
From Test Cases to FSMs: Augmented
Test-driven Development and Property Inference

Thomas Arts
Chalmers / Quviq AB, Gothenburg, Sweden

thomas.arts@ituniv.se

Simon Thompson
University of Kent, Canterbury, UK

S.J.Thompson@kent.ac.uk

Abstract
This paper uses the inference of finite state machines from EUnit
test suites for Erlang programs to make two contributions. First, we
show that the inferred FSMs provide feedback on the adequacyof
the test suite that is developed incrementally during the test-driven
development of a system. This is novel because the feedback we
give is independentof the implementation of the system.

Secondly, we use FSM inference to develop QuickCheck prop-
erties for testing state-based systems. This has the effectof trans-
forming a fixed set of tests into a property which can be testedusing
randomly generated data, substantially widening the coverage and
scope of the tests.

Categories and Subject Descriptors D. Software [D.2 SOFT-
WARE ENGINEERING]: D.2.5 Testing and Debugging: Testing
tools

General Terms Verification

Keywords TDD, test-driven development, Erlang, EUnit, unit
test, QuickCheck, property, inference, finite-state machine

1. Introduction
In this paper we show how finite state machines can be automat-
ically extracted from sets of unit tests – here Eunit [6] tests for
Erlang programs. We use these FSMs in two ways. First, they can
in themselves provide feedback on the adequacy of a set of tests,
independently of any implementation. Secondly, they can betrans-
formed and used within Quviq QuickCheck [1, 14] to guide the
random generation of test sequences for state-based systems. We
discuss these contributions in turn now.

Test-driven Development

Test-driven development [3, 4] (TDD) advocates that tests should
precede implementations. Systems should be developed incremen-
tally, with each increment delivering enough functionality to pass
another test, as illustrated here.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Erlang’10, September 30, 2010, Baltimore, Maryland, USA.
Copyright c© 2010 ACM 978-1-4503-0253-1/10/09. . . $10.00

test1

system1

tests 1-2

system 2

test1

system1

tests 1-n

system n

Under this approach, how can we validate the system? It will surely
meet the tests, because it has been developed precisely to pass them.
The question becomes one ofvalidating the tests themselves. In
this paper we propose that during TDD of state-based systemswe
can validate the tests by extracting the finite state machine(FSM)
implicit in the current test set.

system1
system 2

system1
system n

FSM 1
FSM 2

FSM 1
FSM n

test1
tests 1-2

test1
tests 1-n

The FSM is extracted by means of grammar inference [23] over sets
of positive and negative traces. This FSM provides feedbackon the
testsindependentlyof any implementation, and thus ‘triangulates’
the process.

We would argue that that makes the process of test-driven de-
velopment more robust. In particular, it allows us to give ananswer
to the question“When have I written enough tests?”on the basis
of the tests alone, rather than by examining an implementation. We
return to this question in Section 5.

We illustrate our approach to TDD by working through a case
study in Erlang, developing unit tests in EUnit, and using State-
Chum [19] to extract a series of FSMs from the test suite as it
evolves.

Testing state-based systems

This work was developed within the European Framework 7
ProTest project [18] to develop property-based testing forErlang.

In particular we seek to develop QuickCheck1 properties from sets
of unit tests, thus providing a migration path from traditional unit
testing to property-based testing. To test state-based systems in
QuickCheck it is usual to develop a state machine model (using
eqc fsm or eqc statem) which encapsulates the permissible se-
quences of API calls.

We show how the FSM extracted from a set of unit tests can
be transformed into a QuickCheck FSM, and thus how a set of
unit tests can be combined into a property. This has the benefit
of allowing the system to be tested on many more inputs, namely
all those permissible in the FSM, and a selection of these canbe
generated randomly using QuickCheck generators.

Abstraction

In modelling a system using a finite state machine we need to
perform abstraction over the state data. In the case study the data
consist of a finite collection of resources, and this is modelled by
sets with small cardinalities before we seek to identify a general
case. In the case of test development, this allows us to identify
complete sets of tests for ‘small’ models before moving to the
general case. In QuickCheck this process identifies candidate state
data values.

Roadmap

We begin by discussing the background to this work in Section
2. We first introduce test-driven development, and then discuss
EUnit and QuickCheck for testing Erlang systems. We also look
at grammar inference as a mechanism for inferring finite-state
machines from sets of words in the language and its complement.
We use StateChum to do FSM inference in our case study.

Section 3 discusses a systematic approach to developing and
assessing tests during test-driven development through the case
study of a ‘frequency server’. We use Eunit to express the tests and
StateChum to infer finite state machines from test sets in a fully
automated way. While doing this we discuss the question of how
to abstract away from particular aspects of the system in forming a
model of the system under test.

Section 4 builds on this by developing a QuickCheck state ma-
chine for the example. This machine is based on the FSM inferred
in the previous section, and we discuss the process of building the
QuickCheck machine from this FSM with a view to automating the
process as much as possible in the future.

Finally we discuss related work in Section 5 and draw some
conclusions in Section 6.

2. Background
In this section we give a brief overview of the main topics which
form the background to the work reported this paper, as well as
providing references where more information can be found.

2.1 Test-driven development

A manifesto for test-driven development (TDD) is given in Beck’s
monograph [4]. This gives advice on adopting TDD in practice, as
well as answering frequently-asked questions. The thesis of test-
driven development is that it is the formulation of tests which
should be used to drive the development process.

Specifically, the requirements for the system are given by a se-
ries of tests developed incrementally. At each stage the implemen-
tor will write enough to satisfy the existing tests and (in theory at
least) nothing more. Hence the importance of the tests in specifying
the system, and so the importance of finding mechanisms by which
the tests can be validated in some independent way. In Section 5 we
compare our approach to others in the TDD community.

1 In this article, QuickCheck refers to Quviq QuickCheck version 1.18

2.2 EUnit

EUnit [5, 6] provides a framework for defining and executing
unit tests, which test that a particular program unit – in Erlang,
a function or collection of functions – behaves as expected.The
framework gives a representation of tests of a variety of different
kinds, and a set of macros which simplify the way EUnit tests can
be written.

For a function without side-effects, a test will typically look at
whether the input/output behaviour is as expected, and thatexcep-
tions are raised (only) when required.

Functions that have side-effects require more complex support.
The infrastructure needed to test these programs (called afixture)
includes a facility to setup a particular program state prior to test,
and then to cleanup after the test has been performed.

Examples of EUnit tests are given in the body of the paper, and
are explained as they occur. The text [7] gives an introduction to
EUnit testing; further details can be found in [5, 6] and the online
documentation for the system.

2.3 Grammar and state machine inference

The StateChum tool extracts a finite state machine from sets of
positive and negative instances [19]. That is, the user provides
sets of words which are in (resp. out) of the language of the state
machine, and grammar inference techniques are used to inferthe
minimal machine conforming to this requirement.

The algorithm uses astate mergingtechnique: first the (finite)
machine accepting exactly the positive cases is constructed, then
states are merged in such a way that no positive and negative
states are identified. The particular implementation assumes that
the language accepted is prefix-closed, so that in terms of testing
a single positive case can be seen as representing a number of
positive unit tests. Further details of the algorithm are in[23, 24].

FSM and grammar inference is a well-established field: an early
introduction can be found in [22].

2.4 QuickCheck

QuickCheck [1, 14] supports random testing of Erlang programs.
Properties of the programs are stated in a subset of first-order logic,
embedded in Erlang syntax. QuickCheck verifies these properties
for collections of Erlang data values generated randomly, with user
guidance in defining the generators where necessary.

When testing state-based systems it makes sense to build an
abstract model of the system, and to use this model to drive testing
of the real system. Devising this model is crucial to the effective
testing, and the technique outlined in this paper facilitates model
definition from existing test data rather than from an informal
description of the system under test.

QuickCheck comes with a library (eqc fsm) for specifying test
cases as finite state machines. For each state in the FSM it is
necessary to describe a number of things.

• The possible transitions to other states.

• A set of preconditions for each transition.

• How to actually perform the transition (that is, a function that
performs whatever operations are necessary).

• Postconditions to make a check after the state transition.

• A description of the changes on the state as a result of the
transition.

This information is supplied by defining a set of callback functions;
we will see an example of this in practice in Section 4.

3. Test-driven development
In this section we introduce a procedure for systematicallydevel-
oping the unit tests that are used in the test-driven development
process of systems. This is illustrated through the runningexample
of a simple server.

3.1 Example: a frequency server

As a running example (taken from [7]) we write tests for a simple
server that manages a number of resources – frequencies for exam-
ple – which can each be allocated and deallocated. The serverpro-
cess is registered to simplify the interface functions, so that it is not
necessary to use the process identifier of the server to communicate
with it. The Erlang type specification for the interface functions is
as follows:

-spec start([integer()]) -> pid().
-spec stop() -> ok.
-spec allocate() -> {ok,integer()} |

{error, no_frequency}.
-spec deallocate(integer()) -> ok.

The start function takes a list of frequencies as argument and
spawns and registers a new server that manages those frequencies.
Thestop function communicates with the server to terminate it in
a normal way.

Theallocate function returns a frequency if one is available,
or an error if all frequencies have already been allocated. The
deallocate function takes a previously allocated frequency as
argument and has the server release that frequency.

3.2 Testing start/stop behaviour

As straightforward as this server seems to be, it is still a good idea
to define some tests before we write the code. We use EUnit [6] as a
framework for writing our unit tests, but the principles in this paper
apply however we write unit tests.

We start by defining tests for starting and stopping the server,
not worrying about allocation and deallocation. Of course we want
a test in which we start and stop the server, but we also want to
test that we can start it again after stopping. Since the second test
subsumes the first, we only define the second.

startstop_test() ->
?assertMatch(Pid1 when is_pid(Pid1),start([])),
?assertMatch(ok,stop()),
?assertMatch(Pid2 when is_pid(Pid2),start([1])),
?assertMatch(ok,stop()).

We start the server twice, each with a different list of resources,
more or less an arbitrary choice. The second call tostop is per-
formed to clean up and return to the state in which no server is
registered. Note that we match the returned values of the calls, viz.
ok for stop and a pid forstart, precisely as required by the speci-
fication.

Note that although we have defined this as a single EUnit test,it
can also be seen as representing four separate tests, one performed
by each?assertMatch expression. The four tests check that that
the system can be started, that it can be started and then stopped,
and so forth: one test case for each prefix of the sequence of
?assertMatch statements.

Now we would be able to write our first prototype, but it is
obvious that if we writestart andstop to just return the correct
return types, then the test would pass. This indicates that we have
too few tests for a proper test-driven development of a non-trivial
server. How do we find out which additional tests to add?

One answer is to appeal to our programmers’ intuition, but a
more satisfactory – and principled – approach is to look at the set

startstop

passive

config debugMode true

+ start stop start stop

Figure 1. Start/stop behaviour: first model

of tests and see what state space is implicit in these. More specifi-
cally, we can extract the minimal finite state machine (FSM) from
the traces, and then judge the adequacy of the resulting FSM in
modelling the proposed system, thereby assessing the teststhem-
selves.

3.3 Visualizing the state machine

In this section we demonstrate how we can use the StateChum li-
brary [19], to improve our set of unit tests by generating a Finite
State Machine which represents the minimal FSM implicit in the
tests. Inspecting that FSM allows us to decide which tests should be
added (or indeed removed) in order to make the state space corre-
spond to the intended model, and thus to establish the completeness
of the test data set.

Translating EUnit tests to sequences

In order to use StateChum on a set of given EUnit tests, we needan
algorithm to translate EUnit tests to sequences that are given as in-
put to StateChum. The translation we start of with is to replace each
?assertMatch(Result,Fun(A1 , ..., An)) in a test by the func-
tion nameFun to obtain a sequence of function calls. In particular,
thestartstop test() above is translated into the sequence:

+ start stop start stop

where the leading ‘+’ indicates that this is apositive trace, that is a
trace that is to be accepted by the inferred FSM.

Note also that the algorithm used by StateChum assumes that
the positive traces are closed under initial segments, so that the
single trace is in fact equivalent to

+ start
+ start stop
+ start stop start
+ start stop start stop

Finally it should be noted that the transformation from the EUnit
tests to the StateChum input can be fully automated.

3.4 Using the derived FSM to assess tests

In order to use StateChum on our example, we need to abstract
from the data part in our test case and concentrate on the sequence
of function calls performed. This sequence is input to StateChum
and this input together with the derived FSM is shown in Fig. 1.

This figure indicates that there is a single state in which it is
possible both to start and to stop the server. Starting and stopping
the server don’t result in a state change; at least, not on thebasis
of this single test case. In particular, the picture suggests that one
can successfully perform a stop in the initial state, and also start the
system twice.

In order to make two distinguishable states we need to supply
StateChum with twonegative sequences, which correspond to two
negative test cases, that is, test cases that result in erroneous be-
haviour of some kind. The first test case verifies that one cannot
stop in the initial state. This is added to the input for StateChum
by adjoining the line- stop. After doing so, we observe an FSM
with three states, depicted in Fig. 2.

In the initial state – indicated by astarred icon – astop leads
to the error state and astart leads to a second state. From that

start

stop

stop

passive

config debugMode true

+ start stop start stop

- stop

Figure 2. Start/stop behaviour: second model

start

stop

st
ar
t stop

passive

config debugMode true

+ start stop start stop

- stop

- start start

Figure 3. Start/stop behaviour: final model

second state there is astop transition back to the initial state, but
no further transitions. The third state is a ’dead state’ – denoted
by asquare– and this is the result of astop move from the initial
state. The two traces: one negative and one positive, are insufficient
to predict what happens when astart call is made in the second
state.

So, we need to add another negative test case, stating that start-
ing a system that is already running will result in an error. The new
FSM derived is shown in Fig. 3, where we now have an extra transi-
tion to the error state. This picture describes the completebehaviour
of thestart andstop functions and all sequences thereof. There-
fore, we are justified in concluding that the set containing one pos-
itive and the two negative tests is sufficient for testing thestart/stop
aspects of the system behaviour.

3.5 Writing negative tests in EUnit

When writing negative tests, we can either choose to specifywhich
exception should occur, or just match on any possible exception.
Many testers like the first alternative best, since one also tests
whether the code fails for the right reason. However, in our case
the reason is not specified, and, by adding it to the test we limit the
possibilities in the design.

For example, if we were to decide that an initialstop raises an
exception with reasonnot running and were then to decide to im-
plement the server using the standard OTP behaviourgen server,
then the error generated by the implementation would be anoproc
exception rather thannot running, and so the negative test would
fail. We could change the exception sought, but rather than over-
specify the error exception, we choose the second alternative above
and match on any possible exception.

stop_without_start_test() ->
?assertException(_,_,stop()).

start_twice_test_() ->
{setup,

fun() -> start([]) end,
fun(_) -> stop() end,
fun() -> ?assertException(_,_,start([])) end}.

If we stop a non running server, an exception is raised and starting
an already running server similarly raises an exception. The reason
for writing the last test case as a test generator2 with set-up code,
clean-up code and actual test code is that EUnit raises an exception
as soon as the?assertException would fail, e.g., when the
second start succeeds. In such cases one still wants to cleanup and
stop the already running server.

Translating EUnit tests to sequences

Although we used StateChum to derive a full set of tests by
first supplying the negative sequences and then writing the addi-
tional test cases, we still strive after a translation from EUnit tests
to these sequences. We extend therefore our translation in such
a way that any command sequence in EUnit that ends with an
?assertException is a negative tests and the translation of these
assertions is given by:
[?assertException(E1,E2,Fun(A1 , ..., An))] → Fun
[{setup,

fun() -> InitSeq end,
fun() -> StopSeq end,
fun() -> Seq end}] → [InitSeq Seq]

Thus ignoring the cleanup code and assuming at most the last as-
sertion is an exception assertion, which determines the test to be a
negative sequence.

Taking the examples given at the start of this subsection we
generate the sequences:

- stop
- start start

as shown in Figure 3.

3.6 Initial implementation: start/stop behaviour

We can now run the tests and all three fail with notifications point-
ing to the fact thatstart andstop are as yet undefined! We now
write the code for starting and stopping the server.3 thus:

start(Freqs) ->
{ok,Pid} =

gen_server:start({local,?SERVER},
?MODULE,Freqs,[]),

Pid.

stop() ->
gen_server:call(?SERVER,stop).

%% callbacks
init(Freqs) ->

{ok, Freqs}.

handle_call(stop,_From, State) ->
{stop, normal, ok, State};

handle_call(_Msg,_From,State) ->
{reply,error,State}.

All tests pass and by having seen the correspondence betweenthe
test cases and the FSM in Fig. 3, we have strong confidence that
adding more tests is superfluous and that we can proceed with

2 Note the subtle addition of ‘’ after the function name, which transforms
a direct test into a test generator. See [6] for details.
3 An alternative implementation of the system is provided in Ch. 5 of [7].

start

stop

allocate

al
lo
ca
te

deallocate

sta
rt

stop, allocate
passive

config debugMode true

+ start stop start stop

- stop

- start start

+ start allocate deallocate allocate stop

- start allocate allocate

Figure 4. Single frequency: second model

specifying the tests for the additional functionality of allocating and
deallocating frequencies.

3.7 Defining tests for a data-dependent state space

After having defined test cases for starting and stopping theserver,
we would now like to allocate and deallocate frequencies. Whether
or not allocation succeeds depends on the number of frequencies
that are available. In other words, depending on how many frequen-
cies we start with and how many allocations we perform, we get
different successful and failing test cases.

Starting by defining a set of test cases for four frequencies
would immediately result in a large number of possible allocation
and deallocation scenarios, let alone taking a realistic example of
several hundreds of resources. We therefore start by defining the
tests for systems with one and two frequencies available andmake
sure that we get a complete set of tests for each of these, trusting
that we can generalise from these to the general case.

3.8 A single frequency

A typical test case would be to allocate a frequency and then
deallocate it. Another typical test case would be to allocate it once
more after deallocation. Since the first test case is subsumed in the
second one, we only write the second.

alloc_dealloc_alloc_test_() ->
{setup,

fun() -> start([1]) end,
fun(_) -> stop() end,
fun () ->

?assertMatch({ok,1}, allocate()),
?assertMatch(ok,deallocate(1)),
?assertMatch({ok,1}, allocate())

end
}.

Note that the frequency value1 used here is arbitrary. (We assume
it to be more likely to find an error in the implementation by adding
more different scenarios than by trying more different values for the
specific frequencies.) This test must allocate the same value twice
since there is only one value to be allocated.

We use StateChum again to visualize the FSM, which is equiva-
lent to Fig. 3 with the addition of an arbitrary allocations and deal-
locations after starting the server. So, we do not capture the fact that
it is possible to allocate all available frequencies and that an error
is returned in that case. In order to add a general test case for the
exhaustion of frequencies, we need to know how many frequencies
there are. We propose to get the tests right for one frequencyfirst,
then take the two frequency case and see if we can generalise from
there.

start

stop

al
lo
ca
te

de
al
lo
ca
te

stop

sta
rt

a
llo
c
a
te

stop, allocate, deallocate

passive
config debugMode true
+ start stop start stop
- stop
- start start
+ start allocate deallocate allocate stop
- start allocate allocate
- deallocate
- allocate

Figure 5. Single frequency: third model

Using StateChum we can quickly observe what happens if we
add a negative test for allocating two frequencies in case weonly
have one. The result is shown in Fig. 4 and it is immediately clear
that we have to add a few more test cases to make a sensible picture
out of this FSM.

According to Fig. 4, from the initial state we can perform a
deallocate and then anallocate. We need to exclude that
possibility by stating that deallocation (and indeed also allocation)
can only be done after astart; this results in Fig. 5.

In the FSM of Fig. 5 astart can only be followed by an
allocate, which after deallocation allows a new allocation. The
only strange part is that one canstop indefinitely often after al-
location; one would like instead to have astop transition back to
the initial state. In fact, it is good to observe this in a visualisation
of a state space, since it is domain-dependent whether or notone
would allow a server that allocates frequencies to just stopor that
one would need to deallocate the frequencies first. In Erlangit is
most natural to perform the deallocation as side-effect of stopping.
We add a test to ensure that we can start again after stopping with
one allocated resource.

The tests4 added for the server with one frequency are:

allocate_without_start_test() ->
?assertException(_,_,allocate()).

deallocate_without_start_test() ->
?assertException(_,_,deallocate(1)).

running_server_test_() ->
{foreach,
fun() -> start([1]) end,
fun(_) -> stop() end,
[fun() ->
?assertMatch({ok,1} ,allocate()),
?assertMatch(ok,deallocate(1)),

4 EUnit allows to combine a few of these tests with theforeach primitive
instead ofsetup

start

stop

al
lo
ca
te

de
al
lo
ca
te

stop

sta
rt, d

eal
loca

te

s
ta
rt
,
a
llo
c
a
te

stop, allocate, deallocate

+ start stop start stop
- stop
- start start
+ start allocate deallocate allocate stop
- start allocate allocate
- allocate
- deallocate
+ start allocate stop start
- start deallocate
- start allocate start

Figure 6. One frequency: final model and StateChum test set

start

stop

a
llo
c
a
te

d
e
a
llo
c
a
te

sta
rt,
 de
all
oc
ate

start

stop, allocate, deallocate

s
to
p

allocate

deallocate

sta
rt,
 a
llo
ca
te

stop

+ start stop start stop
- stop
- start start
+ start allocate allocate deallocate allocate
deallocate deallocate stop

- start allocate allocate allocate
- allocate
- deallocate
+ start allocate stop start
+ start allocate allocate stop start
- start allocate deallocate deallocate
- start allocate start
- start allocate allocate start

Figure 7. Two frequencies: final model and StateChum test set

?assertMatch({ok,1},allocate())
end,
fun() ->

?assertMatch({ok,1} ,allocate()),
?assertMatch({error,no_frequency} ,allocate())

end,
fun() ->

?assertMatch({ok,1} ,allocate()),
?assertMatch(ok,stop()),
?assertMatch(Pid when is_pid(Pid),start([1]))

end]}.

Note that in the above test cases we use domain knowledge to inter-
pret the error value returned from allocation as a negative test case,
expressing the condition that starting the server and performing two
allocations is impossible. Were we to be given an API for our fre-
quency server that raised an exception for a failing allocation, then
the test case would be identified as a negative test case much more
easily.

At this point we could conclude, if we were confident that all
the transitions shown are as expected. However, the StateChum tool
diagnostics for this input are:

#Prescribed: 5
#Proscribed: 5
#Unknown: 2

This output states that, of the twelve possible transitionsin the ma-
chine, five make a transition to an accepting state and another five
to the dead state: two transitions are as yet undetermined. The two
transitions in question are: whether it is possible to deallocate be-

fore any allocation, and, whether it is possible to start themachine
again after the one frequency is allocated.

We can rule these out with two negative test sequences that
come at the end of the complete set of cases listed in Fig. 6 and
these generate the machine in that figure. The data might appear
to be skewed in favour of the negative tests: there are 7 negative
and 3 positive tests. However, noting the prefix-closure property
of the positive tests, we can see these three tests as embodying 10
distinct positive test cases, and under this interpretation we have of
the same order of positive and negative tests.

Translating EUnit tests to sequences

We need to extend the translation of EUnit tests to theforeach
construct, which is equivalent to the translation of several setup
commands. In addition we have to add that an assertion that
matches an error produces a negative sequence. As explained, this
is somewhat controversial and probably one would like to enforce
the design to raise an exception instead.

3.9 Two frequencies

Now we look at the case where there are two frequencies to be
allocated, and develop a set of tests along the lines of the one
frequency machine in Section 3.8. The set of tests – described in
StateChum input format – are shown in Fig. 7.

The greyed-out tests are identical to the previous case, while
the other tests are developed by a similar process to that in Section
3.8. Counting distinct prefixes as separate tests, we have 15positive
tests and 8 negative ones. A number of the later tests are included to
avoid loops, such as looping on stop behaviour rather than returning

the system to the start state when it is stopped; others are toprevent
starting a system that is already running, whatever state itis in.

Note that in the EUnit tests the specific frequency that we
allocate and deallocate was not significant when there was just one
frequency available. However, now that we have two frequencies
to choose from, a choice has to be made about which frequency
is to be allocated. Now we have either to specify in our test case
how the algorithm implements the choice, or to abstract awayfrom
the allocation algorithm. In EUnit tests this difference manifests
itself as the difference between the following two test cases. In the
first case, the test requires an implementation that takes frequencies
from the head of the list:

twofreq_server_test_() ->
{setup,
fun() -> start([1,2]) end,
fun(_) -> stop() end,
fun() ->

?assertMatch({ok,1} ,allocate()),
?assertMatch({ok,2},allocate()),
?assertMatch(ok,deallocate(2)),
?assertMatch({ok,2},allocate()),
?assertMatch(ok,deallocate(1)),
?assertMatch(ok,deallocate(2))

end}.

The alternative is a test that does not enforce any order on the
allocation of frequencies:

twofreq_server_test_() ->
{setup,
fun() -> start([1,2]) end,
fun(_) -> stop() end,
fun() ->

?assertMatch({ok,F1} ,allocate()),
?assertMatch({ok,F2},allocate()),
?assertMatch(ok,deallocate(F2)),
?assertMatch({ok,F3},allocate()),
?assertMatch(ok,deallocate(F1)),
?assertMatch(ok,deallocate(F3))

end}.

The latter test seems preferable in a test-driven development pro-
cess, since it does not over-specify implementation details. More-
over, if the set of frequencies is extended to contain more than two
frequencies, the test makes still sense without having to re-evaluate
how the choice of frequencies is actually implemented. In this case,
it is likely that re-use of frequencies is preferred to assigning as-yet-
unused frequencies.

3.10 Data abstraction

With the translation of EUnit tests to sequences for StateChum we
abstract from the data in the EUnit test cases. According to the API
of the frequency server, thestart and deallocate operations
are parameterised by a list of frequencies and the frequencyto be
deallocated, respectively. These parameters play different roles.

• The list parameter is thestart value for the particular run of
the server, and it can be any legitimate integer list; of course
its size will constrain the behaviour of the system, but the call
to start is bound to succeed if and only if the system is not
already running. This (pre-)condition is encapsulated in the
structure of the FSMs seen in Figs. 6 and 7.

• On the other hand, the parameter todeallocate is assumed
to be a frequency that is already allocated. This condition is
not something that can be modelled in the FSM without ‘hard
wiring’ the set of frequencies into the FSM itself. Supposing

that there aren frequencies available, this would give rise to
some2n states, each one representing a different subset of the
n states having been allocated.

So, we can safely abstract in our EUnit tests from the specific
frequency that is returned byallocate, i.e. we do not need to
know the exact allocation algorithm. But, we cannot easily abstract
from the specific frequency that is passed todeallocate; that
frequency has to be remembered in our test case. Therefore, the
abstraction

- start allocate deallocate deallocate

is only a valid abstraction if both deallocations refer to the same
frequency. This means that the translation from EUnit test cases to
sequences that we have developed fails in some cases, such asthis:

twofreq_server_test_() ->
{setup,
fun() -> start([1,2]) end,
fun(_) -> stop() end,
fun() ->
?assertMatch({ok,F1} ,allocate()),
?assertException(_,_,deallocate(3-F1))
end}.

One solution would be the ‘hard-wiring’ of the frequencies dis-
cussed earlier, which would involve two allocation operations,
allocate1 and allocate2 and two deallocation operations,
deallocate1 anddeallocate2. However the state machine re-
sulting from that approach suffers from an exponential state explo-
sion (as described earlier).

Instead we use another abstraction. We can ‘loosen’ our model,
so thatdeallocate(N) can be applied whether or notN has been
allocated or not. A problem with this is that this makes the FSM
non-deterministic, since in the case thatN is not already allocated
the result of the transition will be that the set of availablestates is
unchanged.

We can then interpret an exception for a deallocation as a possi-
bility in a positive sequence, which is similar to changing the API
for thedeallocate function so that

-spec deallocate(integer()) -> ok | error.

with the error result indicating that no actual reallocation has
taken place, because the argument frequency was not allocated. We
can then distinguish the normal termination and error termination
by translating the EUnit

?assertMatch(error,deallocate(...))

into a failDA operation. This would restore determinism in the
model. Taking this approach, we add thefailDA transition and the
following test cases to those in Fig. 7

+ start failDA stop
+ start failDA failDA stop
- start allocate failDA allocate allocate
- start allocate allocate failDA
- failDA

and obtain the state machine of Fig. 8. However, the translation of
EUnit tests to sequences needs to be adapted to treat certainerror
cases as part of a positive sequence and others as making the test
case negative. This requires the user to specify the differences and
therefore this method is not entirely satisfactory if full automation
is the goal.

As shown in Fig. 8, this resolves all thefailDA operations,
which are only permissible when zero or one frequencies havebeen
allocated. The labels on the transitions to the ‘dead’ statehave been
elided for readability in the figure.

start

stop

a
llo
c
a
te

d
e
a
llo
c
a
te

s
to
p

allocate

deallocate

stop

failDA

failDA

Figure 8. Two frequencies with failed deallocation,failDA

3.11 One, two, many . . .

A pattern is emerging in Figs. 6 and 7: an FSM to model the server
with n frequencies will haven+3 states: an initial state, a dead state
andn + 1 states representing the different numbers of frequencies
that have been allocated.

We contend that the case of allocation from a set of two frequen-
cies should be sufficient to test the general case, since it allows us
to examine the case of allocation and deallocation when somefre-
quencies have been allocated and some not.

Of course, it is possible for an implementation to have special
case ‘Easter egg’5 behaviour for particular collections of frequen-
cies, but any finite set of tests will be vulnerable to this. So, making
the assumption that our implementation is generic in the frequency
set we repeat our contention. Probably a careful tester would ex-
tend the model to contain three resources in order to be able to test
re-use of a frequency in the middle, but it seems a large investment
to go any further than that. We have already to define 17 EUnit tests
to capture the behaviour of two frequencies and 20 to capturethe
behaviour of three frequencies. This corresponds to about 100 lines
of Erlang test code for an implementation that is itself smaller than
that.

If one is interested in testing even more possible combinations
of allocating and deallocating resources, one would rathergenerate
a large number of random combinations for a random collection
of frequencies. We can do precisely this by using the QuickCheck
finite state machine library to generate the test cases.

4. QuickCheck finite state machine
QuickCheck comes with a library (eqc fsm) for specifying test
cases as finite state machines. Given a few callback functions for
this state machine, the QuickCheck machinery is able to generate
and run test cases that are sequences generated from these callback
functions.

Here we present an approach to generate QuickCheck state
machine specifications from EUnit tests in contrast to the more
common manual generation from informal specifications of the
software under test. The advantage of using QuickCheck, as we
will see in this section, is that with little extra effort, weget many

5 Some hidden message or feature, coded as a surprise in software and other
artefacts.

new tests cases that actually test meaningful sequences, not covered
by the EUnit tests.

As demonstrated in the previous section, we use StateChum to
generate a state machine from the EUnit tests in order to obtain
states names and their transitions. We may potentially improve the
state machine by adding tests cases, but, as explained before, the
data part restricts us to test cases with only little data involved.
Now we translate the obtained state machine in a QuickCheck
specification.

4.1 Sequence of calls

Each state obtained by StateChum is translated into a unary Erlang
callback function6 that returns a list with possible next states and
the transitions thereto. For example, the state machine described
in Fig. 3 has 3 states; state names are randomly chosen by the tool,
but manually translated into something meaningful, sayinit, started
anderror. From init there are two possible transitions and in the
QuickCheck libraryeqc fsm, this is specified thus:

init(_) ->
[{started,{call,?MODULE,start,[nat()]}},

{error,{call,?MODULE,stop,[]}}].

started(_) ->
[{error,{call,?MODULE,start,[nat()]}},

{init,{call,?MODULE,stop,[]}}].

error(_) ->
[].

Note that Fig. 3 has no arguments for the functions; this information
is present in the EUnit tests, but not in the abstracted statemachine.
Therefore, we have to retrieve it from the EUnit tests. At this
moment we may realize that starting the server with an empty list
and a list with only one element has been a completely arbitrary
choice in our EUnit tests. In fact, we would like to start the server
with an arbitrary, positive number of frequenciesnat().

Each transition is encoded as a tuple with first argument the
name of the next state and as second argument a symbolic call to
an Erlang function, in this case thestart andstop functions in
the module (?MODULE) we define our specification in, which dif-
fers from the implementation modulefrequency.erl. The rea-
son for a local version of the start and stop function is that we
expect these to potentially raise an exception and similar to the
assertException in EUnit we have to notify QuickCheck that
exceptions may be valid. Moreover, we use a maximum number of
frequencies to compute the list with consecutive sequencesin the
start function.

start(Freqs) ->
catch frequency:start(lists:seq(1,Freqs)).

stop() ->
catch frequency:stop().

In the EUnit tests, the return values of the calls to start andstop are
checked in the assertions. These assertions translate intopostcondi-
tions in the QuickCheck specification. Postconditions are callbacks
with five arguments: aFrom state, aTo state, the data inFrom state,
the symbolic call and the result of that call. Thus, we check that
indeed the positive calls return the right value and that whenever
we enter the error state, it was because of a call that raised an ex-
ception.

postcondition(init,started,_,{call,_,start,_},R) ->
is_pid(R);

6 The argument of the state is the state data.

postcondition(started,init,_,{call,_,stop,_},R) ->
R == ok;

postcondition(_From,error,_,{call,_,_,_},R) ->
case R of

{’EXIT’,_} -> true;
_ -> false

end.

Finally, we need to write a QuickCheck property to run the test
cases. First an arbitrary sequence of start and stop commands is
created using the state machine description and then that sequence
is evaluated. In order to make sure that we start in a known state
(even if a previous test has failed), we both stop the frequency
server at the beginning and end of each test, relying on the catch
when the server is not running.

prop_frequency() ->
?FORALL(Cmds,commands(?MODULE),

begin
stop(),
{H,S,Res} = run_commands(?MODULE,Cmds),
stop()
Res == ok

end).

4.2 Adding state data

The advantage of running many different sequences of starting and
stopping the server may not be so obvious for this example. The real
benefit of using a QuickCheck state machine specification shows
when the state data is used to represent the allocated frequencies.

We choose to use the state machine from Fig. 7 as our starting
point. In the statestartedwe should add a transition to a state in
which one frequency is allocated. From that new state, we create a
transition to yet another one where two frequencies are allocated,
etc. Of course, the state names have to be generalised and we use
QuickCheck’s support for parametrized states, i.e. each state is
represented by a tuple of which the first argument is the statename
and the second argument is a parameter, the number of allocated
frequencies in our case.

Note that the state machine in Fig. 7 was obtained from tests
with two frequencies and is in fact an abstraction of tests with
two allocations. We would like to generalise this to an arbitrary
number of frequencies, but start with setting a maximum of 2 for
the moment.

-define(MAX,2).

We introduce a record to represent an abstraction of the state of the
frequency server: the free frequencies and the used frequencies.

-record(freq,{used=[], free=[]}).

We rename the statestartedinto allocated and add appropriate
transitions. We fix the maximum number of allocations to 2 and
deallocation of frequencies that have not been allocated issmoothly
added as a transition.

init(_) ->
[{{allocated,0},{call,?MODULE,start,[?MAX]}},

{error,{call,?MODULE,stop,[]}}
].

allocated(N,S) ->
[{error,{call,?MODULE,start,[nat()]}}] ++
[{{allocated,N+1},{call,?MODULE,allocate,[]}}

|| N < ?MAX] ++
[{error,{call,?MODULE,allocate,[]}}

|| N == ?MAX] ++
[{{allocated,N-1},{call,?MODULE,deallocate,

[elements(S#freq.used)]}}
|| N > 0] ++

[{init,{call,?MODULE,stop,[]}}].

error(_) ->
[].

The list comprehensions are used to lazily compute the stateparam-
eter and only include the alternatives that are valid for that particu-
lar state. Starting an already started server may take any argument,
hence no?MAX there but an arbitrarty positive number.

The deallocation functions depends on the state data. As an
argument todeallocate we supply an arbitrary element of the
list S#freq.used.

In order to successfully test these cases, QuickCheck need to
know more about the state data. This is achieved by defining call-
back functions that operate on the data.

The state data gets modified by thenext state data callback
function, which takes five arguments. The first argument is the state
from which the transition originates and the second argument the
state that the transition leads to. The third argument is thestate data,
i.e., the record that we defined above. The fourth argument isthe
(symbolic) result of the evaluation of the symbolic call in the last
argument.

next_state_data(_,_,S,V,{call,_,start,[Max]}) ->
S#freq{used=[], free=lists:seq(1,Max)};

next_state_data(_,_,S,V,{call,_,allocate,[]}) ->
case S#freq.free == [] of

true -> S;
false ->

S#freq{used=S#freq.used++[V],
free=S#freq.free--[V]}

end;
next_state_data(_,_,S,V,

{call,_,deallocate,[Freq]}) ->
S#freq{used=S#freq.used--[Freq],

free=S#freq.free++[Freq]};
next_state_data(_,_,S,V,{call,_,stop,[]}) ->

S#freq{used=[], free=[]}.

In this way, we know which frequencies are allocated and which
are free. Note that if all frequencies are allocated, then anallocation
will result in an error and the state stays unchanged.

Similar to the start and stop command before, we add local
commands for allocation and deallocation. This time we use the
local function to modify the return value, since our model iscleaner
when we get a frequency returned fromallocate:

allocate() ->
case frequency:allocate() of

{ok,Freq} -> Freq;
Error -> Error

end.

deallocate(Freq) ->
frequency:deallocate(Freq).

Finally, we add postconditions for allocation and deallocation to
complete our QuickCheck specification.

postcondition(_,_,S,{call,_,allocate,[]},R) ->
case R of

{error,no_frequency} ->
S#freq.free == [];

F when is_integer(F) ->
lists:member(F,S#freq.free)

end;

Figure 9. Visualization of QuickCheck specification

postcondition(_,_,S,{call,_,deallocate,[Freq]},R) ->
R == ok;

This specification can be used to generate many different sequences
of calls to start, allocate, deallocate and stop. QuickCheck can com-
pute a fair distribution for the occurrences of the commands, such
that we increase the likelihood to obtain sequences that indeed allo-
cate all available resources instead of just starting and stopping the
server all the time. In a visualization of the QuickCheck state ma-
chine the weights for each transition are provided as a percentage
(see Fig. 9).

A typical example generated with this state machine could bea
test case like:

{set,{var,1},{call,frequency_eqc,start,[2]}},
{set,{var,2},{call,frequency_eqc,stop,[]}},
{set,{var,3},{call,frequency_eqc,start,[2]}},
{set,{var,4},{call,frequency_eqc,stop,[]}},
{set,{var,5},{call,frequency_eqc,start,[2]}},
{set,{var,6},{call,frequency_eqc,allocate,[]}},
{set,{var,7},{call,frequency_eqc,allocate,[]}},
{set,{var,8},{call,frequency_eqc,deallocate,

[{var,6}]}},
{set,{var,9},{call,frequency_eqc,allocate,[]}}

4.3 Additional error transitions

There is still a subtle difference between the QuickCheck state
machine in Fig. 9 and the state machine obtained from EUnit tests
in Fig. 7, viz. a number of transitions to the error state are missing.

For example, the deallocation in the state with zero allocated
frequencies leads to the error state in Fig. 7. We have neglected this
case in our specification, but we can add it by adding one more
transition to the state defining callback functionallocated:

[{error,{call,?MODULE,deallocate,
[elements(S#freq.free)]}} || N == 0] ++

Note that we must pick a frequency from the free frequencies,
since none is in use yet. Alternatively, we could take any arbitrary
frequency usingnat().

Thenext state data function can stay as is since we jump to
the error state and no more transitions are allowed from there, hence
the specific state of the server is not important. The postcondition
has, of course, to be adapted, since a transition to the errorstate
should be caused by an exception:

postcondition(_,To,S,{call,_,deallocate,[Freq]},R)
when To =/= error ->

R == ok;

Tests generated from this specification expect an exceptionraised
when we deallocate after starting the server. We need to add acatch
in the local function ofdeallocate as well. However, when we
run the tests against our frequency implementation, we obtain im-
mediate feedback from QuickCheck that the postconditions of this
deallocation is falsified. In other words, our implementation fol-
lows the specification and indeed always haddeallocate return
ok.

Inspecting the EUnit test cases shows that indeed we never test
starting the server and then deallocating. The transition in Fig. 7
was added because of insufficient information. In fact, one can
argue that the transition should not be there at all, but thatincorrect
deallocations are either not allowed, which should be guaranteed by
the clients of the server, or that the specification of the APIshould
be enriched with a possible error result fordeallocate.

Rather would we now add a transition that deallocation of free
resources should have no effect. This can be done by adding another
transition to the state machine:

[{{allocated,N},{call,?MODULE,failDA,
[elements(S#freq.free)]}}] ++

We usefailDA instead ofdeallocate to avoid getting ambiguous
transitions in the state machine. QuickCheck cannot compute good
test case distribution when the model is ambiguous.

The failDA function is simply calling the deallocation in the
implementation module. The next state function forfailDA leaves
the state untouched and the postcondition checks that anok is re-
turned. When running QuickCheck with this property we foundan
error in our implementation, since we expected the clients to obey
the rule that they would not release the same frequency twiceand
always added a released frequency to the list of available frequen-
cies. This gave a list with duplicates in the newly constructed test
cases and the postcondition forallocate found the mismatch by
checking that the given frequency is indeed free.

4.4 Increasing number of frequencies

With the definition of the macroMAX we can now easily create a
state machine that tests sequences that have 4 frequencies and all
possible combinations of allocations and deallocations. The only
thing to do is to recompile the code with a larger constant. But,
testing with a small number of frequencies thoroughly may reveal
more faults than when testing a larger number of frequenciesin a
less exhaustive manner.

The QuickCheck specification is about 100 lines of code, which
is similar to an exhaustive EUnit test suite, but it covers a wider
range of tests. For larger, more realistic example, the sizeof the
QuickCheck specification tends to grow less fast than an EUnit test
suite does.

5. Related work
In this section we examine related work in test-driven development,
grammar inference and testing methodologies.

Test-driven development

As we mentioned in Section 2, Beck’s [4] answers a number of
frequently-asked questions. In replying to“How many tests should
you write?” he provides a simple example of a function to classify
triangles: this elicits an answer inspired by equivalence partition-
ing. No state-based systems are discussed. The question“How do
you know if you have good tests?”relates to the quality of individ-
ual tests, rather than the effect of the collection as a whole.

Fowler advocates mutation testing as a mechanism for assessing
the adequacy of a set of tests [21]. Astels [3] in discussing TDD for
Java also advocates mutation testing with Jester [13], as well as
code coverage analysis with Clover [9] and NoUnit [16].

Of course, these methods can only be used when there is an
implementation to hand. In the context of TDD there is a circularity
to this, since the implementation has been developed specifically to
meet the set of tests. By contrast, our method gives feedbackon the
test set independently of any implementation.

Random testing

Random testing for functional programs was first introducedby
QuickCheck for Haskell [8] and more recently developed for Er-
lang [1]. It has also inspired related systems for Scheme, Standard
ML, Perl, Python, Ruby, Java, Scala, F# and JavaScript.

QuickCheck testing is based on the statement of logicalprop-
ertieswhich are then tested for random inputs generated in a type-
based manner. Simple logical statements of properties suffice for
functional behaviour; state based systems are tested by driving
them from an FSM which gives an abstract model of the system.

Fuzz testing or fuzzing [20] is a related technique used partic-
ularly with protocol testing, an area where QuickCheck FSMscan
also be used. Fuzzing is a “brute force” approach, typicallygen-
erating inputs at random, rather than having their generation being
guided by a model such as an FSM. Fuzzing is perceived, however,
as a mechanism providing a high benefit:cost ratio.

A comprehensive overview of other approaches to random test-
ing is given in Pacheto’s thesis [17]. Pacheto’s thesis alsoexamines
ways that random testing can be ’directed’ with extra tests being
generated as a consequence of examining the results of already ex-
ecuted test cases.

Inference and testing

There is a substantial literature on inferring higher-level structures
from trace or event-based data. Among the earliest is Cook and
Wolf’s [10] which infers an FSM from event-based trace data.
More recent work by Artziet. al. [2] uses those techniques to
general legal test inputs – that is legal sequences of calls to APIs
– to OO programs, again based on execution traces; this paperalso
provides a useful overview of other work in this area. Walkinshaw
and others [24] use the Daikon tool [12] as part of an interactive
process of model elicitation.

Daikon implements invariant inference, and has been extended
to the DySy tool [11] which augments the Daikon approach based
on test set execution with dynamic symbolic execution. Xie and
Notkin [26] infer specifications from test case executions,and
based on this develop further test cases.

Our approach differs from these in being based on the test cases
themselves rather than on their execution: it can thereforebe used
independently of any implementation.

The Wrangler refactoring tool for Erlang [25] provides clone
detection and elimination facilities [15], and in the latest release
(0.8.8) implements the facility to transform a cloned test into a
QuickCheck property, thus generalising the range of possible tests
of the system.

6. Conclusions and Future Work
We have shown the value of extracting the finite state machine
implicit in a set of EUnit tests not only for understanding the
adequacy of the tests developed as a part of the process of test-
driven development but also in defining a QuickCheck FSM which
can be used for property-based testing of the system under test. In
doing this we noted a number of points.

• The negative tests – that is those that lead to anerror value
of some sort, raise an exception or cause another form of error
– are as important as the positive tests in delimiting the correct
behaviour of the system implicit in the tests. This is due in part
to the nature of the extraction algorithm [23] but is also due
to the fact that without these tests there would be no explicit
bounds on the permissible behaviour.

• We assume that we can extract the call sequences within tests
by static examination of the test code. This is not unreasonable
since many test cases consist of straight line code, particularly
for the state-based systems that we examine here.

• Some aspects of the process can be automated with ease, in-
cluding the extraction of the function call sequences and the
naive conversion of an FSM into QuickCheck notation. Others
require manual intervention, including the choice of data val-
ues for the ‘small’ states and the choice of state data for the
QuickCheck FSM.

• Given that the model we develop is an abstraction of the ac-
tual system, it is natural for non-determinism to creep intothe
model. This can be resolved by renaming some of the transi-
tions to avoid non-determinism. The old and new transitionscan
then be seen as having pre-conditions which will be explicitin
the QuickCheck model.

The next step for us to take is to refine the process described
here into a procedure which automates as much as possible of
the FSM development. This will allow QuickCheck propertiesfor
state-based systems to be extracted from tests in a semi-automated
but user-guided way.

We would like to acknowledge the support of the European
Commission for this through the FP7 Collaborative projectProTest
[18], grant number 215868.

References
[1] T. Arts et. al.Testing Telecoms Software with Quviq QuickCheck In

Proceedings of the Fifth ACM SIGPLAN Erlang Workshop, ACM
Press, 2006.

[2] S. Artzi et. al. Finding the Needles in the Haystack: Generating
Legal Test Inputs for Object-Oriented Programs. InM-TOOS 2006:
1st Workshop on Model-Based Testing and Object-Oriented Systems,
2006.

[3] D. Astels. Test-driven Development: A Practical Guide.Prentice
Hall, 2003.

[4] K. Beck. Test-driven Development: By Example.Addison-Wesley,
2002.

[5] R. Carlsson EUnit - a Lightweight Unit Testing Frameworkfor
Erlang. InProceedings of the fifth ACM SIGPLAN Erlang Workshop,
ACM Press, 2006.

[6] R. Carlsson and M. Rémond.EUnit - a Lightweight Unit Testing
Framework for Erlang.http://svn.process-one.net/contribs
/trunk/eunit/doc/overview-summary.html, last accessed 07-
06-2010.

[7] F. Cesarini and S. Thompson.Erlang Programming.O’Reilly Inc.,
2009.

[8] K. Claessen and J. Hughes. QuickCheck: a lightweight tool for
random testing of Haskell programs. InProceedings of the fifth ACM
SIGPLAN International Conference on Functional Programming,
ACM Press, 2000.

[9] Clover. Clover: Java code coverage & test optimization.
http://www.atlassian.com/software/clover/, last accessed
07-06-2010.

[10] J. E. Cook and A. L. Wolf. Discovering Models of Software
Processes from Event-Based Data. InACM Transactions on Software
Engineering and Methodology, 7, 1998.

[11] C. Csallneret. al. DySy: Dynamic Symbolic Execution for Invariant
Inference. InICSE08, ACM Press, 2008.

[12] M. D. Ernstet. al. The Daikon system for dynamic detection of
likely invariants. InACM Transactions on Software Engineering and
Methodology, 69, 2007.

[13] E. R. Harold. Test your tests with Jester.http://www.ibm.com/
developerworks/library/j-jester/, last accessed 07-06-2010.

[14] Hughes, J. QuickCheck Testing for Fun and Profit. In: 9thInt. Symp.
on Practical Aspects of Declarative Languages, Springer (2007)

[15] H. Li and S. Thompson. Similar Code Detection and Elimination
for Erlang Programs. In12th Int. Symp. on Practical Aspects of
Declarative Languages, Springer LNCS 5937, 2010.

[16] NoUnit. http://nounit.sourceforge.net/, last accessed 07-
06-2010.

[17] C. PachecoDirected Random Testing. Ph.D. thesis. MIT Department
of Electrical Engineering and Computer Science, 2009.

[18] ProTest.http://www.protest project.eu/, last accessed 07-
06-2010.

[19] StateChum.http://statechum.sourceforge.net/, last ac-
cessed 07-06-2010.

[20] M. Sutton, A. Greene, P. AminiFuzzing: Brute Force Vulnerability
Discovery, Addison Wesley, 2007.

[21] B. Venners.Test-Driven Development: A Conversation with Martin
Fowler, Part V.http://www.artima.com/intv/testdrivenP.html,
last accessed 07-06-2010.

[22] E. Vidal. Grammatical inference: An introductory survey. In
Grammatical Inference and Applications, LNCS 862, Springer, 1994.

[23] N. Walkinshawet. al. Reverse-Engineering State Machines by
Interactive Grammar Inference. In14th IEEE Working Conference on
Reverse Engineering (WCRE’07), IEEE Press, 2007.

[24] N. Walkinshawet. al. Iterative Refinement of Reverse-Engineered
Models by Model-Based Testing. InFM’09, volume 5850 of Lecture
Notes in Computer Science, Springer, 2009.

[25] Wrangler.http://www.cs.kent.ac.uk/projects/wrangler/,
last accessed 07-06-2010.

[26] T. Xie and D. Notkin. Mutually Enhancing Test Generation and
Specification Inference. InProceedings of the 3rd International
Workshop on Formal Approaches to Testing of Software (FATES
2003), LNCS Vol. 2931, Springer, 2003.

	Introduction
	Background
	Test-driven development
	EUnit
	Grammar and state machine inference
	QuickCheck

	Test-driven development
	Example: a frequency server
	Testing start/stop behaviour
	Visualizing the state machine
	Using the derived FSM to assess tests
	Writing negative tests in EUnit
	Initial implementation: start/stop behaviour
	Defining tests for a data-dependent state space
	A single frequency
	Two frequencies
	Data abstraction
	One, two, many …

	QuickCheck finite state machine
	Sequence of calls
	Adding state data
	Additional error transitions
	Increasing number of frequencies

	Related work
	Conclusions and Future Work

