; and
secondly evolutionary prototyping, where the user refines the pro-
totype in an ongoing process before it turns into the final system.
In our work, our focus is to develop a platform that allows develop-
ers to perform both of these forms of prototyping, the first through
the rapid development of simple haptic interactions, and the second
through the provision of automatically generated code that can be
built-upon by developers.

2.1.1 General prototyping
In the field of Virtual Reality (VR), there are various tools that al-
low developers to easily create 3D models. Tools like Blender [2],
3ds Max [1] and Rhino [4] create specific models that can be loaded



into virtual environments and navigated by the user. Although these
systems allow developers to quickly build virtual environments, it
is difficult for developers to experiment and develop novel interac-
tion methodologies and utilize new interaction devices. This is why
many researchers have investigated the rapid prototyping of user
interfaces, focusing on the interactions or the devices adaptability.

In fact, several languages have been created for virtual worlds,
which allow the developer to foster the development of new inter-
action techniques and build a library of reusable 3D interactions.
However, most do not integrate the haptic modality. For example,
the XML language InTml, by Figueroa et al. [18] and the ‘Interac-
tion Framework For Innovation’ (IFFI) by Ray and Bowman [28].
Recent work by DeBoeck et al. [12] has proposed a high-level
graphical notation called NiMMiT to specify multimodal interac-
tion techniques; thus including haptics. This software not only al-
lows the design at a high-level but also automatic execution. How-
ever, our focus is on interactions for haptic data visualization rather
than interactions for virtual reality.

More generally, Ballagas et al. [8] developed the iStuff toolkit,
which “support[s] user interface prototyping in ubiquitous comput-
ing environments”. However as the focus is on lightweight wire-
less devices, iStuff does not readily integrate haptic devices, such
as force-feedback devices. Similar to Ballagas et al., Dragicevic
and Fekete [14] implemented the Input Configurator (ICon) toolkit,
which aims at dealing with ‘Post-WIMP’ interaction techniques by
allowing high-level ‘input adaptability’. However, it is unclear how
complex interaction techniques, such as those involving haptics,
would be easily integrated. Similarly, Huot et al. [20] developed
the MaggLite toolkit for fast and interactive design of post-WIMP
user interfaces which uses the ICon notation. However the toolkit
is restricted to 2D presentations.

Navarre et al. [24] explain that with the ICon notation alone it is
“difficult to deal with the representation of the set of states the sys-
tem can be in and how events produced by the user through the use
of input devices make the states evolves”. Hence, they integrated
the ICoM model (and ICon environment) with the ICO formal de-
scription technique (and the PetShop environment), which through
Petri-nets describes the system’s states and their changes. Similarly,
Appert et al. [7] created the FlowStates toolkit, which combines
ICon with the Java Swing extension SwingStates, to allow easy pro-
totyping of complex interaction techniques. However, these tech-
niques involve some programming, while our work aims at allowing
rapid prototyping for non-programmers. Serrano et al. [32] high-
lights that “the main limitation of ICon is that the level of abstrac-
tion of its components is too low and assemblies of components be-
come too complex”. Therefore they developed the OpenInterface
(OI) framework, which components can be assembled to create a
‘pipeline’ for the definition of a multimodal interaction using the
graphical environment OIDE [32]. As OIDE has several shortcom-
ings, including inflexible design and not enough influence of non-
developers, Lawson et al. [22] developed the SKEMMI graphical
interface. Informal evaluations demonstrated successful use of the
framework to prototype various applications. However, it is unclear
how haptics can be easily integrated into this framework.

2.1.2 Haptic prototyping

Although most of the prototyping frameworks described above al-
low the integration of a wide range of devices, it is unclear whether
haptic and especially force-feedback devices would be easily sup-
ported. Rapid prototyping of haptic worlds has also been the focus
of various researchers. Rossi et al. [30] designed a tool for the pro-
totyping of haptic and telehaptic applications, built on top of the
Matlab/Simulink platform. Their sample example exhibited the use
of a graphical VRML authoring tool to model the 3D graphical en-
vironment and a block based diagram approach to add haptic effects
and model time transformations. Forrest and Wall [19] developed

a haptic prototyping tool that enables non-programmers to build a
haptic 3D model with the haptic device. Complex models can be
created by combining primitives, whose size and rotation can be
changed through the use of edit points, using a device from the
PHANTOM family. An evaluation, with 7 participants, including
novices and experts in using the PHANTOM device, showed that
the participants could construct 3D models within the time allot-
ted. Kurmos et al. [21] uses the Scene Authoring Interface (SAI) to
integrate haptics into an X3D authored virtual world.

These techniques mostly deal with the haptic modelling of an
environment, and not with the behaviour or interactions in this en-
vironment. This is why the HAML framework [15] aims to provide
a fast prototyping environment that hides the complexity of hap-
tic programming. HAML describes all the components involved
in an application (application general information, haptic device
and its capabilities and limitations, the haptic and visual render-
ing, the haptic API, quality of experience and haptic data) in an
XML-based language that is used to dynamically generate the ap-
plication following user’s requirements. After defining the struc-
ture and description schemes for the language, Eid et al. [16] devel-
oped the HAML-based Authoring Tool (HAMLAT) to allow non-
programmers to create visual-haptic worlds, by extending Blender
to support haptics. However, the preliminary work restricts itself
to static scenes with no dynamic behaviour. Our tool on the other
hand, deals with the interactions and thus the dynamic behaviour.

De Felice et al. [13] present an authoring tool to design the hap-
tic/acoustic user interface of a VE explored by visually impaired
people. The tool uses a model where the virtual scene is a series
of scenarios, containing active objects (scene objects with acous-
tic and/or haptic properties) and guided paths. The visual editor
allows the specification of object behaviour by assigning proper-
ties and events (translation/rotation). Although this approach seems
very interesting, it lacks details about the actual tool and the type of
prototyping it supports other than attributing properties to objects.

In the tactile domain, several tools have been developed to fa-
cilitate the prototyping of vibrotactile icons. MacLean and col-
leagues developed the Hapticon Editor [17] and more recently ex-
tended it into the Haptic icon Prototyper [33]. These tools were
specially developed to help design haptic icons in terms of wave-
forms with adjustable duration, frequency and amplitude for each
waveform. The haptic icons can be created, by recording the user’s
1-DOF knob motion, appending waveforms or by superposing ex-
isting icons. Visell et al. [34] also developed a Haptic Icon Designer
application for the design and playback of vibrotactile icons, for in-
formation display via floor surfaces. The application allows the
design of icons in terms of short-time stimulus using frequency, du-
ration, harmonic content, roughness, and amplitude temporal enve-
lope and of longer-time structures using a musical phrase metaphor
with rhythm, duration, note amplitude and repetition parameters. A
pilot study conducted with 8 participants and 8 vibrotactile icons
developed with the interface led to a correct identification rate of
55%. In particular, Lee et al. [23] based their prototyping tool on
a musical metaphor to avoid the user dealing with the low-level
specifications of the vibrotactile signals and thus making the tool
accessible to a wider audience.

As for commercial tools, the Immersion Studio [3] allows
rapidly adjusting tactile and force feedback effect parameters for
all the consumer TouchSense gaming products. The LabVIEW vi-
sual programming tool has been used with the National Instruments
PXI system in an undergraduate mechanical engineering course in
system dynamics as a data acquisition and processing platform for
haptic paddles hardware [10] and for both teleoperation research
and haptic device development at Georgia Tech University [9].
LabVIEW has been used extensively in designing control and anal-
ysis solutions in the area of engineering technology and education.
However, as it aims at engineers and scientists, the graphical no-



tation is quite low-level and focuses primarily on signal acquisi-
tion, processing and analysis rather than designing computer inter-
actions, in particular 3D haptic virtual interactions.

2.2 Haptic Data Visualization
Haptic data visualization (or ‘haptification’) is the process of dis-
playing data haptically; it gives users an understanding of informa-
tion through a haptic interface [29]. The haptic visualization display
can be considered to consist of three parts. First a model is created
that contains the haptic information that is going to be perceived.
The generation of the model closely follows the visualization pro-
cess, where the data is enhanced (a subset of the data is selected,
and processed such that it is suitable to be displayed) and mapped
into an abstract/haptic model (the data is transformed into an appro-
priate haptic model). Thus it may be that the information may be
simplified or averaged. Second, haptic rendering is used to compute
the forces required to realize the model. Third, an electromechani-
cal device is used to exert the forces that the user perceives. For an
in-depth review of haptic data visualizations we refer the reader to
“Review of Designs for Haptic Data Visualization” [26].

Figure 1: Diagram showing the different components involved in the
creation and execution of an interaction scenario.

3 HITPROTO: PROTOTYPING HAPTIC INTERACTIONS

HITPROTO allows developers to perform rapid prototyping of hap-
tic interactions, with an emphasis on data visualization. As high-
lighted in the preceding related work section, there are not many
prototyping tools available for developing and testing haptic inter-
actions. The few that do integrate haptics in their framework often
describe the blocks using input/output flow which can be unintu-
itive to program complex interactions. In contrast, our tool hides
the technical complexities and provides an interface that is closer
to a natural language (e.g., “Wait for a button press, then add and
start guidance”). We hypothesize that in doing so, prototyping hap-
tic interactions will become accessible to people with little or no
programming knowledge and it will be faster than learning the API
and languages to program the device’s behaviour for designers and
developers.

3.1 Design
HITPROTO is based on the H3DAPI [5]. This API was chosen as it
is a high-level open-source haptic API that interfaces several haptic
devices and thus several lower-level APIs. Haptic applications can
be programmed using X3D1 with Python or using C++. However,

1X3D [6] is an ISO open standard scene-graph design and the successor
to the VRML standard. It is used and extended within H3DAPI to specify

using an API, even as high-level as H3DAPI, still requires program-
ming skills and a relatively long learning period before being able
to program interactions, and therefore restricts itself to developers.
The HITPROTO tool aims to significantly reduce the difficulty of
designing haptic interactions.

The tool draws inspiration from various visual programming en-
vironments, and in particular the Lego Mindstorms NXT software
based on LabVIEW. Mindstorms NXT is a visual programming en-
vironment that allows programming the behaviour of a Lego robot
using a dataflow language. Similarly, HITPROTO uses tunable vi-
sual blocks to program haptic interactions. These blocks fall into
two main categories: action blocks (such as addition, removal, cre-
ation and modification of haptic and guidance effects) and flow
blocks (Wait For, Everytime and Switch) that allow controlling the
flow of the data by listening to events (e.g. “Wait for the device’s
button to be pressed”) or testing conditions (“If the key pressed is
equal to 1”). These blocks are abstractions of elements (or com-
binations of them) available in the H3DAPI. Setting the parame-
ters of these blocks and linking them together enable the produc-
tion of an executable scenario. The scenario is generated in Python
code which can be directly executed or that could further be used
as a start code skeleton to extend the interactions or to learn the
H3DAPI.

3.2 Implementation
HITPROTO has been implemented in C++ with WxWidgets for
the graphical user interface. With the exception of when a scene
is loaded and of operations related to scenes (such as checking
whether the pointer touches an object), the visual blocks are im-
plemented independently of the H3DAPI. The blocks and their pa-
rameters are based on elements and functions available in the API.
After users link these blocks in an interaction diagram and start ex-
ecution, each block is parsed and the corresponding Python code is
generated, then executed with the H3DAPI, see Figure 1. Python
provides an easy way to interface the H3DAPI. Therefore, we chose
to generate Python code, instead of directly instantiating the differ-
ent nodes in C++, so that the code could be used as a start skele-
ton to extend the developed interactions or to more quickly learn
how to program with the API for developers new to H3D. In the-
ory, HITPROTO could be used with any devices supported by the
H3DAPI and also multiple devices; however the current system has
only been tested with one PHANTOM device so far, the rest being
left for future work, once the design of the tool has been validated.

3.3 Using HITPROTO
The tool is divided into four regions (Figure 2(a)): a menu bar
(i.e. Save or Open File), a left panel, a canvas and a bottom panel.
The left panel contains the block shapes, divided into two expand-
able list menus, namely ‘Actions’ and ‘Flow’ blocks. The ‘Ac-
tions’ blocks available so far include: Guidance Add and Guid-
ance Control for guidance interactions, HapticEffect to add haptic
effects, Highlight and Unhighlight to highlight an object haptically,
Select to store an object into memory, Add Modify to add or modify
a created instance or a scene object and Trash to remove an object
from the scene. The ‘Flow’ blocks contain Wait For, to wait for
an occurrence of a specified event before proceeding with the rest
of the actions, Everytime to repeat a sequence of actions each time
a given event is received and Switch to test conditions on the re-
ceived events. The block shapes are represented by icons, whose
image reflects the block’s name. For instance, the Switch block is
represented by a physical switch; the Guidance Add block is pic-
tured by a map and a compass while the Wait For and Everytime
blocks are represented by a timer and a clock with a looping arrow
respectively.

the 3D scene-graph of the world and particularly the geometric and basic
haptic properties.



(a) Interaction scenario diagram. (b) Corresponding 3D scene with H3DAPI.

Figure 2: These figures represent the scenario for creating three magnetic lines, which are removed if the first keyboard key pressed is ‘a’. Figure
2(a) illustrates the interaction diagram that prototypes this behaviour, while Figure 2(b) shows the resultant 3D scene.

To populate the canvas, the user can drag’n’drop the chosen
block shapes onto it. Apart from the Start and Stop shape, each
of these blocks has a set of parameters which the user can tune to
suit their needs (e.g., when adding a spring effect, the developer can
tune the spring constant, the spring position and the spring force
range to attract the user). These parameters are displayed in the
bottom panel, upon block selection. Testing the constructed inter-
action diagram requires appropriately linking the shapes from Start
to Stop and then running the diagram. Also, for line chart visualiza-
tion, a module allows the automatic creation, from a set of points,
of an X3D scene, which the user can load and for instance, create
interactions for it such as guidance (see Section 3.4).

3.4 Examples
As can be seen from the previous section, prototyping an interaction
is achieved by connecting together the suitable blocks, setting the
appropriate parameters and executing the diagram. Two examples
are shown in Figures 2 and 3, which illustrate the creation of an
interaction scenario.

The first scenario (Figure 2) was created as an extension of a
demonstration from the API which simply exhibits three magnetic
lines. The lines are first created and when the user subsequently
presses the ‘a’ key, these lines are removed. The interaction sce-
nario (Figure 2(a)) can be read as “Create and add three magnetic
lines with the given coordinates and order; wait for a keyboard key
press, if the key pressed is equal to the value ‘a’, then remove the
magnetic lines, otherwise do nothing”. The blocks that have been
used, other than the Start and Stop shapes (the green and red traf-
fic lights) are: the HapticEffect block that allows the creation of
haptic effects including magnetic lines, the Wait For block to listen
to one event occurrence, in this case the keyboard being pressed,
the Switch block to test which key has been pressed, and finally the
Trash block to remove the magnetic lines from the scene.

The second scenario (see Figure 3) was created in order to repro-
duce an interaction that has been presented using the prototyping
language NiMMit [12]. In this interaction scenario, the device’s
collisions with objects are monitored and every time the device
touches a scene object, if the touched object is not highlighted, then
the previously highlighted object is unhighlighted and the touched

one is successively highlighted. Haptic highlighting can include
creating a magnetic bounding box, adding a spring in the centre
of the object or making the object’s surface magnetic. In addition,
every time the device’s button is pressed, we select the current high-
lighted object if it is not already selected.

Figure 3: A highlight by touching and select by pressing the device
button scenario, similar to DeBoeck et al. [12].

In the context of haptic data visualization, scenarios including:
guidance metaphors such as the ‘Museum Tour’, which conveys an
overview of a line chart to visually impaired people; and using a re-
pulsive force based on point concentration to convey a 3D overview
of scatter plots have been developed using the tool [27]. A simpler
example of the ‘museum tour’[25], which deals with the movement
interaction only, is illustrated in Figure 4. This guidance tour takes a
user along a predefined path, stops them at predetermined points of
interest, letting them freely roam around to get a feeling for the sur-
roundings, and then the tour continues. This example involves the
guidance blocks (Guidance Add to define the guidance settings and
Guidance Control to control the movement, either starting, paus-
ing or resuming) and all of the flow blocks (Wait For, Everytime
and Switch). The sequence can be read as: create and add a guid-
ance object with the specified parameters, wait for its inner spring
to be activated when the device is attached and start the guidance;
then every time the device is at a point of interest, pause it and al-



low the user to roam around for a given time before resuming the
guidance.

Figure 4: The museum tour interaction diagram: the user is led along
a predefined path and at chosen points of interest, the tour is paused,
to allow the user to explore the surroundings before resuming.

As the examples have shown, HITPROTO currently supports
guidance interactions and the addition of haptic effects. HIT-
PROTO is still at the prototyping stage and more interactions will be
integrated, starting from interactions for haptic visualization, as de-
scribed in [13] to a more complete set of haptic interactions [11]. As
a limited set of interactions is applicable to the haptic modality [11],
a case-by-case approach has been judged feasible and adopted.

4 USABILITY EVALUATION

The purpose of our evaluation was to assess whether a user can use
the tool to prototype haptic interactions and what improvements can
be made. Therefore, a formative testing was selected as the most
appropriate type of testing, and more precisely, an ‘assessment test’
as defined by Rubin [31]. An assessment test “seeks to examine
and evaluate how effectively the concept has been implemented.
Rather than just exploring the intuitiveness of a product, [one is]
interested in seeing how well a user can actually perform full-blown
realistic tasks and in identifying specific usability deficiencies that
are present.” (Chapter 2, p38).

The evaluation procedure is set-out below; in this evaluation,
both qualitative and quantitative measures were collected and the
PHANTOM force-feedback device was used throughout this eval-
uation. We first initiated a pilot study, which provided useful feed-
back as to our training and evaluation techniques, subsequently fol-
lowed by a full study.

4.1 Procedure
Before performing the tasks, the participants were first asked to
complete a background questionnaire to gather information about
their experience with visual programming tools and haptics. A
familiarization with the haptic device phase followed using a set
of the API standard demonstrations. Then the participants under-
went a training phase, which consisted of a step-by-step tutorial
guided by the expert leading the test session. The tutorial included
various interaction scenarios to walk the participants through their
prototyping: how to create a new interaction diagram, manipulate
the blocks and tune their parameters (drag’n’drop and selection of
values from the bottom panel), connect these to create the inter-
action scenario, compile and execute the interaction diagram and
test whether it achieves the given interaction scenario goals. At
the same time, the participants were introduced the blocks that they
would use in the evaluation phase. At the end, a “Check Yourself”
example was given so that the participants could try creating a dia-
gram on their own, with the solution provided at the end as well as
help on demand.

Once the training was over, the participants were asked to com-
plete a set of four tasks. They were encouraged to work without
guidance, unless they did not understand the interaction description
or were unclear of how to progress. During the tasks several quan-
titative measures were taken: these included the time to perform the
task as well as the success rate, including information on whether
(and how much) help was needed to achieve the task. A question-
naire was used, at the end of the tasks, to gather qualitative mea-
sures, followed by an interview about the participants’s comments
and experience.

4.2 Pilot Study
The pilot study followed the main procedure described above, in
Section 4.1. The tutorial described three interaction scenarios that
would introduce all the blocks in the tool. The first scenario was
the magnetic lines example presented in Section 3.4, the second a
simple scenario to start a guidance interaction after a button press,
while the last one was the ‘highlight by touching’ metaphor also
described in Section 3.4. The ‘Check Yourself’ example, which
was a variation of a guidance interaction, was used as a criterion
task, which would evaluate whether the participant should continue
with the tasks or needed more explanation.

The participants were given four tasks (or interaction scenarios)
to perform. Scenario 1 was to create a guidance interaction, which
started both after the device was attached to the moving anchor and
after a certain key on the keyboard was pressed. This scenario’s
difficulty was in understanding that it was possible to add two Wait
For blocks after one another. Scenario 2 was to create a guidance
interaction which started once the device was attached to the an-
chor object. The guidance had to be paused (if it was moving) or
resumed (if it was already paused) each time the device’s button
was pressed. This scenario’s difficulty lay in finding the right test
with the Switch block, which had not been introduced in the tutorial.
Scenario 3 was a simplified version of the ‘Museum Tour’, as ex-
plained in Section 3.4, where the guidance would pause and then re-
sume at given points of interest. This scenario’s difficulty involved
getting the right combination of the Everytime and Switch blocks
with the appropriate option, also not presented during the tutorial.
Scenario 4 was a simplified version of the scatter plot overview
interaction [27]. The first three task scenarios had increasing dif-
ficulty and the last one was performed if time allowed. Two hours
were allowed for the test, with one hour for training and one hour
for completing the tasks.

Two participants, one male and one female, took part in the two
hour experiment. Both were postgraduate students with no experi-
ence with haptics, programming or visual programming tools and
were paid for their participation.

4.2.1 Pilot Results

The first participant took most of the two hours for the training
phase with the tutorial and consequently did not perform any tasks.
When questioned, he could not explain the functionality of the
blocks or how to program an interaction. However towards the end,
after repeating explanations about the blocks, the participant was
able to understand and use them. He commented that “it clicks, af-
ter a while”, but he needed several repetitions before he understood
the concepts and remembered the functionality. He also thought
that a longer training period would help. He added that the tool
was easy to use and that the difficulty lied in understanding the lan-
guage, which needed more time and practice.

The second participant took 2h30 to complete the experiment.
She finished the tutorial in one hour and exhibited a better under-
standing of the different concepts. She completed the ‘Check Your-
self’ example with a little bit of help. She then performed the tasks,
spending 24 minutes for the first task, 20 for the second and 16 min-
utes for the last one. She managed to perform these with very little



help: she would ask, for instance, if one option (not introduced in
the tutorial but available in the user manual) would do what she ex-
pected or more explanations about the interaction description. She
clearly understood the language behind the tool and had the right
logic to program the interactions; however instead of referring to
the manual for more details, she would ask for help. During the
experiment, she was really excited about the tool and insisted on
finishing the three tasks even when we ran out of time.

4.3 Changes after the Pilot
The pilot study demonstrated two extreme behaviours; one partici-
pant not being able to perform the tasks and one able to understand
well and complete all the tasks. Despite these differences, both
participants highlighted that two hours were not enough to com-
plete the experiment, as even the participant who was able to con-
duct the tasks took 2.5 hours. Therefore, the experiment was ex-
tended to last three hours, with approximately 1h20 for training, up
to 1h15 for the test and the rest of the time to fill in the informa-
tion questionnaire as well as the final questionnaire followed by a
short interview. Also both the tutorial and the tasks were simpli-
fied. The tutorial was changed to include two example scenarios
instead of three, and a two-page visual summary of the blocks was
created, which summarized the functionalities of the blocks. As for
the tasks, the first two scenarios were changed to be variations of
the tutorial examples, while the last two tasks were the same as the
pilot’s first and third task scenarios. These tasks, as explained in
Section 4.2, required the user to apply their understanding of the
system to the use of new functionalities that were not included in
the tutorial (such as being able to use two Wait For blocks one after
the other, or new block options).

4.4 Experiment
The experiment was conducted using the general procedure and the
modified materials (tutorial, tasks and visual summary) from the
pilot study with the time taken for each participant increased as
given above. Nine participants – three males and six females –
all with no or little programming experience and no former experi-
ence with haptic devices or visual programming tools, took part in
the evaluation. Each were postgraduate students, with backgrounds
including anthropology, archeology, psychology, microbiology or
actuarial science.

4.4.1 Experiment Results
Time for task completion The task-completion time was mea-

sured for all the tasks. Apart from two participants – one who only
completed one task out of four, and another who did not finish the
last task – all the participants managed to complete the tasks, with
or without help. The resulting completion times averages for each
task are summarized in Table 1. The times were averaged over the
number of participants who had completed that task (i.e., averaged
over nine, eight, eight and seven participants, respectively).

Table 1 shows that most participants completed the tasks within
a relatively short period of time. The averaged times show an in-
creasing time for each successive evaluation task. This trend could
be explained by the fact that the tasks were gradually getting more
difficult. However, at the individual level (see Figure 5), this trend
only appears for three participants with two participants even ex-
hibiting the opposite trend. The opposite trend can be explained
by the fact that the more the participants were using the tool, the
more they were familiar with it and able to more quickly find a so-
lution. The rest of the participants show no particular trends in their
timings. It is also worth noting that the tool crashed for three partic-
ipants: for participant 1, for the first task (the work was saved and
therefore did not affect the performance); for participant 2, during
the first task (the work was lost) and the second task; for partici-
pant 5, at the end of task 2 (the work was lost) and for participant

Table 1: Times (in minutes) for participants to complete each task.

Task 1 Task 2 Task 3 Task 4
Minimum time 3 6 9 14
Maximum time 25 19 23 36
Average time 13 14 18 23

Table 2: Tasks success rates

Task 1 2 3 4 Rate(%)
(A) Success no help 7 3 27.8
(B) Success minor help 2 1 4 19.4
(C) Success major help 2 2 4 22.2
(D) Minor errors no help 5 1 16.7
(E) Minor errors minor help 1 2.8
(F) Failure (major errors) 1 1 1 8.3
(G) Not attempted at all 1 2.8

9 during the first task (the work was saved and the performance not
affected). We believe the high values for participant 2 were partly
affected by the successive crashes encountered.

Success rates for task completion The training time was
clearly too short to learn the full functionality of the tool; espe-
cially as participants needed to learn the visual language, each of
the block shapes and their functionalities. Thus, in order to miti-
gate against this, we decided to allow struggling participants to ask
for help. The help given ranged from simple hints, such as “Refer
to page X (or example Y) in the manual.”, to more elaborate hints
in the form of questions, such as “You want to monitor the move-
ment of the guidance? Which blocks allow you to listen and moni-
tor events?”. The answer was never directly given and after giving
some further hints, the participants were left to find the solution on
their own.

Table 2 summarizes these results, with the number of partici-
pants for each category. The categories include: success without
help, success with minor help (i.e. page reference), success with
major help (i.e. discussion including questions and explanations),
minor errors without help (i.e. starting the guidance at the device’s
position when it was not asked; but the general behaviour would
be correct), minor errors with minor help, failure and task not at-
tempted at all.

The success rates could indicate whether one task was more chal-
lenging, unsuitable or impossible. However, Table 2 indicates that
most of the tasks were achieved successfully with no or little help,
and that more help was required in the latter tasks. This matches
well with the design of the evaluation; as the latter tasks were de-
signed to be more challenging than the earlier ones. Also, overall,
88.9% of the attempts at the tasks resulted in a working interaction,
with or without help, while only 8.3% of them resulted in failures,
despite the help given.

Questionnaire Table 3 summarizes the main topics mentioned
in the questionnaire. Their answers were then discussed during the
interview. In fact, the participants gave positive feedback. Table 3
shows that most of the participants found the functionalities useful
and easy to use, such as displaying the selected parameters on the
block, the different interactions within the tool or tuning the param-
eters with the bottom panel. Eight participants out of nine found
the tool easy to use, especially after some practice, responding with
comments such as “After some practice and searching quite easy”
and “it was easy to use, especially as I have little experience with
this type of computer program”. Only one participant remarked “I



(a) Task 1 (b) Task 2 (c) Task 3 (d) Task 4

Figure 5: Task completion times (in minutes) with the average for each task and the type of success for each participant (see also Table 2 for the
meaning of the letter codes).

don’t know. Similar to other software I guess”.

When asked to list aspects of HITPROTO that they liked, the par-
ticipants answered encouragingly saying “Simple symbols/icons.
Easy to understand”, “It’s easy for a non-programmer to actually
program. It’s a relatively easy interface. The fact that it is diagram-
based”, “Intuitive. Could run even when task unfinished, useful
to make sure you are on the right lines” and “It made develop-
ing/creating things that looked complicated relatively simple. The
layout of the tool made it easier to access”. When asked to list
things they did not like about the tool, three participants commented
there was nothing they disliked. The others made some suggestions
to improve HITPROTO, including “...I was not always sure about
the order of connecting icons”, “[it] could get messy – a grid to
keep the object in place might be useful” or “Cannot zoom out, the
start node is always stuck in the beginning, icons”. Two partici-
pants commented on some of the technical terminology that was
used, which they felt could be simplified. One participant simply
said that there was “Lots of things to remember”. When specifi-
cally asked to suggest improvements, three participants wanted a
better help facility, rather than needing to check the tutorial or vi-
sual summary. They suggested including a tooltip functionality,
where by rolling the mouse over an icon on the diagram a short
description would popup. A participant added that an error check-
ing or compilation mechanism would be useful. Although no other
participants made that comment, it was observed that many partic-
ipants committed minor mistakes, such as giving a point index out
of range when specifying magnetic lines, or forgetting to choose
with instance/object to control or monitor. They were getting con-
fused as their understanding was telling them the diagram was cor-
rect, and indeed was, but yet not working, and tried other things
before eventually finding out their mistakes. Another participant
suggested including “a section where you can see what you have
created in ‘real time’, while creating”. One participant repeated the
availability of a ‘snap-to-grid’ functionality. Two other participants
were not quite satisfied about the look of the icons and suggested
changing the size of the blocks or their name. Three participants
had no suggestions to make. Most of these suggestions would be
possible to implement; in fact an error checking mechanism could
speed up the creation of interaction diagrams.

The System Usability Scale (SUS) was also used in the ques-
tionnaire, to evaluate the global usability of the tool. The questions
range from the ease of use, to confidence, the tool design, and learn-
ing. The average of the SUS scores rates the usability to be about
67%, which is relatively good. All the values are included between
50 and 92.5%, except for one participant who rated the usability
to be 17.5%. That participant gave rather low scores overall, and
did not seem interested in any computing software (that participant
is the one who replied “I don’t know” about the ease of use and
whether it allowed the prototyping of interactions) and did not want
to spend time learning a new tool.

Table 3: Questionnaire answers. The other column refers to the “I
don’t know” answer, except for the question concerning the bottom
panel, where the answer corresponds to “medium difficulty”.

Question Positive Negative Other
Was the tutorial easy to understand? 6 3 0
Did you find using the haptic device
difficult?

2 7 0

Did you like the images used for the
blocks?

7 2 0

Did the image blocks correspond
to the functionalities you expected
them to have?

6 3 0

Did you find it useful that the im-
age block displays parameters once
they are selected?

8 0 1

Was the bottom panel easy to use to
control the parameters?

8 0 1

Were the drag and drop, selection
and linking interactions easy to use?

9 0 0

Were there some interactions miss-
ing that you would like to be avail-
able?

2 7 0

Was the tool easy to use? 8 0 1
Did the tool enable you to prototype
and test interactions?

8 0 1

Would you use the tool rather than
learning programming?

9 0 0

Holistically, including the interview, we conclude that the partic-
ipants enjoyed using the tool and found it relatively easy to use and
create dynamic and interactive haptic visualizations. However, four
participants complained in the questionnaire that they did not have
enough time to familiarize themselves with the tool; they wished to
experiment and explore the tool more, such to understand the func-
tionality of each block, before starting the evaluation tasks. They
commented: “It was relatively easy to understand, but there was a
lot to remember in a short space of time [...], the short space of time
meant that I didn’t have time to fully understand every element of
the tool”, “Quite easy but sometimes a bit too fast”, “If I had more
time to familiarize myself with it, I think it would be very easy to
use” and “More time to play around and experiment with the tool
and program before starting the task”. They all commented, when
prompted in the interview, that with a longer training period, they
would find the tool very easy to use.



4.5 Discussion & Future Work
The usability evaluation showed that, overall, participants could use
HITPROTO to prototype haptic interactions. Many of them needed
some help; especially as they found that they did not have enough
time to learn how to use the tool and familiarize themselves with it.
However, these results are promising as people with no or very lit-
tle programming skills could use the tool and understand the logic
behind the dataflow language to program haptic interactions. Fur-
thermore, they managed to do so in a relatively short amount of
time with a short training period given the novelty of the tool to
them. This reinforces our belief that learning how to operate such
a tool would take less time and be more beneficial than learning
how to use the haptic API and the corresponding programming lan-
guages (such as C++); thus promoting the development of haptic
interactions, in particular for haptic data visualization.

The evaluation also highlighted areas for improvement for fu-
ture work. These include integrating a tooltip functionality for the
visual programming blocks of HITPROTO; incorporating an error-
checking and compilation mechanism (sometimes some blocks
were not well connected or some end blocks missing and it was
working, but it was not correct); and changing some terms that may
be too technical for a wide audience. Also during the evaluation,
a few crashes occurred and a few bugs, now fixed, were revealed.
Also, in future work, we will extend the number of interaction tech-
niques available in the HITPROTO prototype.

5 CONCLUSION

This paper presented HITPROTO, a tool for prototyping haptic in-
teractions in the context of haptic data visualization. The primary
goal is to allow rapid prototyping of haptic interactions without re-
quiring prior programming skills. The tool provides user-tunable
visual programming blocks to build the interaction. We believe that
learning to use the tool to prototype interactions will take less time
than learning how to use the API and the programming languages
involved (Python or C++), especially for people with no program-
ming background. This is supported by the evaluation, and although
no formal conclusions can be formed, the informal feedback plus
the demonstrated ability of many non-computer specialists to cre-
ate haptic interactions with a relatively short training time, gives us
confidence that the tool achieves its goals.

Work on the tool is ongoing. Future work will consist of adding
more blocks and investigating more haptic visualization scenarios;
in particular we are focusing on under-researched areas in haptic
data visualization such as tables and networks.

REFERENCES

[1] 3ds Max, a 3D modelling, animation and rendering software.
http://www.autodesk.co.uk/3dsmax [Last accessed: 17-12-09].

[2] Blender, “a free open source 3D content creation suite”.
http://www.blender.org/ [Last accessed: 17-12-09].

[3] Immersion Studio. http://www.immersion.com/products/rumble-
technology/immersion-studio.html [Last accessed: 17-12-09].

[4] Rhino. http://www.rhino3d.com/ [Last accessed: 17-12-09].
[5] the H3DAPI, by SenseGraphics. http://www.h3dapi.org/ [Last ac-

cessed: 17-12-09].
[6] the X3D Standard. http://www.web3d.org/ [Last accessed: 17-12-09].
[7] C. Appert, S. Huot, P. Dragicevic, and M. Beaudouin-Lafon. Flow-

States : Prototypage d’application interactives avec des flots de
données et des machines à états. In IHM. ACM, Oct. 2009.

[8] R. Ballagas, M. Ringel, M. Stone, and J. Borchers. iStuff: a Physical
User Interface Toolkit for Ubiquitous Computing Environments. In
CHI, pages 537–544. ACM, 2003.

[9] W. Book. Control Prototyping with LabVIEW for Haptic and Teler-
obotic Systems. Webcast, March 2008.

[10] K. Bowen and M. K. O’Malley. Adaptation of Haptic Interfaces for a
LabVIEW-based System Dynamics Course. In HAPTICS, pages 147–
152. IEEE, 2006.

[11] J. De Boeck, C. Raymaekers, and K. Coninx. Are existing metaphors
in virtual environments suitable for haptic interaction. In VRIC, pages
261–268, Apr. 2005.

[12] J. De Boeck, D. Vanacken, C. Raymaekers, and K. Coninx. High-
Level Modeling of Multimodal Interaction Techniques Using NiM-
MiT. Journal of Virtual Reality and Broadcasting, 4(2), Sept. 2007.

[13] F. De Felice, G. Attolico, and A. Distante. Configurable Design of
Multimodal Non Visual Interfaces for 3D VE’s. In M. E. Altinsoy,
U. Jekosch, and S. Brewster, editors, HAID, volume 5763 of LNCS,
pages 71–80. Springer, Sept. 2009.

[14] P. Dragicevic and J.-D. Fekete. Support for Input Adaptability in the
ICON Toolkit. In ICMI, pages 212–219. ACM, Oct. 2004.

[15] M. Eid, A. Alamri, and A. E. Saddik. MPEG-7 Description of Haptic
Applications Using HAML. In HAVE, pages 134–139. IEEE, Nov.
2006.

[16] M. Eid, S. Andrews, A. Alamri, and A. El Saddik. HAMLAT: A
HAML-Based Authoring Tool for Haptic Application Development.
In M. Ferre, editor, Eurohaptics, volume 5024 of LNCS, pages 857–
866. Springer, Jun. 2008.

[17] M. J. Enriquez and K. E. MacLean. The Hapticon Editor: A Tool in
Support of Haptic Communication Research. In HAPTICS, page 356,
Los Angeles, CA, USA, 2003. IEEE.

[18] P. Figueroa, M. Green, and H. J. Hoover. InTml: a Description Lan-
guage for VR Applications. In Web3D, pages 53–58. ACM, Feb. 2002.

[19] N. Forrest and S. Wall. Protohaptic: Facilitating Rapid Interactive
Prototyping of Haptic Environments. In HAID, volume 2, pages 21–
25, Aug–Sept. 2006.

[20] S. Huot, C. Dumas, P. Dragicevic, J.-D. Fekete, and G. Hégron. The
MaggLite Post-WIMP Toolkit: Draw It, Connect It and Run It. In
UIST, pages 257–266. ACM, Oct. 2004.

[21] L. Kurmos, N. W. John, and J. C. Roberts. Integration of Haptics with
Web3D using the SAI. In Web3D, pages 25–32. ACM, Jun. 2009.

[22] J.-Y. L. Lawson, A.-A. Al-Akkad, J. Vanderdonckt, and B. Macq.
An Open Source Workbench for Prototyping Multimodal Interactions
Based on Off-The-Shelf Heterogeneous Components. In EICS, pages
245–254. ACM, Jul. 2009.

[23] J. Lee, J. Ryu, and S. Choi. Vibrotactile score: A score metaphor for
designing vibrotactile patterns. In WHC, pages 302–307. IEEE, 2009.

[24] D. Navarre, P. Palanque, P. Dragicevic, and R. Bastide. An ap-
proach integrating two complementary model-based environments for
the construction of multimodal interactive applications. Interacting
with Computers, 18(5):910–941, 2006.

[25] S. Panëels and J. C. Roberts. Haptic Guided Visualization of Line
Graphs: Pilot Study. In HAID, poster and demo proceedings, pages
5–6, Nov. 2007.

[26] S. Panëels and J. C. Roberts. Review of Designs for Haptic Data
Visualization. Transactions on Haptics, 2009. PrePrint.

[27] S. Panëels, J. C. Roberts, and P. J. Rodgers. Haptic Interaction Tech-
niques for Exploring Chart Data. In M. E. Altinsoy, U. Jekosch,
and S. Brewster, editors, HAID, volume 5763 of LNCS, pages 31–40.
Springer, Sept. 2009.

[28] A. Ray and D. A. Bowman. Towards a System for Reusable 3D Inter-
action Techniques. In VRST, pages 187–190. ACM, 2007.

[29] J. Roberts and S. Panëels. Where are we with Haptic Visualization?
In WHC, pages 316–323. IEEE, 2007.

[30] M. Rossi, K. Tuer, and D. Wang. A new design paradigm for the rapid
development of haptic and telehaptic applications. In Conference on
Control Applications, pages 1246–1250. IEEE, Aug. 2005.

[31] J. Rubin. Handbook of Usability Testing: how to plan, design and con-
duct effective tests. Wiley Technical Communications Library. John
Wiley and Sons, Inc., April 1994.

[32] M. Serrano, L. Nigay, J.-Y. L. Lawson, A. Ramsay, R. Murray-Smith,
and S. Denef. The OpenInterface Framework: a Tool for Multimodal
Interaction. In CHI EA, pages 3501–3506. ACM, Apr. 2008.

[33] C. Swindells, E. Maksakov, K. E. MacLean, and V. Chung. The role
of prototyping tools for haptic behavior design. In HAPTICS. IEEE,
2006.

[34] Y. Visell, A. Law, and J. R. Cooperstock. Toward iconic vibrotactile
information display using floor surfaces. In WHC, pages 267–272.
IEEE, Mar. 2009.


