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Abstract

Symbolic decision trees are not the only way to correlate the relationship between flags and numeric
variables. Boolean formulae can also represent such relationships where the integer variables are
modelled with bit-vectors of propositional variables. Boolean formula can be composed to express
the semantics of a block and program state, but they are hardly tractable, hence the need to
compute their abstractions. This paper shows how incremental SAT can be applied to derive range
and set abstractions for bit-vectors that are constrained by Boolean formulae.
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1 Introduction

Although the fundamental ideas in abstract interpretation were laid down over
thirty years ago [5], abstract interpretation has only entered its industrialisa-
tion phase comparatively recently [6]. This new phase is not only characterised
by an increased focus on tooling and systems building, but also by work on
designing and implementing new abstract domains. For example, domains for
improved scalability i.e. the class of weakly-relational domains [15,18], and
domains that better match the structure of real programs i.e. symbolic de-
cision trees that correlate the relationship between status flags and numeric
variables [1]. This paper focuses on relating status flags to numeric abstrac-
tions that are ranges and sets. Blanchet et al [1] illustrates the need for mixed
symbolic and numeric abstractions with pseudo-code that is given below:
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B := (X = 0);

if (!B) Y := 1/X;

This code is correct in that sense that it does not give a division by zero error
if X = 0, but to deduce this it is necessary to track the relationship between
B and X. The authors state:

“In order to deal precisely with those examples, we implemented a simple re-
lational domain consisting in a decision tree with leaf an arithmetic abstract
domain. The decision trees are reduced by ordering Boolean variables and
by performing some opportunistic sharing of sub-trees. The only problem
with this approach is that the size of a decision tree can be exponential in
the number of Boolean variables, and the code contains thousands of global
ones”

The problem of relating Booleans to numeric values is particularly acute
in binary reverse engineering, though in this context the Booleans are CPU
status flags. Binary reverse engineering is the problem of figuring out what
a program does from its executable. This is a necessary step when perform-
ing, for example, a security audit on code where licensing restrictions prevent
access to the source. Motivated by such problems in security, there has been
recent interest in recovering the control flow graph (CFG) from a binary [12].
The problem here is the so-called chicken-and-egg problem [8]: to derive the
CFG it is necessary to trace values and indirect addresses that occur in regis-
ters. However, in order to trace the values in registers, the CFG is required.
Kinder resolves this cyclic dependency by applying a constant propagation
analysis in conjunction with a CFG that itself grows monotonically as the
analysis proceeds [12]. He illustrates these ideas with an idealised assembler
language. In practice the problem is considerably harder to solve, partly be-
cause of the problem of relating status flags to ranges. To illustrate, consider
the following x86 assembler code for a switch table:

mov eax , [ebp -0x8] ; eax := *(ebp - 8)

sub eax , 0x2 ; eax := eax - 2

cmp eax , 0x5 ; CF := (0 =< eax < 5)

; ZF := (eax = 5)

ja 0xd8 ; JMP if CF = 0 and ZF = 0

jmp [0 x8048a0c + eax*4]

To determine the CFG it is necessary to ascertain that eax ∈ [0, 5] when the
indirect jump is reached. This range information, and the table itself, permits
the CFG to be over-approximated. However, inferring the range on eax itself
requires careful reasoning about the value of the carry (CF) and zero (ZF) flags
— a problem which is analogous to that addressed by Blanchet et al [1].
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Very recently it has been shown how Boolean formulae can be applied to
derive transfer functions for range analysis of AVR micro-controller code [2].
In this work, the semantics of a block of code are represented as a Boolean
formula, which is then abstracted with octagons [15] and affine equations [11]
so as to derive a transfer function that is a system of guarded updates. In this
paper we show how Boolean formulae can be applied directly in the analysis
itself in an analogous way to decision trees. However, unlike the decision tree
approach, we do not enforce a canonical representation and thereby finesse the
size problems that are associated with such data-structures [3]. Instead, we
express the semantics of a block as a single propositional formula which can
readily be derived with bit-blasting techniques [13]. This formula encodes all
the relationships between all the registers and all the status flags, albeit at bit-
level granularity. Abstraction is then applied to the formula to extract range
invariants that always hold whenever the block is encountered, ultimately
allowing the control flow to be recovered. Furthermore, we may impose range
information on entry to the block and observe ranges at the exit, again by
applying abstraction. This is similar in spirit to work on best transformers [17],
but from a propositional stance. In this paper, we focus on how to abstract
Boolean formula for range information. Specifically, we make the following
contributions:

• We show how to efficiently extract range information for a bit-vector con-
strained by a Boolean formula where the vector is interpreted as an integer.
To be precise, we show how to compute the smallest range that includes all
the values the integer can assume, and hence the best over-approximation.

• We show how to refine the range abstraction technique in order to discover
boundaries within the range that partition it into a set of ranges. This
technique relies on computing over- and under-approximations of the vector
in an alternating fashion. This process ultimately converges onto a set S
that exactly describes the values of the vector. However, if desired, this
process can be terminated prematurely, after n steps, to compute a set that
approximate the values of the vector. To be precise, if n is odd then an
over-approximation is computed (a superset of S) otherwise if n is even
then an under-approximation is found (a subset of S).

• We show how these techniques dovetail with incremental SAT and provide
experimental results which suggest that the techniques are viable.

2 Range Abstraction

In order to infer the range of values that a bit-vector x can assume when con-
strained by a given Boolean formula f – that is, compute a range abstraction
for x and f – the maximum and minimum values of x need to be determined.
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(1) func minimum(f, x, s)
(2) let f = ∧F where F is a set of clauses
(3) k← 〈〉, n← |x|
(4) while (|k| < n)
(5) if (s)
(6) F ← F ∪ {x[n− 1]}
(7) if (sat(∧F ))
(8) k← 〈1〉
(9) else
(10) F ← (F \ {x[n− 1]}) ∪ {¬x[n− 1]}
(11) k← 〈0〉
(12) endif
(13) s← 0
(14) else
(15) F ← F ∪ {¬x[n− |k| − 1]}
(16) if (sat(∧F ))
(17) k← 〈0〉 :: k
(18) else
(19) F ← (F \ {¬x[n− |k| − 1]}) ∪ {x[n− |k| − 1]}
(20) k← 〈1〉 :: k
(21) endif
(22) endif
(23) endwhile
(24) return k
(25) endfunc

Fig. 1. Computing the minimum value of the bit-vector x

This can be achieved by applying a SAT solver in conjunction with blocking
clauses. For instance, suppose a SAT solver is applied to find a solution of f
under which the propositional variables x = 〈x0, . . . , xn−1〉 are bound to the
truth values b0, . . . , bn−1 ∈ {0, 1}. A blocking clause c = ∨n−1

i=0 yi is defined
by putting yi = xi if bi = 0 and yi = ¬xi otherwise. Thus any solution to c
differs from the truth values b0, . . . , bn−1 on at least one bi. The force of this
is that the formula f ∧ c excludes the previously found solution. By repeating
this technique it is possible to enumerate all solutions, hence all values that x
can assume, from which the maximum and minimum can be extracted. The
limitation of this technique is that the number of invocations of the solver is
linear in the number of solutions (which may be large) and moreover, the size
of the SAT instance grows as blocking clauses are added.
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2.1 Computing the Minimum

An alternative approach is given in Figure 1 which presents an algorithm for
computing a minimum model that requires only n calls to a SAT solver. If the
Boolean flag s = 1 then the bit vector x = 〈x0, . . . , xn−1〉 is interpreted as a
signed integer, represented using two’s complement, where xn−1 is the sign bit
and x0 is the least significant bit. If s = 0 then the bit vector x is interpreted
as an unsigned integer. The function minimum returns the minimum value
expressed as binary vector k ∈ {0, 1}n.

Consider first the unsigned case that is handled in the else branch of the
loop body. The bits of k are computed in reverse order: the high bit first and
the low bit last. On each iteration of the loop, f is tested to see whether it
possesses a solution in which the bit x[n−|k|− 1] is assigned to 0. If so, then
the minimum value of x has a 0 in this bit position, hence 0 is prepended to
k. If not, then every solution of x (including the minimum) has a 1 in this
position, hence 1 is prepended to k. Note that as the loop progresses, f is
itself modified so as to clamp the high bits of x to the high bits of the partially
computed minimum k.

The signed case proceeds analogously except for the very first iteration
which computes the sign bit of the minimum. If f has a solution with x[n−1]
assigned to 1, then the minimum is negative, which is reflected by setting k to
the unary vector 〈1〉, so as to record the sign of the minimum. Otherwise, the
minimum is non-negative, hence k is to set to 〈0〉. Setting s to 0 ensures that
all subsequent loop iterations deduce the lower bits of k in the same manner
as in the unsigned case.

2.2 Computing the Maximum

Computing a maximum model is analogous to computing minimum model.
The algorithm for computing a maximum can be obtained from the algorithm
shown in Figure 1 by:

• Inverting the polarities of x[n− 1] on lines 5, 6 and 9;

• Inverting the polarities of x[n− |k| − 1] on lines 14, 15 and 18;

• Inverting the truth values prepended onto k on lines 7, 10, 16 and 19.

3 Set Abstraction

Switch tables can in general be hierarchical structures in which a series of tests
direct the control into smaller tables that handle indices that are close to one
another. Range abstraction alone cannot accurately model such sets of indices
and addresses and therefore it is necessary to instead employ set abstraction.
Since an n-ary bit-vector x can assume up to 2n distinct values, the set itself
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(1) func set(f, x, s)
(2) return set(f, x, s,−1)
(3) endfunc
(4)

(5) func set(f, x, s, c)
(6) S ← ∅
(7) p← 1
(8) l← 〈0, . . . , 0, s〉
(9) u← 〈1, . . . , 1,¬s〉
(10) while (value(l, s) < value(u, s) ∧ c 6= 0)
(11) l← minimum(f ∧ (l ≤s x), x, s)
(12) u← maximum(f ∧ (x ≤s u), x, s)
(13) if (p)
(14) S ← S ∪ [value(l, s), value(u, s)]
(15) else
(16) S ← S \ [value(l, s), value(u, s)]
(17) endif
(18) p← ¬p
(19) f ← ¬f
(20) c← c− 1
(21) endwhile
(22) return S
(23) endfunc

Fig. 2. Computing a set abstraction for the bit-vector x

can be large, at least in the pathological case. Therefore, for cautionary
reasons, we seek to compute an over-approximation (superset) that keeps the
size of the set manageable. As a by-product of this construction, we are also
able to compute under-approximation (subset) of set of values that bit-vector
can assume when constrained by a given Boolean function f .

Figure 2 presents the function set for computing a set abstraction for x.
The Boolean argument s indicates whether x has a signed interpretation. The
integer argument c bounds the number of iterations of the loop. Moreover,
if c is non-negative and odd then an over-approximation is found whereas if
c is non-negative and even then an under-approximation is derived. If c is
negative then the algorithm will run to completion and exactly characterise
the values of x.

The set S, which starts empty, is refined on each iteration of the loop. The
vectors l and u are used to further constrain f ; these bounds increase and
decrease respectively, until either reaching the c threshold triggers premature
termination or the bounds l and u cross and an exact description of the set is
found. The special treatment of the most significant bit of l and u on lines 8
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and 9 stem from the two’s complement representation for the case that s = 1.
The function value is used to interpret a bit vector as a numeric value:

value(b, s) = (1− 2s)2n−1b[n− 1] +
n−2∑
i=0

2ib[i]

Each iteration of the loop determines a new minimum (l) and maximum
(u) solution to a SAT instance that is obtained by augmenting either f or ¬f
with a formula that imposes a less-than-or-equals relation on x. This addi-
tional formula prevents the previously found ranges from being rediscovered.
For the unsigned case, the relation is formulated propositionally as follows:

〈〉 ≤0〈〉 = true

〈x[0] . . . x[n− 1]〉 ≤0〈y[0] . . . y[n− 1]〉 =

(¬x[n− 1] ∧ y[n− 1]) ∨ ((x[n− 1]⇔ y[n− 1])∧
(〈x[0] . . . x[n− 2]〉 ≤0 〈y[0] . . . y[n− 2]〉))

whereas the signed case is defined thus:

〈〉 ≤1〈〉 = true

〈x[0] . . . x[n− 1]〉 ≤1〈y[0] . . . y[n− 1]〉 =

(x[n− 1] ∧ ¬y[n− 1]) ∨ ((x[n− 1]⇔ y[n− 1])∧
(〈x[0] . . . x[n− 2]〉 ≤0 〈y[0] . . . y[n− 2]〉))

On line 11, l is a vector of truth values, hence the formula (l ≤s x) can be
partially evaluated to simplify the comparison (and likewise on line 12 for
(x ≤s u)). For example consider two 4-bit vectors x and y and suppose
y = 〈1, 0, 1, 1〉. Then x ≤0 y can be reduced to the formula ¬x[3] ∨ (x[3] ∧
¬x[2] ∨ (x[2] ∧ ¬x[1])).

3.1 Example

Suppose a 4-bit vector x is constrained by a formula f so that it can only draw
a unsigned value from the set {1, 2, 3, 5, 6, 8, 9, 12, 13, 15}. The table shows how
S converges onto this set by alternating between an over-approximation and
an under-approximation.
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c p l u
value value

S
(l, 0) (u, 0)

-1 1 〈0, 0, 0, 0〉 〈1, 1, 1, 1〉 0 15 ∅
-2 1 〈1, 0, 0, 0〉 〈1, 1, 1, 1〉 1 15 {1 . . . 15}
-3 0 〈0, 0, 1, 0〉 〈0, 1, 1, 1〉 4 14 {1, 2, 3, 15}
-4 1 〈1, 0, 1, 0〉 〈1, 0, 1, 1〉 5 13 {1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15}
-5 0 〈1, 1, 1, 0〉 〈1, 1, 0, 1〉 7 11 {1, 2, 3, 5, 6, 12, 13, 15}
-6 1 〈0, 0, 0, 1〉 〈1, 0, 0, 1〉 8 9 {1, 2, 3, 5, 6, 8, 9, 12, 13, 15}
-7 0 〈0, 1, 0, 1〉 〈1, 0, 0, 1〉 10 7 {1, 2, 3, 5, 6, 8, 9, 12, 13, 15} X

4 Experimental Results

The minimum/maximum algorithms at the heart of range abstraction and set
abstraction amount to solving a series of related SAT problems. This suggests
the application of incremental SAT. Incremental SAT is the problem of solving
a series SAT instances {∧F1, . . . ,∧Fk} defined over a common set of variables.
Each Fi is a set of clauses, and the consecutive instances are related according
to Fi+1 = (Fi\Gi)∪Hi where Gi and Hi are sets of clauses that are respectively
rescinded and added [10,19]. Incremental SAT is most useful when |Gi| � |Fi|
and |Hi| � |Fi| since then solving ∧Fi+1 can take advantage of the clauses
learnt when solving ∧Fi, and possibly earlier instances.

In the algorithm given in Figure 1, unit clauses of x[n− 1], ¬x[n− 1],
¬x[n− |k| − 1] and x[n− |k| − 1] are added to f at lines 5, 9, 14 and 18
respectively. Conversely, the unit clauses x[n− 1] and ¬x[n− |k| − 1] are re-
scinded when the satisfiability questions posed at lines 5 and 14 are found to
have a negative answer. (Note that these removal operations are not reflected
in the algorithm but are applied in the else blocks that commence at lines 9 and
18.) Thus whenever a new SAT instance is encountered |Gi| ≤ 1 and |Hi| = 1,
which suggests that the algorithm is ideal for incremental SAT. Moreover,
only unit clauses are added and removed, and this specialised form of incre-
mental SAT is supported with the so-called unit assumptions of the popular
MiniSat solver [9]. (Actually, unit assumptions are automatically withdrawn
by MiniSat after checking satisfiability and thus those unit assumptions which
need to be preserved have to be readded as immutable clauses.)

Of course, incremental SAT is only of value if it actually improves perfor-
mance. To investigate this, a series of Boolean formulae were generated to
model multi-level switch tables so as to constrain a bit-vector x of 64 bits to
store up to 98 different branch addresses. To investigate scalability, the set
abstraction algorithm was applied to switch tables of increasing size where
the branch addresses were non-consecutive. The abstraction algorithm was
not terminated prematurely, so as to exercise it fully. The graph shown in
Figure 3 suggests that the time to compute the precise set abstraction grows
smoothly with the size of the switch table. These timings were generated on
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a 3GHz x86 machine with 4GB of RAM running Linux.

Interestingly, replacing incremental SAT with a series of independent calls
to the same solver gave a slowdown of two orders of magnitude. Thus incre-
mental SAT compensates somewhat for the need to invoke the solver 64 times
to compute the minimum/maximum of a 64-bit integer. Figure 4 illustrates
the variability in the time required to compute the minimums and maximums
at different iterations of the set abstraction algorithm. Importantly, the time
to compute the minima and maxima do not increase in the latter iterations of
algorithm, which one might expect as the solution range diminishes.

It should be emphasised that we report initial results and the efficiency of
technique can doubtless be improved by standard tactics such as more refined
CNF conversion [16].

5 Related Work

The question of how to abstract Boolean formulae also arises in the context of
deriving transfer functions, specifically those for range analysis [2]. The auto-
matic derivation of a transfer function is attractive since it supports reasoning
about blocks as a whole thereby improving precision. In range analysis, a
transfer function transforms its input ranges to output ranges, and Boolean
formulae offer a convenient way of calculating such extreme values since ∀-
elimination is trivial over this computational domain [13].

Cifuentes and Van Emmerik [4] have shown how to compute numeric ranges
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for switch tables using reverse slicing, however we believe that a more robust
approach is to apply bit-blasting with abstraction, as shown in this paper.

Decision procedures have also been applied when computing best trans-
formers [17]. This work is more akin to our own since here the decision pro-
cedures are applied within the transfer functions themselves rather than in
just deriving them [2]. Moreover, the best transformer work does not address
bit-vector encodings, and hence does not consider the associated problem of
computing range and set abstractions of their values.

Finally, symbolic decision trees offer an alternative way of relating status
flags to numeric variables [1]. This method confers the advantage that the
numeric variables can be perfect numbers rather than finite ones which are
required for bit-blasting. Symbolic decision trees have traditionally suffered
problems of scalability but recent work suggests that this problem can be
tackled with judicious widening [7].

6 Conclusion and Future Work

The paper has shown bit-blasting can be combined with range and set ab-
straction to extract the range of the values that can be used to index a switch
table. This is an important step in CFG recovery which itself is important for
underpinning other analyses. That such information can be derived automat-
ically from a block is encouraging, particularly as one cannot ensure that the
range checks and multi-way branches take a regular recognisable structure.
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The method advocated in this paper could be extended to several blocks
as an usual form of path-sensitive analysis in which one accumulates a formula
that documents the recent history of computation. This should handle indirect
jumps, even in extreme cases where a jump address is be passed from one block
to another.

Of course, CFG reconstruction remains a challenging problem and Linn
and Debray [14] have shown that industry standard disassemblers such as
IDA Pro can be persuaded to misinterpret large portions of a binary program.
This suggests that more robust disassembly techniques must be developed
with anti-reversing techniques in mind. Obfuscation techniques such as those
based on pre-empting POSIX signal events [14] are likely to remain out of the
reach of analysis for some time.
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