
Extracting Properties from Test Cases by Refactoring

Huiqing Li, Simon Thompson
School of Computing

University of Kent, UK
{H.Li,S.J.Thompson}@kent.ac.uk

Thomas Arts
Chalmers University / Quviq AB

Göteborg, Sweden
thomas.arts@chalmers.se

Abstract—A QuickCheck property is a logical statement of
aspects of the behaviour of a system. We report on how similar
test cases in a test suite written in Erlang can be identified and
then refactored into properties, giving a generalisation of the
specification implicit in the test suite. Properties give more
concise, easier to maintain test suites and better test cover-
age. A preliminary evaluation of the techniques in industry
demonstrates feasibility as well as potential benefits.

Keywords-property-based testing; test cases; refactoring;
We show how the clone detection functionality and refac-
torings implemented in the Wrangler refactoring tool for
Erlang can be used to identify similar test cases in a test
suite, and then to refactor them into QuickCheck properties.
Although we describe the process for Erlang / Wrangler /
Quviq QuickCheck, the same process is applicable to any
programming language, or test language like TTCN-3.

The benefit of this transformation is that the property
generalises the set of test cases, resulting in higher-level test
code that is easier to understand and maintain. Properties can
be tested on a wider set of values than the original tests, thus
improving test coverage.

In the paper we first present the background to the work,
and follow this by describing how properties are extracted,
and show how we evaluated the techniques in practice.
Finally we draw some conclusions and outline future work.

I. BACKGROUND

Erlang [1] is a strict, dynamically typed functional pro-
gramming language with support for concurrency, distribu-
tion and fault-tolerance. Wrangler [2] is an interactive tool
for refactoring Erlang programs, which not only supports a
collection of standard refactorings, but also has facilities to
detect and eliminate code clones and to improve the module
structure of projects.

There are a number of test frameworks for Erlang, includ-
ing Common Test [3], EUnit [4], and Quviq QuickCheck [5].
The first two are based on writing test suites, which consist
of collections of unit tests. In general, the size of a test suite
grows when test cases are added. Test cases tend to have a
high rate of code duplication, which is typically the result of
a sequence of copy, paste and modify actions (cf. [6]). The
clone detection and refactoring capabilities of Wrangler can
be used to remove a number of testing ‘bad smells’ and also
to introduce common testing patterns, e.g. Shared Fixture.

QuickCheck is a property-based, random testing tool.
QuickCheck testing involves the specification of properties,
which are typically universally qualified; it runs automati-
cally generated test cases and examines whether the software
satisfies the specified property at these values. Properties are
more general and more compact than unit tests. For example,
a property of the list reverse function rev is that reversing
a list of integers twice gives the original list:

prop_rev() ->
?FORALL(Xs, list(int()), rev(rev(Xs))==Xs).

In prop_rev the functions int and list are QuickCheck
generators: int generates random integers, and list gen-
erates a list of elements generated by its argument. The
macro ?FORALL binds Xs to a generated value. The ex-
ample property is said to hold if it holds for all the values
of Xs generated by list(int()).

Wrangler’s ‘similar’ code detection is based on the no-
tion of anti-unification [7] to detect code clones in Erlang
programs; it also has a mechanism for automatic clone
elimination under the user’s control. The anti-unifier of
two terms denotes their least-general common abstraction,
and we say that two expression sequences, A and B, are
similar if there exists a ‘non-trivial’ least-general common
abstraction, C, and two substitutions which take C to A and
B respectively. By ‘non-trivial’ we mean that the size of
the least-general common abstraction should satisfy some
threshold relative to the clone instances. To eliminate a
clone, we define a function whose body is the anti-unifier:
each instance is given by transforming the substitution into
the actual parameter list. More details are reported in [8].

II. FROM TEST CASES TO PROPERTIES

With Wrangler, the approach to combining test cases into
QuickCheck properties follows these steps:
• Apply Wrangler’s similar code detection functionality to

the test suite. The clone detector reports clone classes,
each a set of code fragments in which any two of them
are similar to each other. For each clone class, the clone
detector also reports the least-general common abstraction
of its clone instances, in the format of a new functions.

• Identify a clone class which consists of complete test
cases, copy and paste the least-general common abstrac-



tion function of that clone class into the test suite module,
then rename the function, and apply the fold expression
against function refactoring to this function. This refac-
toring replaces instances of a function body by a call to
that function: in this case the newly introduced function.

• Apply Wrangler’s test case to property refactoring to
the least-general common abstraction function. This refac-
toring searches for all the application instances of this
function, and collects the actual parameters. The actual
parameters collected are then analysed for dependency
between parameters, and transformed into QuickCheck
data generators; the function itself is wrapped up, if
necessary, as an assertion. A QuickCheck property is
then generated by combining the data generator and the
property using the QuickCheck macro ?FORALL.

III. A CASE STUDY

We evaluated our techniques, among others, with a test
suite from Ericsson. This test suite is written in the Er-
lang Common Test framework. It has 2228 lines of code,
containing 4 groups of test cases, and 30 test cases in
total. Applying Wrangler’s clone detection to this module,
it reports that 15 out of the 30 test cases are clones. Apart
from those clones that consists of complete test cases, there
are also clones that only cover part of a test case. As a
concrete example, the clone report says that there are 3
test cases, named create_2, create_3 and create_4
respectively, are clones to each other, and their least-general
common abstraction generated by Wrangler, after variable
and function renaming, is:

create_234(Media, StreamType, Codec) ->
... some code elided here ...

SidLc = {mux_id_1, Media},
CreateData =
#brchMuxLcAccess{sid = SidLc,

stream_type = StreamType,
local_data = LocalData,
codec = Codec,
event_module = iptermCb},

... some code elided here ...
?RESULT("DONE",[]).

where the instances of the parameters are emboldened.
The function create_234_gen is the test data genera-

tor extracted from the calls to function create_234 after
applying the folding refactoring to it:

create_234_gen() -> oneof([
{audio_id_1,?BRCH_AUDIO,
{?AMR,{?R_122,?BRCH_DISABLED,?BRCH_DISABLED,

?BRCH_BIT},33,44,40}},
{audio_id_1,?BRCH_AUDIO,
{?G723_1,{?R_53,?BRCH_DISABLED},33,44,40}},
{video_id_1,?BRCH_VIDEO,
{?H264,?BRCH_NO_OPTION,33,44,40}}]).

In this example oneof is the QuickCheck generator which
randomly chooses an element from a list of generators,

which can be constants as here. Wrangler is also able to
generate data generators that take into account the depen-
dency between the parameters; this aspect of the work is
not covered in this paper due to space constraints.

In this case the property generated is:

create_234_prop() ->
?FORALL({Media, StreamType, Codec},

create_234_gen(),
create_234(Media, StreamType, Codec)).

Through this transformation, we are able to combine 3 test
cases into one property, and the user can now extend the
generator to test more cases easily.

As a final step we are able in some cases to generalise the
generator, so that a finite choice is generalised to an infinite
one, as we might generalise oneof applied to a finite set
of integer lists to the generator list(int()).

IV. CONCLUSIONS AND FUTURE WORK

We implemented this for Erlang and related systems, but
the approach we have outlined is generic, and can equally
well be applied to other languages, such as C and TTCN-3.

We aim to carry out further case studies to evaluate and
to study the practical applicability of the approach. The
current implementation reports cloned test cases, but the
user needs to apply refactorings to generate QuickCheck
properties and then examine them. We intend to extend
Wrangler so that it can generate the QuickCheck properties
and generalisations automatically after a clone detection.
The user then only needs to examine the report, and accept
or reject the suggestions.

This research is supported by EU FP7 project ProTest,
grant number 215868, http://www.protest-project.eu/.

REFERENCES

[1] F. Cesarini and S. Thompson, Erlang Programming. O’Reilly
Media, Inc., 2009.

[2] H. Li, S. Thompson et al., “Refactoring with Wrangler,
updated,” in ACM SIGPLAN Erlang Workshop 2008, 2008,
available from www.cs.kent.ac.uk/projects/wrangler/.

[3] http://www.erlang.org/doc/apps/common test/index.html.

[4] Mickal Rémond, Richard Carlsson, “EUnit,” http://svn.
process-one.net/contribs/trunk/eunit.

[5] T. Arts et al., “Testing Telecoms Software with Quviq
QuickCheck,” in ACM SIGPLAN Erlang Workshop 2006, 2006.

[6] H. Li et al., “Improving your Test Code with Wrangler,” School
of Computing, Univ. of Kent, Tech. Rep. 4-09, 2009.

[7] G. D. Plotkin, “A Note on Inductive Generalization,” Machine
Intelligence, vol. 5, 1970.

[8] H. Li and S. Thompson, “Similar Code Detection and Elimi-
nation for Erlang Programs,” in PADL 2010, 2010.

http://www.protest-project.eu/
www.cs.kent.ac.uk/projects/wrangler/
http://www.erlang.org/doc/apps/common_test/index.html
http://svn.process-one.net/contribs/trunk/eunit
http://svn.process-one.net/contribs/trunk/eunit

	Background
	From Test Cases to Properties
	A Case Study
	Conclusions and Future work
	References

