
Exhaustive Testing of Safety Critical Java

Tomas Kalibera, Pavel Parizek, Michal Malohlava
Department of Distributed and Dependable Systems

Charles University
{kalibera,parizek,malohlava}@d3s.mff.cuni.cz

Martin Schoeberl
Department of Informatics and Mathematical Modeling

Technical University of Denmark
masca@imm.dtu.dk

ABSTRACT

With traditional testing, the test case has no control over
non-deterministic scheduling decisions, and thus errors de-
pendent on scheduling are only found by pure chance. Java
Path Finder (JPF) is a specialized Java virtual machine
that can systematically explore execution paths for all possi-
ble schedulings, and thus catch these errors. Unfortunately,
execution-based model checkers, including JPF, cannot be
easily adapted to support real-time programs.

We propose a scheduling algorithm for JPF which allows
testing of Safety Critical Java (SCJ) applications with peri-
odic event handlers at SCJ levels 0 and 1 (without aperiodic
event handlers). The algorithm requires that deadlines are
not missed and that there is an execution time model that
can give best- and worst-case execution time estimates for a
given program path and specific program inputs.

Our implementation, named RSJ, allows to search for
scheduling dependent memory access errors, certain invalid
argument errors, priority ceiling emulation protocol viola-
tions, and failed assertions in application code in SCJ pro-
grams for levels 0 and 1. It uses the execution time model of
the Java Optimized Processor (JOP). We test our tool with
Collision Detector and PapaBench application benchmarks.
We provide an SCJ version of the C PapaBench benchmark,
which implements an autopilot that has flown real UAVs.

Categories and Subject Descriptors

C.3 [Special-purpose and application-based systems]:
Real-time and embedded systems; D.2.4 [Software Engi-
neering]: Software/Program verification—Model checking

General Terms

Verification, Algorithms, Experimentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JTRES’10 August 19–21, 2010 Prague, Czech Republic
Copyright 2010 ACM 978-1-4503-0122-0/10/08 ...$10.00.

Keywords

SCJ, Java PathFinder, model checking, real-time Java

1. INTRODUCTION
There is a growing need for automated and semi-automated
verification and testing tools for the purpose of certifica-
tion. While existing systems are being certified solely based
on software engineering processes and manual verification
(e.g., certification for aviation – DO-178B [20] and [7]), the
purely manual approach does not scale with the increasing
amount of safety-critical code and the increasing hardware
complexity.

A particular class of verification tools are those built on
top of execution-based model checkers, which both execute
programs forward as well as backtrack, while systematically
exploring the program state space [29, 17, 8, 16]. The model
checkers have control over otherwise non-deterministic as-
pects such as scheduling decisions, allowing to explore also
corner cases. While the model checkers implement a plenty
of optimizations of the state space traversal, they often fail
to explore all possible states due to state explosion: the
number of program states is usually exponential of the pro-
gram size, and thus the checking process runs out of time or
memory. However, even if exploring the whole state space
is not practically possible, model checkers can be used as
bug-hunting tools that can systematically test program exe-
cutions under different schedulings, which cannot be done by
normal tests. Also, bug-hunting tools need not be certified
by themselves.

Execution-based model checking of real-time Java pro-
grams, be it for Real-time Specification for Java (RTSJ) [4]
or Safety Critical Java (SCJ) [10], brings significant chal-
lenges compared to model-checking of standard Java. The
scheduler in the model checker has to be replaced by one
that implements fixed priority preemptive scheduling with
no time-slicing and with support for periodic activities. The
key problem is that the model checker needs to have a cer-
tain notion of the passage of time, for which it has to know
execution time bounds of the code it executes. Although
scheduling decisions are made using a known and deter-
ministic algorithm in real-time systems, they depend on the
wall-clock time and on execution time, which are not per-
fectly deterministic: they can be subjected by temperature,
the precision of the system clock, and initial conditions such
as placement in memory and its influence on cache misses
or on the timer phase. The scheduling decisions are thus

still non-deterministic to some degree and this level of non-
determinism is magnified in a model checker, which neces-
sarily works with a (timing) model of the hardware that
cannot be perfectly precise.

Interestingly, a model checker for plain Java does not need
to have any notion of the passage of time to explore all
possible interleavings: with time-slicing, native concurrency
on multi-processors, and without strict priority enforcement,
any runnable thread can be scheduled at any time.

In our earlier work [19], we proposed a scheduling algo-
rithm for Java Path Finder that is based on a notion of time
that uses the knowledge of periods and start times of pe-
riodic tasks, under the assumption that no deadlines were
missed. The model did not allow to actually check that
deadlines were not missed, leaving this task to other tools.
In this work, we propose a different algorithm, which re-
lies on bytecode level execution time model for a particular
processor. Both algorithms explore a superset of schedul-
ings that are possible on a real system. This algorithm is
much more efficient, as it explores fewer schedulings of those
that are not possible. The algorithm we propose in this pa-
per allows to actually check that deadlines are not missed
(again given the specific program inputs). The JPF exten-
sion described in this paper supports the SCJ API, while
our earlier work supported the RTSJ API. We provide an
empirical comparison of the two approaches.

To evaluate our algorithm we implement RSJ, an extension
of Java Path Finder (JPF) [29, 1]. RSJ supports a subset
of SCJ levels 0 and 1 (most importantly it does not sup-
port aperiodic event handlers) and uses a timing model of
a hardware Java implementation, the Java Optimized Pro-
cessor (JOP) [24]. The tool can discover memory access er-
rors, race conditions, priority ceiling emulation protocol vi-
olations, and some other run-time errors that originate from
the application logic, such as dereferencing of a null pointer,
invalid arguments to certain library calls, array bounds vio-
lation, division by zero, or failed assertions in program code.
The tool can also report execution time bounds for individ-
ual releases of periodic event handlers when executed on
JOP, but still only for a particular set of inputs given to the
tool. Therefore, RSJ is not a tool for worst-case execution
time (WCET) analysis. It is, instead, a bug-hunting tool for
real-time Java programs.

We run RSJ with two application benchmarks, Collision
Detector [12] and PapaBench [18]. For this, we have trans-
lated PapaBench from C to Java. We validate some aspects
of the tool also with the Kfl, Lift, and UdpIp [25] bench-
marks.

In summary, our contribution is:

• A scheduling algorithm for an execution-based model
checker for SCJ that explores all possible executions of
a program on a given platform, particularly supporting
most of the SCJ real-time scheduling features.

• RSJ, a prototype of a testing tool for SCJ that vali-
dates the algorithm. It systematically explores differ-
ent schedulings of a program when testing, assuming
the JOP processor as the target platform. A subset
of SCJ is supported. RSJ can detect memory access
errors, race conditions, and a range of other errors.

• SCJ and RTSJ versions of PapaBench, an open-source
real-time benchmark built of an autopilot of a UAV.
The original C benchmark code has flown a real UAV.

We provide sources of RSJ with benchmarks and scripts

we used for evaluation in this paper.1 We also merged the
functionality of RSJ into RTEmbed, a JPF extension for
checking real-time and embedded programs, which can be
downloaded from the official JPF website.2

2. BACKGROUND

2.1 Java Path Finder
As the core contribution of our work is a scheduling algo-
rithm for an execution-based model checker, we start with
a rather broad view on model checking and with character-
ization of Java Path Finder, a model checker we use. The
understanding of Java Path Finder, described below, is later
needed in the description of our scheduling algorithm.

Software model checking is a technique for finding proper-
ties about execution of programs based on algorithmic anal-
ysis of the programs. Execution-based model checkers an-
alyze programs by executing them on a modified runtime
system, i.e. Java virtual machine. These runtime systems
allow saving a program state and backtracking to a previ-
ously saved program state. The model checkers aim to ex-
plore all program states that can be reached with any (non-
deterministic) inputs and any (non-deterministic) schedul-
ing of concurrent threads. Typically, only these two sources
of non-determinism are assumed. Common properties to
check are safety properties, which assert that certain error
states of a program are not reached, e.g., a state in which
a memory assignment error occurs. Model checking is an
expensive process due to the state explosion problem. How-
ever, many optimizations and heuristics for different tasks
of model checking have been studied and implemented [11].
Currently, several bug-hunting tools are available and have
been used successfully to discover subtle errors in network
protocols, concurrent phone-switching software, or file sys-
tems [8, 16]. The practical advantage of bug-hunting tools
is that they do not need to traverse the whole program state
space to be useful, as long as they can discover error states.

Java Path Finder (JPF) [29, 1] implements an interpreting
Java virtual machine that allows to save the visited program
states and restore them as needed. JPF can detect already
visited states (state matching), so they are not unnecessar-
ily explored multiple times . JPF backtracks to program
states called choice points, which can be either data choices
(reading an input value) or thread choices (the scheduler can
decide to run another thread). We assume the usual prac-
tice in testing where data are fixed inputs of the test, yet
JPF also has support for symbolic execution and abstraction
that allows to identify sets of inputs that lead to different
program states.

In standard Java running on a system with native schedul-
ing, any runnable thread can preempt the current thread at
any time. However, it is unnecessary to explore all possible
interleavings of threads as long as the threads are running
code that has no visible effects to other threads – JPF thus
creates thread choice points only before accesses to shared
fields, synchronization, or other scheduling-relevant instruc-
tions (partial order reduction). JPF is highly customizable,
so that one can further reduce the amount of options in

1http://d3s.mff.cuni.cz/˜kalibera/scjcheck
2http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/
rtembed

thread choice points as needed for a particular verification
purpose, as well as direct the search by heuristics.

JPF is written in Java and runs on top of a host Java vir-
tual machine. To speed-up the checking process when only
a part of a large application needs to be checked, one can
instruct JPF to run certain components in the host machine.
All native functions have to be handled specially and all op-
erations that have influence outside the VM have to be han-
dled such that backtracking is possible. JPF does not keep
track of wall-clock time as it would appear to the running
application on a real VM. The assumption is that typical ap-
plications do not base their functionality on wall-clock time,
which works well for non-realtime applications and applica-
tions intended to be portable across systems. Any timed
sleep invoked by the application has the same effect: it cre-
ates a thread choice point, so any runnable thread including
the one that invoked the sleep operation can continue exe-
cuting. This solution may lead to exploration of impossible
execution paths, but it will always cover all execution paths
that are possible. This handling of sleeps, however, becomes
incorrect when we introduce strict priority enforcement of
threads, which is the fundamental property of real-time sys-
tems. Once we do this, the top priority thread will starve
out all other threads no matter how long it is sleeping (i.e.
waiting for the next event to handle).

2.2 The Java Optimized Processor
Java processor JOP [24] is an implementation of the JVM
in hardware. The bytecodes of the JVM are the native in-
structions of the processor. JOP has been optimized to be
time-predictable, while still performing well. The execu-
tion pipeline is a 4 stage in-order pipeline. The execution
time of individual bytecodes are independent of each oth-
ers. These properties enabled building worst-case execution
time (WCET) analysis tools for Java that target JOP [26,
9]. JOP is supported as one possible target for RSJ. JOP is
selected as the first target, as it is a time-predictable JVM
where the timing model is available. The execution time
of individual bytecodes, the instruction set of the JVM, is
known cycle accurate. Most bytecodes have a constant exe-
cution, which means that the WCET and the best-case exe-
cution time (BCET) are equal. Variability in the execution
time mainly results from the instruction cache. To simplify
WCET analysis of the instruction cache, JOP caches whole
methods [21]. Therefore, cache misses can only happen on
method invocations and on a return from a method. This
method cache also simplifies the timing model for RSJ. We
have included the possible hits or misses into the method
cache in the timing model as BCET and WCET for the in-
voke and return bytecodes.

As a simplification we have not modeled the cost of pre-
emption, scheduling, and the context switch. A safe as-
sumption for the preemption cost would be the invalidation
of the cache. Therefore, on a context switch the method
of the newly executable thread needs to be loaded into the
method cache. Furthermore, the stack cache of the pre-
empted thread needs to be saved and the stack cache con-
tent of new thread needs to be restored. As the stack size
is bounded, this execution time is bounded. The worst-case
execution time of the scheduling decision is linear with the
number of schedulables. For SCJ application the number
of schedulables is fixed and therefore the execution time is
bounded.

Note that the timing model for RSJ is a much simpler
task than a full-fledged WCET analysis. As RSJ has the
exact knowledge of program inputs, program code, program
state, and execution history, we could have calculated exact
execution time using a cycle-accurate JOP simulator. How-
ever, thanks to the fact that the scheduling algorithm of
RSJ accepts also intervals for execution time, the execution
time model can be simpler than cycle-accurate simulation.
Another possible use of imprecise execution time model for
RSJ would be support for platforms that do not have a fully
deterministic execution time.

2.3 Scheduling in SCJ
Safety Critical Java (JSR-302, [10]) is an upcoming tech-
nology based on the RTSJ, which should allow certification.
While the draft is still being subjected to frequent changes,
the core aspects of scheduling and memory management,
which we summarize below, are reasonably stable. They
allow us to formulate the scheduling algorithm for model
checking and to describe memory assignment rules which
need to be checked. SCJ distinguishes three levels of com-
plexity, numbered 0, 1, and 2. We only focus on levels 0
and 1 in this work. Although SCJ allows multi-processors
at level 1, we restrict our analysis to uniprocessors, as certi-
fication of multi-processor Java applications seems not to be
possible in the near future. We also restrict the supported
features of SCJ whenever they would lead to state explosion
or overly complex implementation.

An SCJ application is composed of missions. Each mis-
sion has schedulable objects (a.k.a. schedulables) and mis-
sion memory shared by these schedulable objects. Each
schedulable also has its own private memory. The system
then has immortal memory. Objects in immortal memory
can only have pointers to immortal memory. Objects in
mission memory can have pointers to immortal or mission
memory of the same mission, and objects in private memory
can have pointers to immortal memory, mission memory of
its mission, and the same private memory. Private memory
areas can be nested, following the same rules for pointers
between areas.

Each mission is first initialized by a single thread, in which
all mission memory and immortal memory allocations of the
mission take place. This thread also creates schedulable
objects, which can be either periodic (periodic event han-
dlers) or aperiodic (aperiodic event handlers). Aperiodic
event handlers are released at times unknown to the appli-
cation, typically originated by external hardware, and we
ignore them here – supporting them in this unconstrained
form would lead to state space explosion. Periodic event
handlers are given a priority, period, and start time. The
start time is absolute or relative to the time when initializa-
tion is over. Once initialization is over, the schedulables can
be released.

We do not support absolute release times. If an appli-
cation needs to release periodic handlers with fixed relative
offsets, it would be natural to have these handlers in the
same mission, which in turn does not require support for
absolute start time. We discuss implications of potential
support for aperiodic handlers and absolute time in more
detail later, in the context of the algorithm we propose.

On every release of a schedulable, its private memory is
initialized and entered. The memory is implicitly destroyed
when the release completes. Mission memory is destroyed

when the mission terminates. Immortal memory is only de-
stroyed when the VM is shut down.

At level 0, all schedulables are run by a single infrastruc-
ture thread; there is no preemption and no concurrency.
There is only one mission at a time. Only periodic event
handlers are supported. The schedule is static and cyclic.
Each cycle is formed by the same sequence of frames, each
having a duration and a sequence of handlers to run. While
this schedule is expected to be specified according to prior-
ities, periods, and start times of the handlers, the SCJ run-
time ignores these – it only uses the static schedule. At level
0, for a given set of inputs, a model checker that explores
execution paths along all possible schedulings thus cannot
discover more errors than actual execution of the program
– there is only one scheduling. RSJ can still calculate worst
case execution time bounds for the given program inputs. As
of now, level 0 support is beneficial mostly for debugging of
the tool and of applications that can run both at levels 0
and 1. RSJ could, however, be extended to support checks
that regular tests cannot do, such as systematic exploring of
different execution paths given by program inputs.

At level 1, every schedulable is run by its own infrastruc-
ture thread, and potentially concurrently with other schedu-
lables. RSJ can discover more errors than testing, because
it explores potentially all valid interleavings of the schedu-
lables, and it may be that some errors are only present in a
particular interleaving. RSJ can also detect race conditions.
At this level, there is still a single mission at a time. It
means, in particular, that all schedulables are started rela-
tive to the same time origin. This level also supports ape-
riodic event handlers. Java monitors are allowed and use
priority ceiling emulation protocol. Calls to Object.notify

and Object.wait are not allowed at this level.

3. SCHEDULING ALGORITHM
We propose the following scheduling algorithm for a model
checker that executes SCJ programs. Note that the algo-
rithm is more complex than one of a real VM, because it
has to cover all possible execution paths (not just one) and
it has to work with an interval of the actual wall-clock time
t = [tmin, tmax]. Our algorithm bases the interval on the es-
timated execution time along the explored execution path.
t is undefined from the program start up to the first release
of a periodic event handler.

The application can indeed use a call to Clock.getTime

to get the current wall-clock time. We always return a lower
bound, tmin, or zero with a warning when tmin is still unde-
fined. While the lower bound may not work well for every
possible use of time in the program, it is easy to trace these
operations and it is unlikely they will be heavily present,
provided that SCJ can start handlers relative to the com-
mon base – end of initialization of a mission.

3.1 SCJ Level 0
The scheduler proceeds as follows. ts is the wall-clock time
of frame start, which is then also the time when the first
handler of the frame is released. d is the duration of the
current frame.

1. After all initialization code has finished or blocked, t :=
[0, 0], ts := 0. The first handler from the frame is
“released” (its handleAsyncEvent method is called).

2. After handleAsyncEvent finishes, tmin is increased by
the best-case execution time estimate and tmax by the
worst-case execution time estimate of the executed
handleAsyncEvent. If tmax > d, the possibility of
frame overrun is reported. Assuming frame overrun
in fact did not happen, tmax can be set to d and the
checking can continue. This step is repeated until there
are no more handlers in the current frame.

3. Once the last handler of the current frame has finished
executing, we update the time of frame start for the
next frame: ts := ts + d. We advance the current time
to the start time of the next frame: t := [ts, ts], and
we continue by executing handlers from the next frame
(Step 2).

3.2 SCJ Level 1
At level 1, there is only one mission at a time, thus only a
single time base starting with the first release of a periodic
event handler at time [0, 0]. For each periodic event handler
i = 1, .., n, we know release times of the handler: t = [oi +
j · Ti, oi + j · Ti], where oi is the relative start time (offset),
Ti is the period, and j ≥ 0 is the release index.
At time t = [0, 0], we know about all periodic event han-

dlers, and we could create an (infinite) ordered queue of
release events Q = e1, e2, e3, . . ., such that te1 < te2 < te3 <

. . . holds for release times te• . Each event corresponds to
the release of one or more periodic event handlers (He•).
The algorithm, however, only needs to query about the first
element of the queue and eventually to remove this element.
It is thus sufficient to generate the queue on the fly, which
is possible as follows. We remember the index of the last
release of every periodic handler that has been added to the
queue. Whenever we remove an element from the queue,
we calculate the next release time of every handler. Out of
these times, we take the minimum as the time of the new
release event. The set of handlers of this event would be all
handlers that should be released at this minimum time. Let
pe1 , pe2 , . . . be the highest priorities of event handlers in sets
He1 , He2 , . . .

The algorithm described below is also pseudo-coded in
Figure 1. Line numbers in the figure refer the steps below:

1. There is no runnable handler at this time and the
system is idle. We take the first element e1 from
Q, t := [te1 , te1], make all the handlers from He1

runnable, and we start executing the first top prior-
ity handler. We remove e1 from Q.

2. After executing a bytecode instruction, we update cur-
rent time by adding the best-case execution time esti-
mate of the executed instruction to tmin and the worst-
case estimate to tmax. Note that the executed instruc-
tion may have lead to priority changes or may have
blocked or suspended the handler.

3. If te1 ≤ tmin (the release event has to happen now or
it should even have happened earlier), we uncondition-
ally remove this event from the queue and release all
its handlers. We keep doing this until we reach a state
where te1 > tmin.
Note that our VM implicitly increments current time
with the resolution that depends on execution time
estimates of the executed instructions. The maximum
possible increment, which is the maximum estimated
execution time of any instruction, thus becomes the
timer resolution. We could execute larger code blocks

run () {
6 wh i l e (ha sNex tMi s s i on ()) {
6 i n i t i a l i z e ()
6 doWhenIdle ()
5 wh i l e (i nM i s s i o n ()) {
5 e x e c u t e I n s t r u c t i o n (n e x t I n s t r u c t i o n ())
5 i f (i d l e ()) {
5 doWhenIdle ()
5 }
5 }
6 }
}

doWhenIdle () {
1 e x e c u t e E a r l i e s t E v e n t ()
1 e n t e r S c h e d u l e r ()
}

e x e c u t e I n s t r u c t i o n (i n s n) {
2 [ibcet, iwcet] = est imateTime (programState , i n s n)
2 tmin = tmin + ibcet
2 tmax = tmax + iwcet

3 wh i l e (te1 ≤ tmin) {
3 e x e c u t e E a r l i e s t E v e n t ()
3 }
4 i f (te1 ≤ tmax) {
4 pmax = maxRunnab l eHand l e rP r i o r i t y ()
4 i f (pe1 > pmax) {
4 i f (nondetCho ice ()) {
4 e x e c u t e E a r l i e s t E v e n t ()
4 }
4 }
4 }
}

e x e c u t e E a r l i e s t E v e n t () {
t = [te1 , te1]
s e tRunnab l e (He1)
Q . removeHead ()
Q . addNextEvent ()

}

Figure 1: Scheduling algorithm for level 1.

than single instructions, but for the price of a worse
timer resolution and consequently higher release jitter.
Note that it is possible that an event should have hap-
pened earlier due to two reasons: (a) we missed it be-
cause of limited timer resolution, (b) we intentionally
“missed” it as an optimization because releasing it ear-
lier would not have had any impact on the program
state (detailed in the next step).

4. If te1 ≤ tmax (the next release event may happen now
as well as later, but we do not know for sure, because
we do not know the exact current time), we may have
to make a non-deterministic choice as if to execute re-
lease e1 or not. Note that we know that the event
can already happen because of the previous step which
guaranteed te1 > tmin. We want to avoid doing a non-
deterministic choice whenever possible, because it is
costly. We can avoid doing it whenever there already
was a runnable handler in the system with a higher
priority than those handlers that would be released.
So if the maximum priority of all runnable handlers is
smaller than pe1 , we make a non-deterministic choice
as if to execute the release event e1 or not. If we
execute the event, we also update the current time

t := [te1 , te1].
5. If the system became idle, we continue at Step 1.

Otherwise, the scheduler will continue executing the
runnable handler with the highest priority (Step 2).
Although we could avoid entering the scheduler if we
(a) did not release any handlers and (b) the handler
that executed last will not be descheduled, such an op-
timization would unlikely be beneficial – the scheduler
decision is one that is easy to make.

6. Eventually, a mission may terminate and another/the
same mission may be started. If this happens, the
data structures are re-set for the new mission and the
algorithm continues in Step 1.

Supporting aperiodic event handlers would lead to
state explosion at level 1. Aperiodic event handlers do
not have a minimum inter-arrival time. They still have
deadlines, but even assuming deadlines were met would not
speed-up the checking process, as there is no minimum inter-
arrival time. Technically, we would thus have to make a non-
deterministic choice at every single instruction as whether to
release a given not-released aperiodic event handler. In par-
ticular, we would have to explore also paths where the ape-
riodic handlers would be starving out all handlers of lower
priority. We could again restrict to releasing only aperiodic
event handlers of higher priority than the highest priority
event handler in the system (optimization like in Step 4).
We would have to introduce special handling for idle time:
we would not be able to simply “skip” the idle time like in
the case with periodic event handlers only (Step 1), because
we would not know how long this time should be; a pos-
sible implementation would be to, at a pre-specified rate,
keep advancing the current time and non-deterministically
deciding which aperiodic event handlers to release.

Note that while the real-time scheduling theory provides
means to implement aperiodic events using periodic events,
i.e. constant-bandwidth servers or a polling server, we can-
not use these in RSJ without modifying the scheduler behav-
ior dictated by the SCJ specification. Still, an application
programmer could modify an application of interest to use
periodic event handlers to model aperiodic events, and then
check such application with the present version of RSJ.
Supporting absolute time. If absolute time was used
for starts of periodic event handlers, we would have to keep
track of two time bases (start of application and start of
mission execution phase) as opposed to only one (start of
mission execution phase). We would thus essentially get an
extra mission, formed of the handlers started using absolute
time. We would need a special queue for the release events
of these handlers and the algorithm would be more complex.

To support the notion of absolute time we would have
to estimate the execution time of initialization, so that we
could relate the two time bases. We would also require the
user to specify absolute time at program start, most likely
it would be zero.
Supporting SCJ level 2. Similarly to absolute time for
starts of periodic event handlers, level 2 would bring up mul-
tiple time bases, one for each mission. Each mission would
have its own queue of release events and the scheduling al-
gorithm would have to correctly select events from multiple
queues such that it did not violate the known bounds on
times of the next release event from each mission/queue.

4. EVALUATION
We implemented the proposed algorithm in RSJ, an exten-
sion of JPF. We only use the JPF API designed for JPF
extensions, without modifying of the JPF core. This choice
should reduce the maintenance costs of porting to future
JPF versions, but it complicates the implementation and
makes certain optimizations impossible, such as avoiding
creation of a new state at a deterministic thread switch. We
support a subset of SCJ that covers all aspects of the speci-
fied algorithm and that allows to execute our tests and two
application benchmarks, Collision Detector and PapaBench.
We use the version of SCJ specification as of May 2010.

The goals of our evaluation are:

• To demonstrate that RSJ can find errors as intended:
show that it does not find spurious errors in tested
code that we believe is correct and it finds manually
injected errors (Section 4.3).

• To demonstrate that the timing model implemented
in RSJ corresponds to the hardware implementation of
JOP (Section 4.4).

• To compare performance of exhaustive testing using
the proposed algorithm that uses the JOP timing
model (RSJ tool) against our earlier algorithm that is
timing-model independent (RJ tool) (Section 4.5).

The source code of RSJ, the benchmarks, tests, and scripts
we used is available from http://d3s.mff.cuni.cz/˜kalibera/
scjcheck. We have executed the experiments on a Linux ma-
chine with a 64-bit 3GHz Intel Xeon CPUs, 4MB L2 cache
and 32GB RAM (JPF only uses a single core).

4.1 Collision Detector Benchmark
Collision Detector (CDx) is a real-time application bench-
mark [12] that simulates an aircraft collision detector. It is
available in multiple variants and with a configurable work-
load. It contains a hard real-time detector thread that pe-
riodically receives a radar frame with the current positions
of aircraft. Based on the current and the previous frame
the detector thread detects whether any two aircraft are on
a collision course. The benchmark code has not been de-
ployed on a real system. We use this benchmark in two
versions, nosim and sim.

In the nosim version, which is similar to the original SCJ
version of CDx [12], the radar frames are being generated
synchronously by the detector thread, providing a simple
synthetic air traffic. Thus, there is only one active thread
throughout the execution of the benchmark. We also ported
the nosim version to RTSJ, so that we can compare RSJ and
RJ (RJ is for RTSJ programs). We modified the original
version of CDx [12] to conform to the current version of
SCJ and to support level 1 in addition to level 0.

In the sim version, which is based on the full RTSJ ver-
sion of CDx, the radar frames are being generated concur-
rently by a simulator thread, using a configurable air traffic
simulator that is far more complex than the hardcoded air
traffic in the nosim version. The simulator thread is storing
the generated frames for the detector thread in a wait-free
queue implemented as a circular buffer. We have modified
the original version of CDx to only use scoped and immor-
tal memory (the original one uses heap for the simulator
thread), and we again created both a RTSJ and a mirror
SCJ version, so that we can compare RSJ and RJ.

We injected errors into the two benchmarks, as proposed

Name RT API Simulator
cdx-l0-nosim SCJ L0 No
cdx-l1-nosim SCJ L1 No
cdx-rtsj-nosim RTSJ No
cdx-l0-sim SCJ L0 Yes
cdx-l1-sim SCJ L1 Yes
cdx-rtsj-sim RTSJ Yes

Table 1: Versions of the CDx benchmark we use.

Task Period Depends on

Autopilot
A1 Radio control 25ms F2
A2 Stabilization 50ms A1, A4, A7, S3
A3 Fly-by-Wire link 50ms A2
A4 Reporting 100ms
A5 Navigation 250ms S2
A6 Altitude control 250ms A5
A7 Climb control 250ms A6

Fly-by-Wire
F1 Test PPM 25ms
F2 Send data to autopilot 25ms F1
F3 Check fail-safe 50ms
F4 Check autopilot 50ms A3

Simulator
S1 Environment simulator 25ms
S2 GPS interrupt 50ms
S3 Infra-red interrupt 250ms

Table 2: PapaBench tasks and their properties.

in [13]. Some of the errors are based on real errors that
were discovered during the benchmark development, some
are purely synthetic. SCJ versions of nosim and sim can be
run both at level 0 and level 1. The versions we use are
summarized in Table 1.

4.2 PapaBench Benchmark
The PapaBench benchmark [18] is based on the Paparazzi
project [2], which is an open-source implementation of a
UAV. The software and hardware provided by this project
has successfully flown several UAVs. The software part of
the project includes hard real-time on-board software and
non-realtime support software that runs on the ground sta-
tion. The ground station receives telemetry data from the
aircraft and allows to trace the flight in a GUI. The on-board
software includes a fly-by-wire unit and an autopilot. The
fly-by-wire unit receives radio commands and controls the
servos. The autopilot unit receives data from sensors (GPS
and infra-red) and sends commands to the fly-by-wire unit.
The autopilot is fully autonomous and follows a flight plan
written in a high-level language. The intended payload is
a video camera which can communicate to the ground in
real-time. For emergency situations and testing, the plane
can also be controlled remotely from the ground, overriding
the autopilot. The project also includes a simulator of the
hardware devices present in the plane and a physical model
of the plane, so that it is possible to debug the autopilot
and/or the ground station software off-line.

The on-board hard real-time software has been extracted
into the PapaBench benchmark [18], which can be run on a
desktop machine. The benchmark is merely a four-year-old
snapshot of the Paparazzi on-board code, thus it is simpler
than today’s Paparazzi code base, but it still includes real
code that has flown. It consists of 13 periodic tasks that

follow a cyclic schedule and of 6 interrupt sources (sensors,
servos, communication bus). The original PapaBench was
not intended for functional execution (processing real data
from hardware), but rather for evaluation of WCET anal-
ysis tools. It can, however, be connected to the Paparazzi
simulator of the on-board hardware with minor effort.

We have rewritten the C code of PapaBench into Java
(SCJ levels 0 and 1, RTSJ) and added the necessary parts
of the Paparazzi simulator for a functional execution. Par-
ticularly, we have included a physical model of the plane
sensors, a corresponding physical model of the plane based
on Paparazzi code, and suitable flight plans. The simulator
is also written in Java and the interrupts are modeled by
periodic tasks, so that the benchmark can be run on any
SCJ implementation.

The original Paparazzi on-board code is deployed on two
physical units communicating via an SPI bus. In the Java
implementation, the whole functionality is merged into one
application and deployed and executed in a single VM to-
gether with the simulator. However, a hardware abstraction
layer for the SPI bus, sensors, and servos was preserved in
the Java code. The current Java implementation does not
simulate commands sent from the ground station – the sim-
ulation only focuses on an autonomous flight.

The resulting Java implementation includes 14 tasks, out
of which 7 tasks control the autopilot unit and handle navi-
gation, airplane control, and communication with the fly-by-
wire unit. The fly-by-wire unit contains 4 tasks that receive
commands from the ground (they actually never receive any
command in the current implementation, as we do not sim-
ulate commands sent from the ground), send and receive
commands from the autopilot unit, and configure the servos.
The remaining 3 tasks are dedicated to the environment sim-
ulator, GPS interrupt, and infra-red device interrupt. The
frequency of the tasks varies from 4Hz to 40Hz as specified
in the PapaBench benchmark. The properties of tasks, in-
cluding their dependencies, are summarized in Table 2. The
original PapaBench implementation is lock-free with cyclic
scheduling, which is reflected in the Java code.

In addition to the flight plans we created for RSJ exper-
iments, we provide a longer one suitable for testing native
VMs. We are also working on support of the data connection
link from the plane to the ground, so that the ground station
software of Paparazzi could be connected to the benchmark,
allowing to visualize the actual flight.

4.3 Validation of Error Discovery
We use three sets of patches that inject errors to our bench-
marks. One set is for Collision Detector nosim, one for sim,
and one for PapaBench. Each error patch can be applied to
both level 0 and level 1 code. The errors are created manu-
ally, some of them are real errors we actually found in earlier
versions of the Collision Detector benchmark.

The patches for the Collision Detector nosim include an
array out of bounds exception (invalid upper bound in a
loop accessing an array – named arrayb) and two memory
assignment errors (both attempt to create a pointer in the
mission memory pointing to an object in the private memory
– named mema1 and mema2). The patches for the sim version
include, in addition to these, also a race condition (unpro-
tected access to a buffer of radar frames that can make the
detector thread read a corrupted or uninitialized radar frame
– race). The patches for PapaBench include two memory

assignment errors (named mema3 and mema4), both of which
attempt to create a pointer in the mission memory pointing
to an object in the private memory.

We have verified that RSJ can check all our benchmarks
both with and without the injected errors, that it finds the
errors we have injected, and that it does not find any other
(spurious) errors.

The checking time, memory usage, and number of visited
and unique states are shown in Table 4. If an error is found,
the testing is terminated. Executions that discovered an
error are in the lower part of the table. Note that cdx-l0-
sim-race is in the upper part of the table, because the race
condition has not been detected. This is the desired behav-
ior, as there cannot be a race condition in a level 0 program.
Still, the race detector of JPF only detects suspected races,
false alarms are thus possible in other examples. The re-
ported amount of used memory is the maximum occupied
memory as reported by the host virtual machine. It depends
on the GC algorithm and the maximum heap size, and there-
fore only provides an approximate measure of the memory
requirements of checking the particular program.

In most of the experiments, the number of visited and
unique states was the same, and thus RSJ did not have to
backtrack. This also means that most of the errors could
have been discovered by non-exhaustive testing. The race
condition is an exception, a specialized tool would still be
needed to detect a potential race. The lack of backtracking
also means that the program states are saved unnecessar-
ily. This, however, is internal to JPF core, which requires a
state to be saved at each thread switch, even if the switch
is deterministic. This unnecessary saving of program states
is most likely the cause why checking of PapaBench without
errors needs so much memory.

The expected observations are that level 1 experiments
take (almost always) as much time to check as level 0. Sim-
ilarly, sim versions of cdx take longer to check than nosim

versions.

4.4 Validation of a Timing Model
RSJ uses a timing model of the JOP processor, which pro-
vides lower and upper bounds for execution time on a
given execution path (having all bytecode instructions in se-
quence). The timing simulator that implements this model
in RSJ thus needs to support backtracking as RSJ uses back-
tracking while searching for errors. RSJ can also report exe-
cution time bounds to the tester in the form of logs. It can
measure execution time of a complete plain Java program
and computation times of individual releases of a periodic
event handler (duration of handleAsyncEvent).

To validate that the timing model is implemented cor-
rectly in JPF, we run three plain Java benchmarks from
the JBE (JavaBenchEmbedded) [22, 25] suite. The kfl and
lift benchmarks are adaptations of two real-world applica-
tions, which are described in [23]. The udpip benchmark ex-
plores a tiny TCP/IP stack, which itself is also in industrial
use. All applications are organized as single periodic tasks
(similar to a cyclic executive). For benchmarking purpose
we execute this periodic task 10000 times without waiting
for the next period. We run the benchmarks on the 100 Mhz
hardware (FPGA-based) implementation of JOP. We com-
pare the measured time with the timing estimates given by
RSJ. The results are summarized in Table 3. It can be seen
that the best-case and worst-case execution times are quite

Benchmark Measured Time Estimated Time
Min. Max.

kfl 483 ms 466 ms 577 ms
lift 486 ms 484 ms 514 ms
udpip 1094 ms 1042 ms 1194 ms

Table 3: Timing measured on JOP and estimated
by RSJ.

c
d

x
−

s
im

c
d

x
−

n
o

s
im

Checking Time [s]

0 1000 2000 3000 4000

RTSJ
SCJ L1

Figure 2: Checking time with RTSJ and SCJ L1,
when no error is found.

close and the actual measurement in hardware is within this
interval. Those results give us confidence that the timing
model of JOP is sound. Note, that the measured maximum
execution time and the maximum time reported by RSJ are
not the real WCET of the applications. It is the execution
time of a run with a dedicated set of input data. Only static
WCET analysis can give a sound WCET estimation for all
possible input data [26].

4.5 Comparison with a Platform Independent
Version

The scheduling algorithm we present in this paper takes ad-
vantage of the knowledge of the target platform in the form
of a timing model. In our earlier work [19], we proposed
and implemented a general algorithm that is platform inde-
pendent. The general algorithm still generates sequences of
release events such that they are consistent with periods and
priorities of the periodic threads, but it makes no assump-
tions about how long code executes, which leads to testing
of even unrealistic schedulings (e.g., that depend on thou-
sands of bytecode instructions taking less time than a single
bytecode instruction). Also, the general algorithm cannot
estimate computation times or detect deadline misses. We
compare the performance of RSJ to the general tool RJ we
presented in [19].

The results are presented in Table 5 and the checking
times are also shown in Figure 2 (for no errors found) and
Figure 3 (an error is found). The table shows that RSJ needs
less states for checking than RJ. In the cases errors are found,
RSJ is often slower even though it uses less states, which can
be explained by internals of the implementation. RSJ has to
check if rescheduling is needed after every single bytecode in-
struction. Often, rescheduling is not needed, so no new state
is created, but this decision has a measurable overhead. In

A
B

C
D

E
F

G
H

I

Checking Time [s]

0 5 10 15 20 25 30 35

RTSJ
SCJ L1

Figure 3: Checking time with RTSJ and SCJ
L1, when an error is found. Letters stand for:
cdx-nosim-arrayb (A), cdx-sim-arrayb (B), cdx-nosim-
mema1 (C), cdx-sim-mema1 (D), cdx-nosim-mema2 (E),
cdx-sim-mema2 (F), cdx-sim-race (G), papabench-mema3
(H), and papabench-mema4 (I).

the case no errors are found, and thus the whole state space
is traversed, RSJ is much faster than RJ. As can be seen in
the table, RJ has to backtrack in these cases (the number of
visited states is larger than the number of the unique states).
This is because of the general algorithm that assumed no
execution time model of the target platform. The timing
model of JOP allowed RSJ to avoid backtracking almost en-
tirely in these experiments. The reduction of states is also
significant: cdx-rtsj-sim used nearly 13G of memory, while
cdx-l1-sim less than 1G. The checking of PapaBench with-
out errors by RJ has run out of memory (20G heap limit).
RSJ can check PapaBench at SCJ level 1 in 30 minutes and
15G of memory.

4.6 Complexity of Used Benchmarks
We measure the complexity of the used benchmarks with

the Chidamber and Kemerer (CK) object-oriented program-
ming metrics [6], with the ckjm tool [27]. We calculate the
metrics from every class the application loads, including
standard Java libraries (but excluding real-time API that
differs for different variants of the benchmarks).

Weighted methods per class (WMC) is the number of
methods in a class. Depth of inheritance tree (DIT) is the
number of ancestor classes of a class. Number of children
(NOC) is the number of direct subclasses of a class. Cou-
pling between object classes (CBO) is the number of classes
coupled to a class. Two classes are coupled if one of them
uses the methods or fields of the other class. This usage
includes inheritance, method arguments, method types, and
exceptions. Response for a class (RFC) is the number of

Benchmark Checking Time Memory Used Unique States Visited States
cdx-l0-nosim 0:00:08 s 486 M 16 16
cdx-l1-nosim 0:00:12 s 486 M 16 16
cdx-l0-sim 0:00:34 s 584 M 28 28
cdx-l1-sim 0:00:35 s 710 M 38 40
cdx-l0-sim-race 0:00:35 s 710 M 28 28
papabench-l0 0:15:28 s 13688 M 266431 266528
papabench-l1 0:30:42 s 14521 M 339254 339254
cdx-l0-nosim-arrayb 0:00:04 s 485 M 5 5
cdx-l1-nosim-arrayb 0:00:04 s 485 M 5 5
cdx-l0-sim-arrayb 0:00:33 s 675 M 10 10
cdx-l1-sim-arrayb 0:00:35 s 666 M 13 13
cdx-l0-nosim-mema1 0:00:04 s 485 M 5 5
cdx-l1-nosim-mema1 0:00:05 s 485 M 5 5
cdx-l0-sim-mema1 0:00:33 s 686 M 10 10
cdx-l1-sim-mema1 0:00:33 s 683 M 13 13
cdx-l0-nosim-mema2 0:00:04 s 485 M 5 5
cdx-l1-nosim-mema2 0:00:04 s 485 M 5 5
cdx-l0-sim-mema2 0:00:32 s 696 M 10 10
cdx-l1-sim-mema2 0:00:32 s 675 M 13 13
papabench-l0-mema3 0:00:02 s 482 M 39 39
papabench-l1-mema3 0:00:02 s 482 M 39 39
papabench-l0-mema4 0:00:02 s 482 M 41 41
papabench-l1-mema4 0:00:01 s 482 M 41 41
cdx-l1-sim-race 0:00:34 s 683 M 13 13

Table 4: Performance results of exhaustive testing of CDx and PapaBench.

Benchmark Checking Time Memory Used Unique States Visited States
cdx-l1-nosim 0:00:12 s 486 M 16 16
cdx-rtsj-nosim 0:13:27 s 482 M 2096 2129
cdx-l1-sim 0:00:35 s 710 M 38 40
cdx-rtsj-sim 1:13:30 s 12819 M 72124 207398

A cdx-l1-nosim-arrayb 0:00:04 s 485 M 5 5
A cdx-rtsj-nosim-arrayb 0:00:05 s 482 M 14 14
B cdx-l1-sim-arrayb 0:00:35 s 666 M 13 13
B cdx-rtsj-sim-arrayb 0:00:25 s 482 M 57 60
C cdx-l1-nosim-mema1 0:00:05 s 485 M 5 5
C cdx-rtsj-nosim-mema1 0:00:06 s 482 M 12 12
D cdx-l1-sim-mema1 0:00:33 s 683 M 13 13
D cdx-rtsj-sim-mema1 0:00:25 s 482 M 57 60
E cdx-l1-nosim-mema2 0:00:04 s 485 M 5 5
E cdx-rtsj-nosim-mema2 0:00:06 s 482 M 14 14
F cdx-l1-sim-mema2 0:00:32 s 675 M 13 13
F cdx-rtsj-sim-mema2 0:00:23 s 482 M 57 60
G cdx-l1-sim-race 0:00:34 s 683 M 13 13
G cdx-rtsj-sim-race 0:00:25 s 482 M 56 59
H papabench-l1-mema3 0:00:02 s 482 M 39 39
H papabench-rtsj-mema3 0:00:08 s 655 M 55 55
I papabench-l1-mema4 0:00:01 s 482 M 41 41
I papabench-rtsj-mema4 0:00:10 s 655 M 65 65

Table 5: Performance of exhaustive testing in RSJ (SCJ, JOP CPU) and RJ (RTSJ, CPU indep.).

WMC DIT NOC CBO
Med Max Sum Med Max Sum Med Max Sum Med Max Sum

cdx-sim 7 95 1254 1 5 164 0 4 29 6 62 881
cdx-nosim 7 95 537 1 4 58 0 3 9 5 20 292
papabench 3 34 684 1 3 137 0 14 31 7 39 934
kfl 6 21 73 1 2 10 0 1 1 2 5 25
udpip 5.5 10 63 1 2 16 0 2 4 4 11 60
lift 5 8 30 1 2 9 0 1 2 3 5 19

RFC LCOM LOC
Med Max Sum Med Max Sum Med Max Sum

cdx-sim 15 117 2531 2 4465 11002 114.5 6023 36699
cdx-nosim 15 117 988 3 4465 6205 124 4151 13033
papabench 8.5 56 1367 1 465 3429 32 520 7402
kfl 9 41 124 10 90 200 67 506 1624
udpip 8.5 26 119 3 33 113 39.5 462 1523
lift 6 12 48 1 10 29 45 661 990

Table 6: Complexity of used benchmarks.

methods of the class plus the number of directly called ex-
ternal methods. Lack of cohesion (LCOM) is the number
of methods of a class that do not share instance variables,
which is calculated as |P | − |Q|, where P is the set of all
method pairs that do not share any variable, and Q is the
set of all pairs that do. Finally, lines of code (LOC) is the
normalized number of lines of code of a class (supported by
ckjm tool, but not an original CK metric). LOC is the sum
of the number of methods, number of fields, and number of
byte-code instructions of methods. The metrics are summa-
rized in Table 6. With respect to scheduling, PapaBench is
the most complex benchmark with 14 periodic event han-
dlers, followed by cdx-sim with 2 periodic event handlers.
All other benchmarks have only a single task.

5. RELATED WORK
Model checking of real-time Java programs using JPF has

first been studied in [15]. The primary focus of the work was
to verify that all threads in an RTSJ applications meet their
deadlines. The basic assumption made was that execution
time of a bytecode instruction is independent of the context:
the timing model uses a table that maps an instruction type
to the assumed duration. The timing model does not seem
to be motivated by existing hardware. The simplicity of the
timing model makes it easy to design the scheduling algo-
rithm as a discrete event simulation. The work only includes
a very small subset of RTSJ, particularly it does not include
scoped and immortal memory areas that we support. The
key advantage of our approach is, however, a more general
timing model that allows execution context to be incorpo-
rated into the timings: our timing model allows for instance
to incorporate caches, and is motivated by and validated
against a real hardware implementation.

There are several tools for verification of real-time systems
based on abstract models of these systems, such as [14, 28,
30]. RSJ complements these tools as it can work directly
with code, thus potentially finding errors not visible at the
model level. On the other hand, due to state explosion RSJ
can only fully traverse relatively small programs. Indeed,
RSJ also could be used with models, if SCJ programs passed
to it were indeed models of real systems.

Some work has been done on preventing memory assign-
ment errors at compile time, with the help of a special type
system and code annotations that have to be added by the
programmer [5, 31]. The advantage of these approaches
is that they can provably prevent the memory access er-
rors, but for the additional burden of manual code annota-
tions. The limitation is also that only local variables are
supported [5] or certain programming restrictions are im-
posed [31]. RSJ can search for memory assignment errors in
unannotated programs with no programming restrictions in
addition to those imposed by Java and SCJ.

Using an execution time model of a target platform to ex-
tract a performance metric on a host with JPF is similar to
cross-profiling [3]. With cross-profiling the program under
test is instrumented at basic block boundaries to collect the
performance metric and executed on a standard (JIT com-
piling) JVM. With this approach only the average case ex-
ecution time is considered, whereas RSJ considers best-case
and worst-case timings for given input data.

6. CONCLUSION
We provide RSJ, a testing tool that can exhaustively search
for errors in SCJ programs (SCJ levels 0 and 1 without aperi-
odic event handlers), backtracking over different scheduling
orders possible on a real system. The tool can thus discover
some corner case errors that are hard to find by regular
testing. The tool is an extension of Java PathFinder, an
execution based model checker for Java. Consequently, var-
ious kinds of run-time analyses are possible. The tool can
currently calculate execution time bounds based on (fixed)
inputs of the tests. Also, it can detect potential race condi-
tions. It also provides a base for further kinds of analyses,
such as establishing memory bounds for scoped memories or
the stack memory.

To test RSJ, we provide an SCJ version of the PapaBench
benchmark, which is a non-trivial application benchmark
that consists of hard real-time code that has, in its C orig-
inal, flown real UAVs. To our knowledge, the SCJ version
of PapaBench is the publicly available real-time Java bench-
mark with most complex real-time application logic to date.

RSJ uses our novel scheduling algorithm for an execution-
based model checker that can verify real-time programs. Our
algorithm uses a realistic execution time model of JOP, a
hardware JVM implementation. We show that the use of a
platform-specific model can drastically speed-up the exhaus-
tive testing when compared to a platform-independent algo-
rithm by essentially eliminating backtracking. This is possi-
ble even with a timing model that defensively estimates tim-
ings as intervals, allowing for instance modeling of caches.
This is an interesting result in the field of model checking,
where the general understanding is that concurrency always
leads to state space explosion. We show that it needs not to
be the case for real-time programs.

At the same time, it appears that new and significant op-
timizations are needed in model checkers for real-time pro-
grams. As the scheduling is more deterministic than for non-
realtime, it is a crude waste of time and memory to store
a new state of the program at every scheduling-relevant in-
struction, including accesses to shared fields. States should
only be created at choice points that actually include at
least two possible schedules. Note that in non-realtime con-
current programs, this would hardly have been an issue, as
all runnable threads compete for the processor at all times.
Also, the notion of time in the model checker, which has
to be added for checking of real-time programs, requires a
new view on state matching. Making the current time (or
time estimate) part of the program state would hardly ever
render two states equal. Excluding it completely, as done by
Java PathFinder, is incorrect as it only allows to traverse a
part of program state space. We discovered this problem in
this work, but we have not solved it. We just disabled state
matching in RSJ to get correct results.
The most significant limitation of RSJ with respect to sup-

port of SCJ API is the lack of support for aperiodic event
handlers. While this could in theory be fixed in the present
explicit-state solution, such a fix would inevitably lead to
state space explosion. A good solution which we do not pro-
vide in this work could be based on symmetry reductions or
abstractions computed using static analysis.

Acknowledgments

This work was partially supported by the Ministry of Edu-
cation of the Czech Republic grant MSM0021620838.

7. REFERENCES
[1] Java Path Finder.

http://babelfish.arc.nasa.gov/trac/jpf/, 2010.

[2] Paparazzi: The free autopilot.
http://paparazzi.enac.fr/, 2010.

[3] Walter Binder, Martin Schoeberl, Philippe Moret, and
Alex Villazon. Cross-profiling for Java processors.
Soft. Pract. Exp., 39/18, 2009.

[4] Greg Bollella, James Gosling, Benjamin Brosgol, Peter
Dibble, Steve Furr, and Mark Turnbull. The
Real-Time Specification for Java. Addison-Wesley,
2000.

[5] Chandrasekhar Boyapati, Alexandru Salcianu,
William Beebee, Jr., and Martin Rinard. Ownership
types for safe region-based memory management in
real-time java. SIGPLAN Not., 38(5), 2003.

[6] S. R. Chidamber and C. F. Kemerer. A metrics suite
for object oriented design. IEEE Trans. Soft. Eng.,
20(6), 1994.

[7] EUROCAE ED-12B software considerations in
airborne systems and equipment certification, 1992.

[8] Patrice Godefroid. Model checking for programming
languages usingVeriSoft. In Proceedings of the 24th
ACM SIGPLAN-SIGACT symposium on Principles of
programming languages (POPL), 1997.

[9] Trevor Harmon. Interactive Worst-case Execution
Time Analysis of Hard Real-time Systems. PhD thesis,
University of California, Irvine, 2009.

[10] Thomas Henties, James Hunt, Doug Locke, Kelvin
Nilsen, Martin Schoeberl, and Jan Vitek. Java for
safety-critical applications. In Certification of
Safety-Critical Software Controlled Systems
(SafeCert), 2009.

[11] Ranjit Jhala and Rupak Majumdar. Software model
checking. ACM Comput. Surv., 41(4), 2009.

[12] Tomas Kalibera, Jeff Hagelberg, Filip Pizlo, Ales
Plsek, Ben Titzer, and Jan Vitek. CDx: A family of
real-time Java benchmarks. In Proceedings of the
International Workshop on Java Technologies for
Real-time and Embedded Systems (JTRES), 2009.

[13] Tomas Kalibera, Pavel Parizek, Ghaith Haddad,
Gary T. Leavens, and Jan Vitek. Challenge
benchmarks for verification of real-time programs. In
Proceedings of the 4th ACM SIGPLAN workshop on
Programming languages meets program verification
(PLPV), 2010.

[14] Kim Guldstrand Larsen, Paul Pettersson, and Wang
Yi. Uppaal in a nutshell. STTT, 1(1-2), 1997.

[15] Gary Lindstrom, Peter C. Mehlitz, and Willem Visser.
Model checking real time Java using Java PathFinder.
In Proceedings of Automated Technology for
Verification and Analysis, Third International
Symposium (ATVA), 2005.

[16] Madanlal Musuvathi, David Y. W. Park, Andy Chou,
Dawson R. Engler, and David L. Dill. CMC: a
pragmatic approach to model checking real code.

SIGOPS Oper. Syst. Rev., 36(SI), 2002.

[17] Madanlal Musuvathi and Shaz Qadeer. Iterative
context bounding for systematic testing of
multithreaded programs. SIGPLAN Not., 42(6), 2007.

[18] Fadia Nemer, Hugues Cassé, Pascal Sainrat, Jean Paul
Bahsoun, and Marianne De Michiel. Papabench: a free

real-time benchmark. In Proceedings of 6th
International Workshop on Worst-Case Execution
Time Analysis (WCET), 2006.

[19] Pavel Parizek, Tomas Kalibera, and Jan Vitek. Model
checking real-time Java. Technical Report 1, Dept. of
Distributed and Dependable System, Charles
University, http:
//d3s.mff.cuni.cz/publications/rtJavaChecking.pdf,
2010.

[20] Software considerations in airborne systems and
equipment certification, 1992.

[21] Martin Schoeberl. A time predictable instruction
cache for a Java processor. In Proceedings of the
International Workshop on Java Technologies for
Real-Time and Embedded Systems (JTRES), 2004.

[22] Martin Schoeberl. Evaluation of a Java processor. In
Tagungsband Austrochip 2005, Vienna, Austria, 2005.

[23] Martin Schoeberl. Application experiences with a
real-time Java processor. In Proceedings of the 17th
IFAC World Congress, 2008.

[24] Martin Schoeberl. A Java processor architecture for
embedded real-time systems. J. Sys. Arch., 54/1–2,
2008.

[25] Martin Schoeberl, Thomas B. Preusser, and Sascha
Uhrig. The embedded Java benchmark suite
JemBench. In Proceedings of the International
Workshop on Java Technologies for Real-time and
Embedded Systems (JTRES), 2010.

[26] Martin Schoeberl, Wolfgang Puffitsch, Rasmus Ulslev
Pedersen, and Benedikt Huber. Worst-case execution
time analysis for a Java processor. Soft. Pract. Exp.,
40/6, 2010.

[27] D. D. Spinellis. ckjm - A Tool for Calculating
Chidamber and Kemerer Java Metrics.
http://gromit.iiar.pwr.wroc.pl/p inf/ckjm/, 2009.

[28] Stavros Tripakis and Costas Courcoubetis. Extending
Promela and Spin for real time. In Proceedings of the
Second International Workshop on Tools and
Algorithms for Construction and Analysis of Systems
(TACAS), 1996.

[29] Willem Visser, Klaus Havelund, Guillaume P. Brat,
Seungjoon Park, and Flavio Lerda. Model checking
programs. Autom. Softw. Eng., 10(2), 2003.

[30] Sergio Yovine. Kronos: A verification tool for
real-time systems. STTT, 1(1-2):123–133, 1997.

[31] Tian Zhao, James Noble, and Jan Vitek. Scoped types
for real-time java. In Proceedings of the 25th IEEE
International Real-Time Systems Symposium (RTSS),
2004.

