
SketchSet: Creating Euler Diagrams using Pen or
Mouse

Mengdi Wang, Beryl Plimmer, Paul Schmieder
University of Auckland, NZ

{mwan071,bpli001,psch068}@ec.auckland.ac.nz

Gem Stapleton
University of Brighton, UK
g.e.stapleton@brighton.ac.uk

Peter Rodgers
University of Kent, UK
p.j.rodgers@kent.ac.uk

Aidan Delaney
University of Brighton, UK
a.j.delaney@brighton.ac.uk

Abstract—Euler diagrams form the basis of various visual
languages but tool support for creating them is generally limited
to generic diagram editing software using mouse and keyboard
interaction. A more natural and convenient mode of entry is
via a sketching interface which facilitates greater cognitive focus
on the task of diagram creation. Previous work has developed
sketching interfaces for Euler diagrams drawn with ellipses.
This paper presents SketchSet, the first sketch tool for Euler
diagrams whose curves can be circles, ellipses, or arbitrary
shapes. SketchSet allows the creation of formal diagrams via
point and click interaction. The user drawn diagram, in sketched
or formal format, is automatically converted to a diagram in
the other format, thus maintaining both views. We provide a
mechanism that allows semantic differences between the sketch
and the formal diagram to be rectified automatically. Finally, we
present a user study that evaluates the effectiveness of the tool.

I. INTRODUCTION

Euler diagrams [5], a popular and widely used tool, are
collections of labelled closed curves used to visualize rela-
tionships between sets, generalizing Venn diagrams [24]. They
intuitively represent exclusion, containment and intersection of
sets. An example is in Fig. 1, which shows a categorization
of countries in the British Isles. The varied application areas

Fig. 1. The British Isles [11].

of Euler diagrams include, for example: crime control [6],
computer file organization [3], classification systems [23], edu-
cation [12], genetics [15], and medicine [20]. In addition, they

Fig. 2. A sketch and its formal version.

form a component of many visual languages, such as spider di-
agrams [9], Euler/Venn diagrams [22], Venn-II diagrams [19],
constraint diagrams [14], and concept diagrams [10], [16].

Given their wide-ranging practical use, there is a need to
provide convenient ways of creating these diagrams in elec-
tronic form. Ideally, the software in which they are created will
have some understanding of the diagram semantics, so it can
further support the user in exploring the information conveyed.
Currently, however, the manual creation of Euler diagrams
in electronic form relies on unintuitive mouse and keyboard
interfaces in software that has no semantic understanding of
the diagram; typically, diagram creation relies on operations,
such as pointing, clicking and dragging shapes on to the
screen, for which the user needs to understand how to use
the software.

A natural creation method for general Euler diagrams is
using a pen, but no intelligent tool support exists for this mode
of entry; currently, the only sketching support restricts Euler
diagrams to those drawn with circles and ellipses [4]. The lack
of fully developed sketching support for Euler diagrams means
that, in the vast majority of cases, when using a computer
they must be drawn in off-the-shelf diagram editing tools.
The current editing support does not provide a natural and
convenient interface because the point-by-point specification
of the diagrams’ curves is slow (compared to sketching) and
the act of sketching is simple in comparison to using a diagram
editor, such as those found in Microsoft’s Word or Visio
packages.

2011 IEEE Symposium on Visual Languages and Human-Centric Computing

978-1-4577-1247-0/11/$26.00 ©2011 IEEE 75

Sketching the diagram is advantageous in that it allows
the user to focus on the actual diagram creation rather than
the interface of the editing tools, and it is a useful problem
solving and communications technique [8]. In a sketching
context, users can produce, evaluate, modify, refine and replace
diagram components rapidly. The backtalk from the external
representation of the diagram is considered an essential part
of the cognitive support for design. Hand-drawing diagrams is
more effective for external representation of a problem than
using formal computer diagramming tools [7]. To possess
these benefits, the computer-based sketch tools interaction
must be carefully designed with particular attention to retain-
ing the hand-drawn appearance in the initial stages of the
diagram’s creation [17]. However, people often prefer more
formal visualizations over the sketch [25]. Therefore, tools
should facilitate dual representations and, moreover, allow the
user to interact with both the sketch and formal diagram. A
user-sketched Euler diagram can be seen on the left of Fig. 2
whereas a formal version is placed on the right.

Sketch recognition software developed to date has focused
on user interface design and graph oriented diagrams [13].
With respect to user interface design tools the sketched items
are largely independent of each other. In graph oriented
diagrams the spatial positioning of nodes and edges is not
of semantic significance. By contrast, in Euler diagrams the
spatial relationships between sketched items is fundamental
to their semantics. In particular, it is important to maintain
the relative intersection, containment and disjointness of the
curves. To our knowledge, our work on Euler diagram sketch-
ing is the first to consider these types of complex spatial
relationship for sketch recognition and forms an essential basis
for devising sketching tools for the many notations that extend
Euler diagrams.

When converting a sketch of an Euler diagram to a formal
representation, the curves are smoothed and, possibly, replaced
with standard geometric shapes. This process can inadvertently
alter the semantics. Thus, a sketching tool needs to be able
to extract abstract representations, which capture the formal
semantics, of the sketched and formal visualizations. This
is a highly desirable feature, since it allows the software to
determine, automatically, whether both the sketch and formal
diagram have the same semantics. This permits the correction
of differences, ensuring that the users’ intentions are preserved.

The user interaction features of SketchSet, our Euler dia-
gram sketching software, are described in section II. SketchSet
converts a sketched Euler diagram into a formal visualization
that contains circles, ellipses, arbitrary shaped curves, and
text. In addition, the user can create formal diagrams via
point and click interactions; SketchSet also converts formal
diagrams into pseudo hand-drawn diagrams. The process en-
abling these conversions is described in section III. Section IV
presents an algorithm for extracting an abstract representation
of both sketched and formal Euler diagrams and describes
the techniques that we employ to ensure that both the sketch
and formal visualizations have the same formal semantics. We
have conducted a user study evaluating SketchSet, presented

in section V.
This paper extends [4], which considered Euler diagrams

drawn with circles or ellipses. In particular, we now have: (a)
the inclusion of arbitrary closed curves (blobs), (b) input and
editing in the formal view, (c) production of sketches from for-
mal diagrams, and (d) semantic matching via the computation
of abstract representations. In addition, the usability study is a
novel contribution and it resulted in a number of improvements
to SketchSet’s interaction.

II. EULER DIAGRAM CREATION AND EDITING

SketchSet allows the user to create Euler diagrams in
two ways: via a sketching interface using a stylus or via
a formal diagram interface using more traditional point and
click operations. This tool is an extension of the existing
SketchNode codebase [18]. This section describes the process
of creating a sketch or formal diagram, along with the editing
functionality provided within SketchSet.

In the sketching interface, users create sketches by drawing
as on a piece of paper; Fig. 3 shows a screenshot. A stylus
stroke is immediately rendered on the canvas as digital ink.
On completion of the stroke (stylus up event) it is passed to a
gesture recognizer that we have generated using Rata.SSR [1],
as described in [4]. We note, though, that a new recognizer
was generated since we now allow users to sketch arbitrarily
shaped closed curves, which we call blobs, rather than just
circles and ellipses.

The recognizer result may be one of four classes: the
text class or one of the three curve classes, namely circle,
ellipse or blob. Curves are immediately coloured, with a
colour selected in sequence from a list of 16 colours, and
filled with a lighter shade of the same colour. When text is
entered it is taken to be a label associated with the closest
unlabelled curve and is coloured similarly. This allows the
user to readily check the association made by the software and,
thus, have an opportunity to change the sketch if necessary.
Misclassifications can be corrected by selecting the appropriate
stroke in edit mode and tapping on the button for correct
classification in the left hand panel of the user interface. The
process of label assignment is done on-line, whilst the user
is creating the diagram, and adjustments are made as the
user performs edits. For instance, if a curve is deleted but
its associate label remains then that label may be reassigned
to the next closest curve, or assigned to no curve if every
remaining curve already has a label.

The usual editing functions are supported. In edit mode a
stroke or group of strokes can be selected by tapping on the
stroke or lassoing a group of strokes. The selected strokes
can be moved or resized; when this happens, curve labels are
moved with their curves. In erase mode, strokes are removed
from the diagram. After any editing event, colouring is updated
as appropriate. Progressive undo and redo are available by
tapping the buttons at the top of the window.

The formal interface provides similar functionality to the
sketch interface. Based on experience with SketchNode [18],
care has been taken to design simple interactions that are easy

76

Fig. 3. SketchSet’s sketching interface.

Fig. 4. Rotating in the formal interface.

to perform with a stylus. A single tap on the canvas creates
a circle and opens a textbox for the user to type in the label
which is placed at the top left corner of the circle’s bounding
box. In edit mode, a selected circle can be stretched to form an
ellipse. Also when in edit mode, selected curves can be resized,
moved and rotated as shown in Fig. 4. Erase and undo/redo
are supported.

III. CONVERSION

SketchSet maintains two parallel visualizations of the dia-
gram, sketch and formal, so it must render sketched curves as
formal curves and vice versa. Each part has its own challenges:
when moving from sketch to formal one could inadvertently
change the semantics, and when moving from formal to
sketch one has to ensure that the hand-drawn appearance is

maintained, for example. Of note is that a sketch representation
of design problems has been shown to have advantages for
eliciting self-talk back and feedback from others [7], [8], [25].
In addition, generating a realistic pseudo-sketch is non-trivial.
This section describes the techniques that we have developed
to handle this.

A. Converting Sketch to Formal
We now describe the process by which we convert the

sketched diagrams into formal diagrams. As mentioned in
section II, each stroke is recognized immediately it is drawn.
The strokes are classified into four categories (label, circle,
ellipse, and blob) by the recognizer and the conversion process
depends on the recognition results:

1) If an item is recognised as a label then it is sent to
an off-the-shelf character recogniser and converted to a
formal (type written) label: a formal label is added to
the formal panel with the centre coordinate of the formal
label the same as that of the original stroke.

2) If an item is recognised as a circle or ellipse it is
converted to a formal circle or ellipse, respectively
(section III-A1).

3) If an item is recognised as a blob then it is smoothed
(section III-A2).

1) Converting Sketched Circles and Ellipses: The process
of converting circles is simple: we only need to find the
bounding box of the original stroke and create a circle inside
the bounding box. Although ellipses look similar to circles,
several more steps are necessary [4]. A sketched curve is
represented internally by a sequence of points. We find the
longest chord across the ellipse by taking the two points that
are furthest apart in the internal representation and we then
draw a line segment between them. We can calculate the
rotation, α, of the sketched ellipse formed by this chord and
the x-axis, as in Fig. 5.

α

Fig. 5. Computing the angle of rotation.

minor

axis

major axis

Fig. 6. Computing the minor axis.

Next, we rotate the sketched ellipse by α so that this chord
is parallel to the x-axis. A standard algorithm is then used

77

to find a bounding box of the sketched ellipse, as shown in
Fig. 6. This rectangle is used to create the formal ellipse: the
centre of the ellipse is the centre of the rectangle, the major
axis takes the width of the rectangle, and the minor axis is the
height of the rectangle. Finally, the formal ellipse has rotation
α, the same angle of rotation as the sketched version, shown
in Fig. 5. Furthermore, we attempt to preserve user intent in
this last step, with regard to approximate alignment with the x
and y-axis. If α is within 10 degrees of 0 or 90 degrees then
we round α accordingly to achieve alignment.

2) Converting Blobs: The last conversion process is when
the curve is recognized as a blob. First, smoothing the curve
is achieved by removing many of the points from the internal
representation because, typically, digital ink capture is very
detailed1 and thus includes many unintended wiggles. Only
those points where the difference in the x or y value, as
compared to x or y value respectively of the neighbouring
points, is greater than a given threshold, currently set to 1000
himetric units – a value derived from experiments, are retained.
This results in a smoother curve where sharp changes in
direction are removed without changing the path of the curve
too much. We note that SketchSet is implemented in c#, and
the method GraphicsPath.AddClosedCurve(Point[] point) is
used to automatically generate a smooth cardinal spline curve
that travels through every point in the passed in array. Fig. 7
shows an example of curve smoothing.

Fig. 7. Smoothing blobs.

Fig. 8. Sketched blobs and formal blobs.

Next, the ends of the stroke are joined to form a closed
curve. There are three potential situations: the stroke crosses
itself, there is a gap between the endpoints, or the stroke
overlaps itself without crossing. Fig. 8 shows an example:

1Digital ink capture is much more dense than mouse capture, storing 10
times as many points.

Fig. 9. Determining cases for closing curves.

in the sketch, a crosses itself, b is overlapping, and c has
a gap. If the stroke crosses itself then the ends are trimmed
to the intersection point. When the curve does not cross itself,
to determine which of the other two cases exists we draw
a line between the beginning and end points and another line
between the beginning point and the second point on the curve
(i.e. point 2), as shown in Fig. 9. If α is greater than than 90
degrees, we assume the ends do not overlap and can simply
joint the start and the end point using a line. In the overlapping
case, we draw a normal to the tangent of the sketched curve
at each end point, see Fig. 10. We trim each end point back
to the first point where the other end point’s normal intersects
with the curve. We then simply join the close the curve by
joining the new ends. The formal diagram in Fig. 8 shows the
result of applying these operations to the sketch.

Fig. 10. Closing curves.

B. Converting Formal to Sketch

For this conversion process, we take a user created formal
diagram and produce a visualization that looks as though it was
hand-drawn. The best way that has been found to do this is by
building libraries that contain sketched examples of curves and
hand written examples of each letter [17]. Whenever we need
to create a sketched shape from a formal shape, an example
is taken from the library and resized to the bounding box
of the formal shape. Currently we use a circle library and
a text library. Since, in the formal interface of the software,
ellipses can only be obtained by stretching circles, we stretch
the corresponding stroke as well. The process of converting
a formal diagram in to a sketched visualization can thus be
summarized as:

1) If the user added a label then choose a hand-drawn
label from a library of hand-drawn examples and scale
appropriately.

78

2) If the user drew a circle then choose a hand-drawn
circle from a library of hand-drawn examples and scale
appropriately,

3) If the user drew an ellipse then this was done by
distorting an already drawn circle. Thus, a corresponding
distortion is applied to the hand-drawn circle.

In all cases, the pseudo sketched stroke is placed on the
sketching canvas with the same center coordinates as the
corresponding formal syntax. Fig. 11 shows this process, with
a formal diagram on the left and the conversion to a sketched
version on the right. Here, the ‘sketched’ curves were chosen
from the library, as explained above, and the curve labelled m
was formed by distorting a circle that would have originally
been drawn in the formal interface before the user stretched
it into an ellipse.

Fig. 11. Converting formal to sketch.

IV. ABSTRACT REPRESENTATIONS

A key feature of SketchSet is its ability to compute the
abstract representation of both sketched and formal diagrams,
allowing errors in conversion to be automatically rectified.
In addition, the abstract representation is displayed to the
user, providing feedback pertaining to the diagram semantics,
allowing the user to adjust the sketch if the semantics are not
as intended. This section describes the process by which we
compute the abstract representation and the methods we have
devised to rectify any differences between the sketched and
formal viewpoints.

A. Computing the Abstract Syntax

SketchSet has a semantic understanding of the diagram in
order to support intelligent user interaction, such as editing,
and to ensure correctness of the conversion processes de-
scribed above. Euler diagrams represent sets using curves and
the diagram’s zones completely determine the relationships
between the sets. That is, the zones present correspond to
the semantics. A zone is a region that can be described as
being inside some curves but outside the rest of the curves.
For example, both the sketch and formal diagram in Fig. 12
have seven zones described by a (arising from the zone inside
only the curve labelled a), b, ab, ac, d, ad, and bd. Such a list
of zone descriptors is called an abstract representation.

Our algorithm to compute the abstract representation is as
follows. First we have three lists, called curveList, waitingList
and zoneList. The curve list contains the curves in the diagram.
The waiting list contains regions (for example, the set of
points in the plane contained by a curve). Regions, with their

Fig. 12. A sketch with its formal version.

descriptions, are added to the zone list in order to create the
abstract representation. During the algorithm, the zone list
may contain regions whose descriptions are not part of the
abstract representation but these are removed at the last step;
an example will be given below. We write d(r) to mean the
description of a region, r. The region inside a curve, c, has
description {l} where l is the label of c.

1) Initial Step: Draw a bounding box around the closed
curves, and add the region inside the bounding box to
the waiting list. The description of this region, r∅, is
denoted d(r∅) = ∅.

2) Zone List Creation Step: Take the first item in the
waiting list, say region r1, called the current region, and
the region, say r2, inside the first curve on the curve list.
Add the region r to the end of the waiting list and add
the ordered pair (r, d(r)) to the end of the zone list,
where

r = r1 ∩ r2 and d(r) = d(r1) ∪ d(r2),

provided r contains some points (i.e. is not empty) and
(r, d(r)) is not already on the zone list. Otherwise add
nothing to the waiting list or the zone list. Iterate through
the curve list until all curves have been considered.
Remove the first item from the waiting list. Repeat step
2 until the waiting list is empty.

3) Zone List Refinement Step: Iterate through each item in
the zone list. For each (ri, d(ri)), find the set of curves,
C that do not have labels in d(ri), and form the region,
rC , that is their union. If ri ⊆ rC , then remove (ri, d(ri))
from the zone list.

4) Abstract Representation Extraction Step: Take the zone
list and for each pair, (r, d(r)), in the list the description
d(r) is in the abstract representation.

To illustrate, we will run through the first steps of computing
the abstract representation of the sketch in Fig. 12. We have
curveList = (a, b, c, d) (blurring the distinction between the
curves and their labels). Denote the region inside the bounding
box of the sketch by r∅, which is placed on waitingList,
and denote the region inside each curve by ra, rb, rc and rd
respectively. For the first iteration, we take r∅ (since this is the
only item on the waiting list), and intersect it with ra (since
a is the first curve in the curve list), then rb and so forth,
removing r∅ from the waiting list. At this point we have

waitingList = (ra, rb, rc, rd)

zoneList =
(
(ra, {a}), (rb, {b}), (rc, {c}), (rd, {d})

)
.

79

For the second iteration, take ra from the waiting list and form
intersections by proceeding through the curve list again. First,
we encounter a, but ra ∩ ra = ra and (ra, {a}) is already
on the zone list, so nothing is added to the waiting list or the
zone list. Next, we encounter curve b, and ra∩rb = rab is not
empty and has description {a, b}. So, we add (rab, {a, b}) to
the end of the zone list and rab to the end of the waiting list.
After iterating through all of the curves we have:

waitingList = (rb, rc, rd, rab, rac, rad)

zoneList =
(
(ra, {a}), (rb, {b}), (rc, {c}), (rd, {d}),
(rab, {a, b}), (rac, {a, c}), (rad, {a, d})

)
.

After the next full iteration, where the current region is rb, we
add only rbd to the waiting list and (rbd, {b, d}) to the zone list.
Continuing through the algorithm there are no further changes
to the zone list and step 2 terminates with:

zoneList =
(
(ra, {a}), (rb, {b}), (rc, {c}), (rd, {d}),
(rab, {a, b}), (rac, {a, c}), (rad, {a, d}),
(rbd, {b, d})

)
.

After iterating through the zone list, at step 3, exactly one of
the pairs, namely (rc, {c}), is ‘covered’ by a region, rC , that
is inside curves, namely ra and rb, whose labels are not in
{c} (since the region rc is completely contained by ra ∪ rb).
Thus, the final zone list tells us that the abstract representation
is

{a}, {b}, {d}, {a, b}, {a, c}, {a, d}, {b, d}.

Theorem 1. Let d be a formal Euler diagram. Then the
algorithm to compute the abstract representation of d cor-
rectly produces the abstract representation of d. That is, the
descriptions of the zones in d are precisely those in the abstract
representation.

Proof Sketch: The idea behind the algorithm is that
the zone list creation step essentially starts by forming the
regions inside each curve (i.e. a region inside one curve) by
intersecting these regions with the bounding box. The second
step forms regions that are inside two curves, by intersecting
each region at the first step with the regions inside each
of the other curves; this creates regions inside two curves.
As the iteration proceeds, at the nth step, we create regions
inside n curves. Clearly, this process will create at least as
many regions as there are zones. Moreover, any region whose
description does not correspond to a zone will be ‘covered’
by other regions and, thus, removed at step 3. The abstract
representation extracted at step 4 correctly describes the zones
in the diagram.

The above theorem cannot immediately be stated for
sketched Euler diagrams since the user may not have closed
all of the curves. This means that the software has to auto-
matically close the curves before it is meaningful to talk of
the sketch’s zones. However, after any necessary curve closure
has taken place the algorithm correctly produces the abstract
representation of the adjusted sketch.

Concerning computational complexity we observe:

(a) Step 2 iterates through the curve list, creating regions.
An upper bound on the number of steps taken here is
|C| × 2|C| × 2|C| where C is the set of curves in the
diagram (2|C| is the largest number of zones that can be
present).

(b) Step 3 compares each item, (r, d(r)), in the zone list,
of which there are potentially 2|C|, computes the curves
whose labels are not in d(r), of which there are at most
|C|, and then compares regions giving an upper bound
of |C|2 × 2|C| comparisons.

(c) Step 4 runs through the zone list, discarding all infor-
mation about regions and, therefore, has at most 2|C|

steps.

Thus, the overall complexity is O(|C|2 × 2|C|).
Our algorithm can generate the abstract description of any

Euler diagram, including those that possess the properties of
concurrency, triple points, non-simple curves and disconnected
zones. Hence, it improves on existing work that was limited to
so-called well-formed Euler diagrams which do not allow any
of these properties to be present [2]. The algorithm in [2], as
with our algorithm, has a time complexity that is exponential
in the number of curves. This is because the running time of
both is dependent on the number of zones, and the maximum
number of zones for a set of curves, C, is 2|C|. In most cases
the number of zones is significantly smaller than the maximum
2|C|, meaning that in practice our algorithm often runs quickly.

B. Rectification of Differences

The zones in both the sketch and formal visualizations are
recalculated after any change to a diagram. This allows us
to check that the conversions have resulted in semantically
matching diagrams. Emiprically, we have found no cases
where formal diagrams converted to sketch do not have
matching abstract representations. The most likely occurrence
of a mismatch, converting a sketch to formal, is when a
curve that has been converted to an ellipse or circle should
be converted to a smoothed blob. Therefore, if there is a
difference in abstract representations, we convert the most
recently drawn circle or ellipse to a blob and check whether the
zones match. If they still do not match then we iterate through
the curves affected by the zone error, progressively converting
them to blobs and rechecking the zones. If the error is not
corrected when all relevant curves are blobs an error message
is displayed on the interface, alerting the user of the difference.
Fig. 13 shows an example that can be automatically rectified
by this process.

Fig. 13. Differences.

80

V. USER STUDY

To assess the usability of SketchSet we conducted a task
based usability study. For each task, participants were asked
to draw diagrams. The first two tasks asked them to create
diagrams in the sketch and formal interface respectively. They
were then asked to switch between the sketched and formal
views and the final task allowed them to choose which view
they used. Usability information was gathered from researcher
observation and a questionnaire. In this section we first
describe the details of the study methodology and then the
results.

A. Methodology

The twelve participants (8 M, 4 F) aged between 25 and 30
had a varied background including: computer science graduate
students (6), information systems students (2). Three had oc-
casionally used pen-based interfaces, all had basic knowledge
of set diagrams, but not necessarily Euler diagrams. Each
participant undertook the study individually and we captured
the screen activity for later review. As our goal is an excellent
user experience, we planned to observe enough participants
to show any major flaws, fix these and then continue with
the study. The study started with the researcher showing the
participant how to create and edit diagrams in both views.

Fig. 14. Examples used in the study.

Participants were then asked to familiarize themselves with
the tool by creating a very small diagram in each view. For the
initial part of the study, they were then asked to reproduce the
diagrams in Fig. 14. The information for each diagram was
presented to the participant in multiple steps. They were asked
to create, delete, move the curves in a specific order and, in
the formal view, to stretch a circle to an ellipse and rotate it.
Each instruction was accompanied by a screenshot showing
the required diagram. To minimize potential bias caused by
the order of tasks, half the participants were asked to create
a sketched diagram first followed by a formal diagram; the
other half did this in reverse order. Next, participants created
a diagram by switching between the views and finally they
created a diagram in whichever mode they wished with only

textual instructions provided. After the tasks were completed
the participants filled in a qualitative questionnaire.

B. Results

After seven participants completed the tasks we reviewed
the results and made a number of refinements to the in-
terfaces and then continued with the last five participants.
The refinements after the first participants were as follows.
In both views we noticed people expected the mode buttons
for drawing, editing and deleting to be in a different order.
Therefore we reordered these to, from top to bottom: draw,
edit, delete instead of edit, delete, draw. SketchSet’s question
about whether to save the diagram when the new diagram
button was clicked was confusing, so we reworded it. Also,
participants expected SketchSet to be initially in draw mode
when a new diagram was started rather than the mode they
were last in, this too was changed. In edit mode labels and
curves are moved together - at times participants wanted to
move the label separately. We have changed this so that when
the curve is moved its label is also moved, but the label can be
moved without its curve - in which case it may be disconnected
from the current curve and reconnected to a different curve
depending on the distance from the curves.

In sketch view, labels are attached to the nearest curve so
long as that distance is less than a predefined value. For some
participants this distance was too short. However, making it
too large could mean that if the label is created before the
to-be-labelled curve then it may incorrectly be attached to an
existing curve, so we have increased the predefined distance
by 1.5 times. In formal view, rotation and moving of curves
was done by clicking - several participants tried to drag the
icons, so we have added drag functionality.

After these modifications we recommenced the user study
with another five participants. The modifications had the
desired effect with users having fewer problems with these
functions and no other major issues were identified. We do
note that when changing modes some participants try to
interact as if they were in the other mode but quickly realize
that a different interaction is required. This has also been
observed in SketchNode [18], and is a consequence of these
dual visualization interfaces.

The questionnaire asked participants to rate the software on
a scale of 1 to 5, with 5 being the best rating, on a variety
of features. The responses for all twelve participants were
very positive, with all participants rating the software 4 or
5 on time to complete tasks (m 4.92, sd 0.29) and all but
one (where the software crashed) rating it 4 or 5 for ease
of use (m 4.58 sd 0.67). Notably, the last 5 participants all
rated these categories as 5. Conversion between visualization
was accurate for most participants with a mean score of 4.50,
sd 0.90. We also asked their preferred interface for each of
drawing, editing and visualizing the diagrams. There seems to
be some relationship between the interface they used first and
their preference for drawing: all those who used the sketch
interface first preferred that, while those that used the formal
first were equally split between sketch and formal. For editing,

81

there was no such pattern with 5 having no preference, 5
preferring formal, and 2 preferring sketch. The visualization
was similar: 5 preferred formal, while sketch and no preference
were 4 and 3 respectively. This contradicts [25] where users
showed a clear preference for the more formal visualizations.

C. Recognition Rate

During the usability study, the participants drew 312 strokes,
of which 156 were labels, 40 were circles, 64 were ellipses
and 52 were blobs. We calculated the recognition rates at
two levels. First, and most importantly, when determining
whether a stroke was a label or a curve, the recogniser was
100% accurate. Labels were then classified by the Microsoft
character recogniser, which was 98.71% accurate (i.e. 2 errors
out of 156). The success rates for the curves were as follows:

1) Circles: 39 out of 40, 96.15% accurate (one was recog-
nised as an ellipse).

2) Ellipses: 64 out of 64, 100% accurate.
3) Blobs: 50 out of 52, 96.15% accurate (2 were recognised

as ellipses).

VI. DISCUSSION AND CONCLUSION

This paper presents the first tool, SketchSet, that supports
users in the creation of both sketched and formal Euler
diagrams. The user study allowed us to make improvements
to SketchSet, as described in the previous section. Of note
is that SketchSet provides sophisticated checking to detect
(unwanted) semantic differences between the sketched and
formal views. To provide this functionality, we devised a
general algorithm to compute an abstract representation of
sketches and formal diagrams, extending the previous state-
of-the-art which was limited to so-called well-formed Euler
diagrams. We have used this ability to compute the abstract
representation in order to correct semantically significant dif-
ferences that may arise in the process of converting a sketch
to a formal diagram. Of significance is that our work on Euler
diagram sketching is the first in the area that takes into account
complex spatial relationships between syntactic components
(such as curve containment or partial overlap).

There are numerous notations that extend Euler diagrams,
as described in the introduction, for which the provision of
sketching interfaces would be beneficial to users. Of particular
interest to us are concept diagrams [10] which are rich enough
to specify complex information involving binary relations and
quantification over both sets and their elements. The syntax of
these diagrams extends Euler diagrams by augmenting them
with graphs, arrows, shading, logical operators and quantifiers,
as well as rectangles and other items. A simple example can
be seen in Fig. 15, which includes some of the extra syntax
used in concept diagrams. Extending our foundational work on
Euler diagrams to notations such as this will be challenging.

ACKNOWLEDGEMENT

This research is supported by EPSRC grant EP/H048480/1
and a Royal Society of New Zealand Marsden Grant.

drives
m

man van

whiteThing

m
whiteVanMan Û

Fig. 15. A concept diagram.

REFERENCES

[1] S. Chang, B. Plimmer, R. Blagojevic. Rata.ssr: Data mining for pertinent
stroke recognizers. In Sketch Based Interface Modeling. ACM, 2010.

[2] G. Cordasco, R. De Chiara, A. Fish. Interactive Visual Classification with
Euler Diagrams In IEEE Symposium on Visual Languages and Human-
Centric Computing, pp 185-192. IEEE, 2009.

[3] R. De Chiara, U. Erra, V. Scarano. VennFS: A Venn diagram file manager.
In Information Visualisation, pp 120–126. IEEE, 2003.

[4] A. Delaney, B. Plimmer, G. Stapleton, P. Rodgers. Recognising sketches
of Euler diagrams drawn with ellipses. In Visual Languages and
Computing, pp 305–310. Knowledge Systems Institute, 2010.

[5] L. Euler. Lettres à une Princesse d’Allemagne sur divers sujets de
physique et de philosophie. Letters, 2:102–108, 1775.

[6] G. Farrell, W. Sousa. Repeat victimization and hot spots: The overlap and
its implication for crime control and problem-oriented policing. Crime
Prevention Studies, 12:221–240, 2001.

[7] V. Goel. Sketches of thought. MIT Press, 1995.
[8] G. Goldschmidt. Visual and Spatial Reasoning in Design, chapter The

Backtalk of Self-Generated Sketches, pp 163–184. University of Sydney,
1999.

[9] J. Howse, F. Molina, J. Taylor, S. Kent, and J. Gil. Spider diagrams:
A diagrammatic reasoning system. Journal of Visual Languages and
Computing, 12(3):299–324, 2001.

[10] J. Howse, G. Stapleton, I. Oliver. Visual Reasoning about Ontologies.
International Semantic Web Conference, CEUR volume 658, pages 5-8,
2010

[11] S. Hughes. The Great British Venn diagram. http://qntm.org/uk,
accessed July 30, 2010.

[12] E. Ip. Visualizing multiple regression. Journal of Statistics Education,
9(1), 2001.

[13] G. Johnson, M. Gross, J. Hong. Computational Support for Sketching
in Design. Now Publisher Inc., 2009.

[14] S. Kent. Constraint diagrams: Visualizing invariants in object oriented
modelling. In Proceedings of OOPSLA97, pp 327–341. ACM, 1997.

[15] H. Kestler, A. Muller, H. Liu, D. Kane, B. Zeeberg, J. Weinstein.
Euler diagrams for visualizing annotated gene expression data. In Euler
Diagrams 2005, 2005.

[16] I. Oliver, J. Howse, G. Stapleton, E. Nuutila, S. Törma. Visualising and
Specifying Ontologies using Diagrammatic Logics. In 5th Australasian
Ontologies Workshop, CRPIT vol. 112, 2009.

[17] B. Plimmer, H. Purchase, H. Laycock. Preserving the hand-drawn
appearance of graphs. In Visual Languages and Computing, pp 347–352,
2009.

[18] B. Plimmer, H. Purchase, H. Yang. Sketchnode: Intelligent sketching
support and formal diagramming. In OZCHI 2010, pp 136–143. ACM,
2010.

[19] S.-J. Shin. The Logical Status of Diagrams. CUP, 1994.
[20] J. Soriano, K. D. B. Coleman, G. Visick, D. Mannino, N. Pride. The

proportional Venn diagram of obstructive lung disease. Chest, 124:474–
481, 2003.

[21] G. Stapleton, J. Masthoff, J. Flower, A. Fish, J. Southern Automated
Theorem Proving in Euler Diagram Systems. Journal of Automated
Reasoning, 39(4):431-470, 2003.

[22] N. Swoboda, G. Allwein. Heterogeneous reasoning with Euler/Venn
diagrams containing named constants and FOL. In Euler Diagrams 2004,
ENTCS. 2005.

[23] J. Thièvre, M. Viaud, A. Verroust-Blondet. Using Euler diagrams in
traditional library environments. In Euler Diagrams 2004,ENTCS, pp
189–202. 2005.

[24] J. Venn. On the diagrammatic and mechanical representation of
propositions and reasonings. Phil.Mag, 1880.

[25] L. Yeung, B. Plimmer, B. Lobb, D. Elliffe. Effect of fidelity in diagram
presentation. In HCI 2008, pp 35–45. BCS, 2008.

82

