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Abstract. Refactoring is the process of changing the design of a pro-
gram without changing what it does. While it is possible to refactor a
program by hand, tool support is considered invaluable as it allows large-
scale refactorings to be performed easily. However, most refactoring tools
are black boxes, supporting a fixed set of ‘core’ refactorings.
This paper reports the framework built into Wrangler – a refactoring
and code inspection tool for Erlang programs – that allows users to de-
fine for themselves refactorings and code inspection functions that suit
their needs. These are defined using a template- and rule-based pro-
gram transformation and analysis API. User-defined refactorings are no
“second-class citizens”: like the existing ones supported by Wrangler,
user-defined refactorings benefit from features such as results preview,
layout preservation, selective refactoring, undo and so on.

Key words: Refactoring, Code inspection, Program analysis, Program trans-
formation, API, Erlang behaviour, Wrangler.

1 Introduction

Refactoring [1] is the process of changing the design of a program without chang-
ing its behaviour. Refactoring tools support large-scale transformations, such as
renaming a function or module, which require changes to all clients of the mod-
ule or function across a project. Automation can guarantee not only that pre-
condition checks are performed exhaustively, but also that the transformation
itself respects the syntax and semantics of the language, thus making refactoring
cheaper to perform (or undo) and also less error-prone.

While various refactoring tools have been developed to support different pro-
gramming languages, most refactoring tools are black boxes, providing support
for a fixed number of ‘core’ refactorings. New refactorings are not implemented
for a number of reasons, including the complexity and cost of implementing a
new refactoring, and the question of how generally applicable a new refactor-
ing will be. This limits the scope of refactorings carried out by programmers in
practice, and thus the opportunity to produce better code.

Wrangler is a refactoring and code inspection tool we have built for Erlang
programs. Instead of being a black box, Wrangler provides a framework that



2 Huiqing Li and Simon Thompson

Erlang/OTP system and libraries

traversal
functions

utility 
functions

Low-level API

template language

transformation rules refactoring 
behaviour

user-defined refactorings and inspections

Fig. 1. The Wrangler API

Program 
source code

Standard 
parser

Syntax toolsAST 
annotation

Refactoring
transform

Program 
renderer

Fig. 2. The Wrangler workflow

allows users easily to define for themselves refactorings, code inspection functions
and general program transformations that suit their needs.

The user-extensibility of Wrangler is achieved by introducing a new high-level
layer – the Wrangler API – on top of the existing low-level API that provides
direct access to the details of the internal representation of Erlang programs.
What does the API need to do to support user-defined refactorings? A number
of different services, as shown in Figure 1, together provide what is needed:

– A refactoring will transform portions of a program, and so we provide a
template language to describe and match portions of programs. The template
language extends the Erlang concrete syntax to include “meta-variables”
that match portions of the program (in fact the program AST).
For example, the template ?T("Mod@:f(Args@@)") will match the applica-
tion of a function named f in any module (the meta-variable Mod@) to any
sequence of arguments (Args@@).

– Building on the template language we need a mechanism of rules to express
the transformations from “old” to “new” program fragments, using the ex-
tended Erlang concrete syntax.

– While each rule describes how to transform the program “locally” – that is
in one place – it is also necessary to describe how the rule is applied across
the tree, and to do this we provide a set of program traversal functions that
direct the application of the rules.

– The templates and traversal functions are also used to gather and collect
the information needed to check the pre-condition of a refactoring before
the transformation is applied.

– A collection of utility functions for various book-keeping tasks, such as ab-
stract syntax tree traversal, retrieval of context information, mapping a tex-
tual selection within a program to its internal representation, etc.

– In order to integrate user-defined refactorings into interactive tools such as
Wrangler in Emacs and Eclipse (ErlIDE) we describe a workflow which refac-
torings should follow. This is made concrete in an interface which each refac-
toring should implement; in Erlang this interface is known as a behaviour.

The main part of the paper is to introduce these features and to illustrate how
they work in action through a series of examples.
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User-defined refactorings that conform to the refactoring workflow (or Erlang
behaviour) can be invoked from the Refactor menu in the IDE, Emacs say, and
benefit from the existing features such as preview of refactoring results, layout
preservation, selective refactoring, undo of refactorings, etc, for free. This allows
a user to develop the refactoring in an iterative, test-driven, style.

A typical use of the API is to assist with API migration functionality. Most
software will evolve during its lifetime, and this will often change the API of
a library. However, API migration is generally not supported by refactoring
tools due to the particularities of each individual API migration, but we can
define these using the API. (It is also possible to script such refactorings using
a domain-specific language for refactorings, reported elsewhere [2]).

The rest of the paper is organised thus. Sections 2 and 3 give brief overviews
of Erlang and Wrangler. In Section 4, we introduce the template- and rule-based
framework for analysis and transformation, and Section 5 explains the generic
refactoring workflow. The work is evaluated in Section 6, and Section 7 covers
related work. Section 8 makes some conclusions and discusses future work.

2 Erlang

Erlang [3] is a strict, impure, dynamically typed functional programming lan-
guage with support for higher-order functions, pattern matching, concurrency,
communication, distribution, fault-tolerance, and dynamic code loading.

An Erlang program typically consists of a number of modules, each of which
defines a collection of functions. Only functions exported explicitly through the
export directive may be called from other modules. Calls to functions defined
in other modules generally qualify the function name with the module name: the
function F from the module M is called as: M:F(...).

-module(fact).

-export([fac/1]).

fac(0) -> 1;

fac(N) when N > 0 ->

N * fac(N-1).

Fig. 3. Factorial in Erlang

Figure 3 shows an Erlang module containing the
definition of the factorial function. In this example,
fac/1 denotes the function fac with arity of 1. In
Erlang, a function name can be defined with differ-
ent arities, and the same function name with differ-
ent arities can represent entirely different functions.

In this paper we use various features of Erlang
that support meta-programming. Many of the oper-
ations we define use Erlang macros, which provide
source-level descriptions of transformations to be
performed in advance of programs being compiled,
and we use these as our principal implementation mechanism.

It is also possible to specify transformations over the parse trees directly.
One of the options accepted by the Erlang compiler is {parse transform,

Module}. If this option is passed to the compiler, the user-defined function
Module:parse transform/2 is called by the compiler and applied to the parsed
code of the current module before the code is further processed. This is used by
Wrangler to achieve template-based program transformation in concrete Erlang
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syntax as discussed in Section 4. Finally, we rely on the syntax tools library
for a standard representation of Erlang abstract syntax in Erlang.

3 Wrangler

Wrangler [4] is an open source tool that supports interactive refactoring and
“code smell” detection for Erlang programs. Wrangler is implemented in Er-
lang, and it is integrated with (X)Emacs as well as with Eclipse through the
ErlIDE plugin. It supports a variety of structural refactorings, including pro-
cess refactorings, as well as a set of “code smell” inspection operations and
facilities to detect and eliminate duplicated code [5]. Wrangler is downloadable
from http://www.github.com/RefactoringTools. An overview of the refac-
toring workflow in Wrangler is shown in Figure 2.

Wrangler uses an Abstract Syntax Tree (AST) as the internal representation
of Erlang programs, as generated by applying the syntax tools library [6] to the
parse tree generated by the Erlang parser. The AST representation generated
is designed so that all the AST nodes have a uniformed structure; building on
this we extend nodes with various annotations such as location, static semantic
information, etc.

A refactoring typically consists of two parts: pre-condition checking and pro-
gram transformation. Both pre–condition checking and program transformation
operate over the AST: during condition checking there is typically a phase in
which information is gathered from across the tree and then collated, the trans-
formations themselves are also typically accomplished by a tree walk.

Wrangler preserves the original layout of the program as much as possible.
In order for users to be able to undertake refactoring in a speculative way as a
part of their software development process, it is important to be able to undo
any transformation. Wrangler also allows the user to preview the changes to be
made by a refactoring, and the user would choose to commit the changes and
finish the refactoring, or abort the changes leaving the original code unchanged.

Wrangler, as an interactive refactoring tool, allows the user to perform what
we term selective refactorings. By this we mean refactorings that involve a sin-
gle clause-local transformation, but may be applicable to multiple places across
the project. An example of this kind of refactoring is to replace the use of
lists:map/2 with a list comprehension. Selective refactoring allows the user
to choose which candidates to refactor, and which not to.

4 Template- and Rule-based Program Transformation

The mechanism we have defined for the user definition of refactorings are covered
in this section. Before we cover the details we explore the rationale for what we
have done in a little more detail.

A typical refactoring consists of two parts: program analysis and program
transformation. In the original design of the system, both program analysis and

http://www.github.com/RefactoringTools
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transformation require detailed knowledge of the AST representation and static
semantic information, and this becomes one of the major barriers that prevent
users from writing their own refactorings, or indeed general transformations.
The template and rule based program analysis and transformation framework
defined in this paper aims to allow Erlang users to express program analyses
and transformations in Erlang concrete syntax, therefore eliminating the need
to understand the details of the underlying AST representation. Refactorings
are implemented in Erlang, which means a user does not need to learn a new
language in order to write Erlang refactorings.

Under our approach program transformations are expressed as conditional
transformation rules, each of which specifies the code template before the trans-
formation, the code after transformation, and the condition for this rule to apply.

The task of program analysis is made easier in two ways. First, each AST
node is annotated with rich context information as a result of the various static
analysis techniques used by Wrangler, so that a user does not have to perform
any complex static analysis. Second, a template-based information collection
technique, together with an API suite, makes it straightforward to extract certain
context information from a code fragment of interest.

Traversal of ASTs is needed in order to apply a transformation rule, or to
collect some information from the program. Through the Wrangler API, a col-
lection of pre-defined AST traversal strategies are provided, each of which serves
a specific purpose. We look at each of these features in turn now.

4.1 Code Templates in Concrete Syntax

In Wrangler, a template is denoted by an Erlang macro ?T whose only argument
is the string representation of a code fragment that may contain meta-variables.

The template code fragment can represent a sequence of expressions, a func-
tion definition, an attribute, or a single function clause. As a convention, a
template representing a function/attribute should always end with a full stop;
whereas a single function clause must end with a semicolon, otherwise it will be
interpreted as a function consisting of a single function clause by default.

A meta-variable is a placeholder for a syntax element in the program, or
a sequence of syntax elements of the same kind. Templates syntactically are
Erlang code, therefore the use of meta-variables in a template must not violate
the syntactic correctness of the code fragment.

Syntactically a meta-variable is an Erlang variable ending with the character
‘@’. A variable not ending with ‘@’ represents an object variable. Three kinds
of meta-variables are supported:

– A meta-variable ending with a single ‘@’ represents a single language element,
and matches a single subtree in the AST. For example, the template

?T("M:F@(1, 2)")

represents a remote function call with a placeholder for the function name.
In this template, variable M is an object variable, and only matches an AST
node representing of a variable of the same name. On the other hand F@ is
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a meta-variable, and will match any node that represents the function name
part of a fully-qualified 1 function call whose module name is M, and whose
arguments are 1 and 2.

– A meta-variable ending with ‘@@’ represents a list meta-variable, which matches
a sequence of elements of the same sort, e.g. a list of arguments of a function
call, a sequence of expressions in a clause body, etc.
For instance, the template erlang:spawn(Arg@@) matches the application
of Erlang built-in function spawn to an arbitrary number of arguments (in
Erlang, the spawn function can take 1, 2, 3, or 4 arguments); whereas the
template erlang:spawn(Args@@, Arg1@, Arg2@) only matches the applica-
tions of function spawn to two or more arguments, where Arg1@ and Arg2@

are placeholders for the last two arguments respectively, and Args@@ is the
placeholder for the remaining leading arguments, if any.

– In Erlang, a function definition consists of one or more clauses, as does a com-
plex expression (case, if, receive). In order to match against an arbitrary
sequence of clauses, we introduce a special kind of meta-variable, which ends
with ‘@@@’. A meta variable ending with ‘@@@’ is mapped to a list, each
element of which is a list of subtrees of the same kind. For example, a case
expression with an arbitrary number of clauses can be matched thus:

?T("case Expr@ of Pats@@@ when Guards@@@ -> Body@@@").

in which Pats@@@ matches the collection of patterns from each clause of the
case expression in the same order; Body@@@ matches the collection of body
expressions from each clause; and Guard@@@ matches the collection of guards.

Meta-atoms. Certain syntax elements in Erlang, such as the function name part
of a function definition, the record name/field in a record expression, etc, can
only be an atom. In order to represent a placeholder for this kind of atom-only
syntax elements, we introduce the notion of meta-atom. A meta-atom acts as
a place holder for a single atom. Syntactically, a meta-atom is an Erlang atom
ending with a single ‘@’. For example, with the use of meta-atom, an arbitrary
function clause can be matched by:

?T("f@(Args@@)when Guard@@-> Body@@;")

where f@ is a placeholder for the function name.
The same meta-variable or meta-atom name can be used multiple times in a

template, in order to specify that two, or more, parts of the matching instance
must be the same in order to match successfully. The only limitation is that
all the location-related information annotated to the matching instance is no
longer valid, and therefore removed from the matching instance bound to the
meta-variable/atom.

4.2 Structural Pattern Matching

Erlang uses powerful pattern matching to bind variables to values. Similarly,
structural pattern matching, with verification of some semantic conditions, is

1 A fully-qualified function call in Erlang uses both the module and function names,
separated by a colon.
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one of the key operations used by Wrangler. Templates are matched at AST
level, that is, the template’s AST is pattern matched to the program’s AST. If
the pattern matching succeeds, the meta-variables and atoms in the template
are bound to AST subtrees. A template consisting of single meta-variable will
match any subtree of an AST.

4.3 Rule-based Conditional Transformation

A rule defines a basic step in the transformation of a program; it involves recog-
nising a program fragment to transform and constructing a new program frag-
ment to replace the old one. In Wrangler, a transformation rule is denoted by a
macro ?RULE with the format of:

?RULE(Template, NewCode, Cond),

where Template is a template representing the kind of code fragment to search
for; Cond is an Erlang expression that evaluates to true or false; and NewCode

is an Erlang expression that returns the new code fragment. Through a parse
transform, all the meta-variables and atoms declared in Template are made
visible to NewCode and Cond, and can therefore be referenced in defining them.

Applying a transformation rule to an AST entails pattern matching the AST
representation of the Template against the AST. If successful, the Cond part of
the rule is then executed. The condition is used to check that certain properties
are satisfied by the bound instances of those meta-variables/atoms. The AST
node is replaced only when the condition evaluation returns true.

The replacement AST node is constructed through the evaluation of NewCode.
While the expression NewCode should evaluate to an AST, the user does not
have to compose it manually; instead the general way is to create the string
representation of the new code fragment, and use the macro ?TO AST to turn the
string into its AST representation. The string representation of the replacement
code could contain meta-variables and atoms, which are replaced with their
bound instances after the string is parsed into AST. All the meta-variables and
atoms bound in Template can be used by NewCode; furthermore, it is also possible
for NewCode to define its own meta-variables to represent AST nodes.

For example, Figure 4 shows the rule to remove the Nth argument from the
application of function M:F/A, in which M represents the module in which the
function is defined, F represents the name of the function, and A represents the
arity of the function. delete is a normal Erlang function that deletes the Nth
element from the list List. fun def info is a Wrangler API function which
takes an AST node as input, returns the MFA information of the node if it is
associated with a function name, and otherwise returns none.

4.4 Support for Program Analysis

Program analysis plays a vital role in refactoring. Very often the program anal-
ysis process needs to collect some syntactic or semantic information from the
AST. This task is supported by Wrangler in two ways. First, information de-
rived from the program by Wrangler is attached to the AST as annotations: we
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rule({M,F,A}, Nth) ->

?RULE(

?T("F@(Args@@)"),

begin

NewAs@@=delete(Nth, Args@@),

?TO_AST("F@(NewAs@@)")

end,

refac_api:fun_def_info(F@)

== {M, F, A}).

delete(Nth, List) ->

lists:sublist(List, Nth-1)++

lists:nthtail(Nth, List).

Fig. 4. Remove the Nth argument

collect({M,F,A}, Nth)->

?COLLECT(

?T("f@(Pars@@)when G@@-> B@@;"),

lists:nth(Nth, Pars@@),

refac_api:fun_def_info(F@)

== {M, F, A}).

Fig. 5. Collect the Nth parameter

?COLLECT(

?T("Body@@, V@=Expr@, V@"),

{_File@,

refac_api:start_end_loc(_This@)},

refac_api:type(V@)==variable andalso

[_]==refac_api:refs(V@)).

Fig. 6. Unnecessary match

provide functions to extract these annotations from the AST. Secondly, infor-
mation available at different nodes can be collected together: our API provides
a macro to support this collection.

Each node in the AST is annotated with rich context information as a result
of the static analysis techniques being applied to the AST. Context information
can be accessed through functions exported by the Wrangler API, including,

– Variables that are visible to the node, declared by the node, as well as vari-
ables that are used, but not declared, by the node. A variable is identified by
the combination of variable name and the location of its binding occurrences
(note that in Erlang a variable can have multiple binding occurrences);

– Source location information of the code fragment represented by the node;
– Syntax context information indicating the syntactic relation between the

node itself and its parent node;
– Syntax category of the node, such as expression, pattern, operator, etc.
– For a node that refers to a function name, information regarding the defini-

tion of the function, e.g. the host module, the function name, arity, etc;.
– Binding and reference locations for a node representing a variable;
– The role played by an atom, i.e. function name, module name, process name,

a literal, etc;
– For a node that represents a process identifier, information regarding how

and where the process is spawned if this information can be inferred.

The macro ?COLLECT is defined to allow information collection from nodes that
match the template specified and satisfy certain conditions; it has the form:

?COLLECT(Template, Collector, Cond),

in which, Template is a template representation of the kind of code fragments
of interest; Cond is an Erlang expression that evaluates to either true or false;
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and Collector is an Erlang expression which returns the information extracted
from the current AST node.

Applying an information collector to an AST node also entails pattern match-
ing Template’s AST to the current AST node. If the pattern matching succeeds,
the meta-variables/atoms in the template are bound to concrete AST nodes,
and the Cond part of the collector is then executed. Information is extracted and
returned if and only if Cond evaluates to true.

The example shown in Figure 5 can be used to collect the Nth parameter of
a function clause that defines function M:F/A. While the template specified in
the collector only pattern matches a single function definition clause, when the
collector is applied together with an AST traversal strategy, it will try to pattern
match every function clause in the AST, as discussed in Section 4.5.

As another example, the macro application shown in Figure 6 collects those
clause bodies with an unnecessary match expression at the end. This collector
returns the location information of those clause bodies found. The condition
part of this collector says that the meta-variable V@ is bound to a variable,
and this variable is only referenced once (not including the binding occurrence).
Two special pre-defined meta-variables are used in this macro application. One
is File@, whose value is the file name of the source code to which the macro
is applied to, or none is no such information is available; and the other one is
This@, whose value is the subtree that pattern matches the template.

4.5 AST Traversal Strategies

Each transformation rule or collection macro is “local” in that it will match par-
ticular sub-trees of an AST; in order for these operations to be applied across a
complete AST it is necessary to use an AST traversal strategy. An AST traversal
strategy walks through (some nodes of) the AST in certain order, and applies
transformation rules to nodes that meet certain conditions or collects some in-
formation from each node visited when program analysis is concerned.

The complexity of the traversal strategy itself depends on the type of the
AST nodes. For nodes that are homogenous, i.e. all nodes have the same type,
traversal of ASTs can be easily achieved. The homogenous representation of AST
nodes in Wrangler and the syntax type information stored in each node allow us
to write generic functions that traverse into subtrees of the AST while treating
most nodes in a uniformed way, but nodes with a specific type in a specific way.

A number of pre-defined AST traversal strategies are provided through the
Wrangler API. Traversal strategies can be distinguished in three particular ways:

– The purpose of the traversal. There are ‘type-unifying’ traversals for collect-
ing information; and ‘type-preserving’ traversals for AST transformation. The
terms ‘type-unifying’ and ‘type-preserving’ are adopted from [7];

– The termination condition for the traversal. There are traversals that visit
all the nodes of the AST, that are cut off below nodes where the conditional
pattern matching succeeds, and traversals that stop after one successful con-
ditional pattern matching;
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– The order in which the AST nodes are visited. There are top-down traver-
sals that first visit the parent node then the children nodes, and bottom-up
traversals that first visit the children nodes then the parent node.

In Wrangler, a traversal strategy macro is named to reflect the three aspects
above. For example, the traversal strategy FULL TD TU means that the AST is
to be traversed in a top-down order, all the nodes in the AST will be visited,
and the traversal will return the information collected.

A traversal strategy macro takes two arguments. The first is a collection of
transformation rules or a collection of information collectors, and the second
specifies the scope to which the transformation or analysis is to be applied.

When more than one transformation rule is supplied to a ‘type-preserving’
AST traversal strategy, the order of the rules matters: for each AST node, the
traversal strategy starts with the first rule, and once a rule has been success-
fully applied, the rules following it will not be tried for this node. This feature
makes sure that the transformation is deterministic. Unlike ‘type-preserving’

remove_nth_arg(File, {M,F,A}, Nth) ->

?FULL_TD_TP([rule1({M,F,A},Nth),

rule2({M,F,A},Nth)],[File]).

rule1({M,F,A}, Nth)->

?RULE(?T("f@(Pars@@) when G@@ -> Bs@@;"),

begin

NewPs@@=delete(Nth, Pars@@),

?TO_AST("f@(NewPs@@) when G@@->Bs@@;")

end,

refac_api:fun_def_info(f@)=={M,F,A}).

rule2({M,F,A}, Nth)->

?RULE(?FUN_APPLY(M,F,A),

begin

Args=api_refac:get_app_args(_This@),

NewAs=delete(Ith, Args),

api_refac:set_app_args(_This@, NewAs)

end, true).

Fig. 7. Remove the Nth argument

traversal strategies, a ‘type-
unifying’ AST traversal strat-
egy tries to apply every in-
formation collector to the
AST node visited, and the
union of the information col-
lected is returned.

The example in Figure 7
shows part of the imple-
mentation of the remove
an argument refactoring. In
this example, two trans-
formation rules are sup-
plied to the traversal macro
?FULL TD TP. The first re-
moves the Nth parameter of
the function definition; and
the second removes the Nth
argument from the applica-
tion sites of function M:F/A.
In the latter rule, instead of
a template macro represent-
ing a function application as shown in Figure 4, we use the macro ?FUN APPLY,
and turn to explaining that now.

4.6 Abstraction of Function Application

In Erlang, there are various ways to call a function. For example, to call a func-
tion F defined in module M with arguments As, one could write F(As) within mod-
ule M, or M:F(As) in other modules, or apply(M,F,[As]) as a meta-application,
or spawn(M,F,[As]) to invoke the function in another process, etc.
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For a refactoring that changes the interface of a function definition, it is
generally necessary for the refactoring to handle all these possible formats of
function application. It would be a laborious task for a user to write a transfor-
mation rule for each kind of function application. To make this task easier, we
have defined a special macro ?FUN APPLY(M,F,A) to represent a meta-template
that can be used to match a function application in different formats. Together
with the macro is a suite of getter and setter API functions that can be used to
get, or set, a specific part of the function application. For instance, the function
get app fun/1 allows us to get the function name part of a function application;
whereas the function set app fun/2 allows to update the function name part of
a function application. As shown in Figure 7, the use of ?FUN APPLY allows us
to use only one rule to handle different function application scenarios.

5 Generic Refactoring Behaviour

While every refactoring has its own pre-condition analysis and transformation
rules, there are some parts of the refactoring process that are generic to most
refactorings, such as the generation and annotation of ASTs, the outputting of
refactoring results, the collecting of change candidates, and the workflow of the
refactoring process. We can use an Erlang behavior to capture this genericity.

A behaviour is an application framework that is parameterized by a call-
back module. The behaviour implements the generic parts of the problem, while
the callback module implements the specific parts. A number of pre-defined be-
haviours are provided through Erlang OTP. In the same spirit, we have defined
a behaviour especially for refactorings, and it is call gen refac.

A user-interactive refactoring process generally follows this workflow : the
user selects the focus of interest by either pointing the cursor to, or highlighting,
a program entity, then invokes the refactoring command; if the refactoring needs
initial inputs from the user, it then prompts the user for values; after these
interactions, the refactor engine starts the pre-condition checking; the refactorer
continues to carry out the program transformation if the pre-conditions are met,
otherwise aborts the refactoring and returns the reason for failure.

For a refactoring that consists of a set of transformations e.g. generalisation
of a function definition, it is necessary either to change all call sites or to change
none; performing some only would lead to an inconsistent program. On the
other hand, for a refactorings that only involves a clause-local transformation,
but may be applicable to multiple places across the project, e.g. replacing the
use of lists:append/2 with the use of ++, the user may want to have a chance
to decide which candidates to refactor, and which not to. In the latter case, it
would be ideal to allow the user to browse through all the candidate changes
first, and then to decide which changes to commit.

With gen refac, we aim to encapsulate those parts that are generic to all
refactorings in the behaviour module, and let the user to handle the parts that
are specific to the refactoring under consideration. Another advantage of having
a refactoring behaviour is the ease of integration with the IDE. Since the inte-
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-module(refac_replace_append). %%module name is also refactoring name.

-behaviour(gen_refac).

-export([input_par_prompts/0, select_focus/1,check_pre_cond/1,

selective/0,transform/1]). %% Callback functions.

input_par_prompts() -> []. %% No user input is needed.

select_focus(_Args) -> {ok, none}. %% No focus selection is need.

check_pre_cond(_Args) -> ok. %% No pre-condition.

selective() -> true. %% Allow selective refactoring.

transform(_Args=#args{search_paths=SearchPaths})->

?FULL_TD_TP([rule_replace_append()], SearchPaths).

rule_replace_append() ->

?RULE(?T("F@(L1@, L2@)"), ?TO_AST("L1@++L2@"),

{lists,append,2} == refac_api:fun_def_info(F@)).

Fig. 8. Replace lists:append/2 with ++

gration only involves the IDE and the behaviour module, it is done by Wrangler;
the developer of the callback module need not be concerned.

A number of callback functions are specified by gen refac. To implement a
refactoring, the user needs to implement the callback module, and export the
callback functions. The callback functions specified by gen refac include:

– input par prompts()->[string()], which should return a lists of prompt
strings, one for each input from the user;

– select focus(Args::#args{}) -> none |{ok, term()}, which returns the
initial selection, in the format of AST nodes or others, by the user if one is
needed, otherwise none;

– check pre condition(Args::#args{}) -> ok |{error, Reason}, which re-
turns ok if the pre conditions are met, otherwise an error with the reason.

– selective() -> true|false, which should return true if the user is allowed
to browse through and select the changes to be made.

– transform(Args::#args())->{ok,[{filename(),ast()}]}|{error,Reason},
which does the actual program transformation, and returns the new ASTs if
successful, otherwise the reason for failure.

The predefined record args defines the data structure that is passed through,
and can also be modified, by the different phases of the refactoring process.

As an example, the code in Fig 8 implements the refactoring that replaces
the uses of lists:append/2 with the use of ++ (to save space we omit the type
specifications). This refactoring is straightforward, but it still shows the way
that the gen refac behaviour should be used.
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When a user-defined refactoring goes wrong, accurate error messages are
essential for debugging the implementation of refactoring. Various checkings have
been built into Wrangler, including:

– Syntactic correctness checking of templates;
– Type correctness checking of macro arguments and the results returned by

callback functions;
– Checking that makes sure it is syntactically legal to replace one AST node

with another, and that no unbound variables are introduced, and so on.

6 Evaluation

A number of refactorings and code inspectors have been implemented using
Wrangler’s new framework, and they include specialise a function definition,
swap function arguments, delete a function argument, introduce/remove an im-
port attribute, a collection of clause-local transformations as described in [8], etc.
Compared with the previous framework, Wrangler’s new framework for compos-
ing refactorings has the following advantages:

– it allows the refactoring developer to think of the refactoring in terms of
examples in concrete Erlang syntax instead of the AST, reducing the learning
curve for writing refactorings;

– the code implementing a refactoring is considerably shorter and more readable;
– fewer comments are needed to document the implementation as the code ex-

plains itself very well;
– since the refactoring developer needs to concentrate only on the refactoring-

specific parts, this speeds up the implementation process;
– finally, the open structure of Wrangler allows user to invoke their own refac-

torings from the Refactor menu without having to touch the Wrangler code,
that is user defined refactorings can be stored separately from Wrangler code.

We have found a couple of minor limitations of the framework so far:

– Since the template macro ?T only accepts certain types of code fragments,
i.e. expression, function clause, function definition, and attribute, in order to
template a code fragment that does not belong to these syntax categories, e.g.
a generator used in a list comprehension, a larger code fragment which contains
the code fragment of interest will have to be matched and deconstructed.

– The generation of replacement code in a transformation rule may lose some
location information, therefore it is possible that the layout style of the re-
placement code produced by the refactorer is slightly different.

7 Related Work

Rule-based structural transformation is used by many other meta-programming
paradigms, each of which has its own advantages and uses. TXL [9] is a gen-
eralised source-to-source translation system. A TXL program takes as input a
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context-free grammar in BNF-like notation, and a set of transformation rules to
be applied to inputs parsed using the grammar. TXL first parses inputs in the
language described by the grammar, and then successively applies the transfor-
mation rules to the parsed input, producing as output the transformed source.

Stratego/XT [7] is a another language and toolset for program transforma-
tion. Stratego is a language for transformation of abstract syntax trees, and XT
is a bundle of transformation tools that combines Stratego with tools for other
aspects of program transformation, such as parsing, pretty-printing, etc.

Closely related to Stratego/XT is ASF+SDF [10]. ASF is a declarative lan-
guage for specifying semantics of programming languages as algebraic rewrite
rules, and SDF is a language for specifying syntax definition of languages. The
ASF+SDF meta-environment supports program analysis, transformation, gen-
eration of interactive program environments, pretty-printer generation, etc.

All the above tools are powerful in the support of program transformation,
but relatively weak in the support of program analysis. Of course, there are also
some tools that are powerful in terms of program analysis, bot not so handy
when it comes to program transformation. This makes these tools somehow
less suitable for writing refactorings that involve complex program analysis and
transformation, which is the case for most non-trivial refactorings.

As the successor of the ASF+SDF, RASCAL [11] is a language that aims to
provide high-level integration of source code analysis and manipulation on the
conceptual, syntactic, semantic and technical level. RASCAL is not released yet
at the time of writing, and its effectiveness still needs to be assessed.

GenTL [12] is a logic-based meta-programming language that combines logic-
based conditional transformations and concrete syntax patterns. In this paradigm,
program analyses can be implemented as predicates and queries on the program
representation and transformation can be achieved using the meta-programming
features of Prolog for asserting and retracting logic clauses.

JunGL [13] is also a domain-specific language for implementing refactorings.
It combines an imperative core with ML-like algebraic data types for representing
syntax trees and functions defined by pattern matching with features for defining
attributes on edges between AST nodes. The central mechanism for defining
edges are path queries, which are a kind of regular expression for describing
paths in the syntax tree. Instead of providing a high-level support for expressing
transformations, JunGL relies on imperative modification of the AST.

In the context of functional programming languages, besides Wrangler, there
are the HaRe tool for refactoring Haskell programs [14], the RefactorErl [15] and
Tidier [8] tools for refactoring Erlang programs. Apart from Wrangler, all the
other tools provide a set of ‘core’ refactorings. While HaRe provides an API to
allow users to define their own refactorings, the API operates at the AST level,
and knowledge of the definition of the abstract syntax is a necessity for writing
refactorings. RefactorErl provides a query language to allow users to fetch various
structural and static semantic information about the program, but it does not
support users to define their own transformations. Tidier is a complete black-box
refactoring tool supporting a collection of clause-local refactorings.
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8 Conclusions and Future Work

In this paper, we have presented an API and behaviour exposed by Wrangler,
in order to turn the black-box nature of Wrangler into an open system, so that
users of Wrangler can make use of the powerful infrastructure provided by Wran-
gler to define their own refactorings, general program transformations, and code
inspection functionalities. The new framework has been used by the authors of
Wrangler to compose a number of refactorings.

The work reported here is for Erlang, and uses a number of features of the lan-
guage well suited to meta-programming. However, we see that a similar approach
would be possible for other programming languages, with different flavours de-
pending on their particular paradigm and feature mix.

In the future, we would like to carry out case studies to see how the new
framework is perceived and used by Wrangler users; we would also like to ex-
plore the application of the approach to HaRe, the refactoring tool for Haskell
programs, in which case a type-aware pattern-matching is needed.

This research is supported by EU FP7 collaborative project ProTest (http:
//www.protest-project.eu/), grant number 215868.
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4. Li, H., Thompson, S., Orosz, G., Töth, M.: Refactoring with Wrangler, updated.

In: ACM SIGPLAN Erlang Workshop 2008, Victoria, Canada. (September 2008)
5. Li, H., Thompson, S.: Incremental Code Clone Detection and Elimination for

Erlang Programs. In: FASE 2011. (2011)
6. Richard Carlsson: Erlang Syntax Tools. http://www.erlang.org/doc/doc-5.4.

12/lib/syntax_tools-1.4.3
7. Bravenboer, M., Kalleberg, K.T., et al.: Stratego/XT 0.17. A language and toolset

for program transformation. Science of Computer Programming 72(1-2) (2008)
8. Sagonas, K.F., Avgerinos, T.: Automatic refactoring of erlang programs. In: Prin-

ciples and Practice of Declarative Programming. (2009)
9. Cordy, J.R.: Source transformation, analysis and generation in txl. In: symposium

on Partial evaluation and semantics-based program manipulation. (2006)
10. van den Brand, M., et al.: The ASF+SDF meta-environment: A component-based

language development environment. In: Compiler Construction. Volume 44. (2001)
11. Klint, P., van der Storm, T., Vinju, J.J.: Rascal: A domain specific language for

source code analysis and manipulation. In: SCAM 2009. (2009)
12. Appeltauer, M., Kniesel, G.: Towards concrete syntax patterns for logic-based

transformation rules. In: Workshop on Rule-Based Programming. (2007)
13. Verbaere, M., et al.: Jungl: a scripting language for refactoring. In: ICSE’06. (2006)
14. Li, H., Thompson, S., Reinke, C.: The Haskell Refactorer, HaRe, and its API.

Electr. Notes Theor. Comput. Sci. 141(4) (2005)
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