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Abstract— The recently introduced multiscale entropy (MSE)
method accounts for long range correlations over multiple time
scales and can therefore reveal the complexity of biological
signals. The existing MSE algorithm deals with scalar time
series whereas multivariate time series are common in exper-
imental and biological systems. To that cause, in this paper
the MSE method is extended to the multivariate case. This
allows us to gain a greater insight into the complexity of the
underlying signal generating system, producing multifaceted
and more robust estimates than standard single channel MSE.
Simulations on both synthetic data and brain consciousness
analysis support the approach.

I. INTRODUCTION

The Takens embedding theorem [1] implies that although

the true dynamics of a complex system generating e.g.

biological signal may be unknown, such dynamics may still

be recovered using time delayed embedding of a single

time series, seen as a one-dimensional projection of the

multivariate system trajectory. This way we can estimate

‘invariant quantities’ of the original system, such as attractor

dimensions, Lyapunov exponents and entropies [2][3], from

the time delay embedded reconstructed dynamics. One such

invariant measure (in terms of smooth transformations of the

state space of the attractor) is the recently introduced mul-

tiscale entropy (MSE) [4], a method that computes sample

entropy from single time series, coarse grained on multiple

scales, and thus reveals long-range correlations over a range

of temporal scales within a complex system.

It is important to notice that traditional entropy mea-

sures such as Shannon entropy [2], Kolmogorov-Sinai (KS)

entropy [5], approximate entropy (ApEn) [6] and sample

entropy (SampEn) [7] can be used to quantify only the

regularity (predictability) of time series on a single scale, by

e.g. evaluating the appearance of repetitive patterns [4]. How-

ever, there is no straightforward correspondence between

regularity and signal complexity.

Neither completely predictable (e.g. periodic) signals nor

completely unpredictable (e.g. uncorrelated random) signals

are truly complex, since at a global level they admit a

very simple description. As a result, the output of complex

systems is far from the two extrema of perfect regularity

and complete randomness. Instead, complex systems gen-

erally exhibit long-range correlations on multiple spatial
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and temporal scales. These multiscale features, ignored by

conventional entropy calculations, are explicitly addressed by

the MSE method [4].

Applications of MSE include the analysis of fluctuations

of the human heartbeat under pathologic conditions like

erratic cardiac arrhythmia and congestive heart failure [4],

analysis of EEG and MEG recordings in patients with

Alzheimer’s disease [8], and insights into the complexity

of human gait dynamics from healthy subjects under dif-

ferent conditions [9]. In addition, MSE has been used to

examine variations in EEG complexity in response to photic

stimulation during aging [10], to study complex dynamics

of human red blood cell flickering and alterations with in

vivo aging [11]. All the reported results strongly support the

general ‘complexity-loss’ theory for systems under ‘stress’,

for instance, through aging and disease [12].

The existing MSE algorithm has some shortcomings [13]

and is limited to the analysis of scalar time series. However,

multivariate time series are routinely measured in experi-

mental and biological systems. Although multivariate time

series can be treated as a set of individual time series by

considering each variable separately, this is only efficient if

all the variables are statistically independent or uncorrelated

at the very least (which is often not the case). For example,

measurements of the z-coordinate of the Lorenz equations

cannot reconstruct the dynamics of Lorenz system because

they do not resolve the x-y symmetry [14].

Although, in principle, by observing a scalar time series

for a sufficiently long time enables us to reconstruct the

dynamics of the underlying systems, in practice this is ex-

tremely difficult when more than a couple degrees of freedom

are present (a common scenario for biological systems).

There are substantial advantages in analysing several differ-

ent time series in response to the same phenomenon if they

are available, especially if the system is noisy (typical for

real data). For instance, in medical diagnosis, in addition to

the electrocardiogram (ECG), a medic would also look into

the respiratory rate, blood pressure and electroencephalogram

(EEG) to assess the health state of a patient. Thus, the

increasing interest in reverse-engineering biological systems

from the observed time series of typically multivariate, finite

and noisy nature also motivates us to extend the univariate

MSE to the multivariate case. We therefore first introduce

multivariate sample entropy and use it to perform multivari-

ate multiscale entropy (MMSE) analysis simultaneously for

any number of data channels. The proposed method is sup-

ported by analysis on a real world example of distinguishing

between the brain consciousness states of coma and quasi-

brain-death.

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 810

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011



II. MULTIVARIATE MULTISCALE ENTROPY

ANALYSIS

A. Multiscale Entropy Analysis

In 2002, Costa et al. [4] proposed multiscale entropy

(MSE) as a meaningful physiologic complexity measure

which evaluates the relative complexity of normalized time

series across multiple scales. The MSE methodology has two

steps:

• Multiple coarse-grained time series are generated from

the original time series {x1, x2, . . . , xN} by averaging

the data points within non-overlapping windows of

increasing length ǫ, also known as the scale factor. The

elements of the coarse-grained time series of scale factor

ǫ are calculated as:

yǫj =
1

ǫ

jǫ∑

i=(j−1)ǫ+1

xi where, 1 ≤ j ≤
N

ǫ
(1)

The length of each coarse-grained series is ǫ times

shorter than that of the original series. For scale 1, the

coarse-grained time series is therefore equivalent to the

original one.

• The sample entropy, SampEn [7], is calculated for

each coarse-grained time series, and then plotted as a

function of the scale factor.

Similarly, to introduce the multivariate multiscale entropy

(MMSE) analysis method, we propose the following two

steps:

• Coarse-grain the multivariate time series {xk,i}
N
i=1, k =

1, 2, . . . , p where p denotes the number of variables and

N the number of samples in each variable. The elements

of the multivariate coarse-grained time series of scale

factor ǫ are calculated as:

yǫk,j =
1

ǫ

jǫ∑

i=(j−1)ǫ+1

xk,i (2)

where, 1 ≤ j ≤ N
ǫ

and k = 1 to p.

• Calculate the multivariate sample entropy, MSampEn,

for each multivariate coarse-grained time series, and

plot it as a function of the scale factor.

B. Multivariate Embedding

To calculate multivariate sample entropy, we first need

to generate multivariate embedded vectors. Cao et al. [14]

were the first to generalize the Takens embedding theorem

for multivariate case. Given that there are p time series

{xk,i}
N
i=1, k = 1, 2, . . . , p generated through p measurement

functions hk(yi) from the same system, the multivariate

embedded reconstruction is given by:

Xm(i) = [x1,i, . . . , x1,i+(m1−1)τ1 , x2,i, . . . ,

x2,i+(m2−1)τ2 , . . . , xp,i, . . . , xp,i+(mp−1)τp ] (3)

where M = [m1,m2, . . . ,mp] is the embedding vector, τ =
[τ1, τ2, . . . , τp] is the time lag vector and m =

∑p

k=1 mk.

C. Multivariate Sample Entropy

Richman & Moorman [7] introduced the sample entropy

(SampEn) which represents the conditional probability that

two sequences of m consecutive data points, which are

similar within a tolerance level r will remain similar when the

next consecutive point is included, provided that self-matches

are not considered in calculating the probability. Before

introducing the multivariate sample entropy, an issue of

concern with multivariate data is that they are not guaranteed

to have the same range, so that the distances calculated on

embedded vectors may depend highly on the components of

the variate with largest ranges. It is therefore often preferred

to scale all the data to have either the same variance or

to be in the same amplitude range. In our formulation of

multivariate sample entropy, we opt to scale the data to the

range [0, 1].
For a p-variate time series {xk,i}

N
i=1, k = 1, 2, . . . , p,

the algorithm to calculate multivariate sample entropy

(MSampEn) is given in Algorithm 1.

Algorithm 1 Multivariate Sample Entropy (MSampEn)

1: Form multivariate embedded vectors Xm(i) and define

the distance between any two vectors Xm(i) and Xm(j)
as the maximum norm [15].

2: For a given Xm(i), determine the number of vector pairs

(1 ≤ j ≤ N − n, j 6= i), denoted as Pi, such that

d[Xm(i), Xm(j)] ≤ r and Bm
i (r) = 1

N−n−1Pi, where

n=max{M} ×max{τ}.

3: Take the average over all i as Bm(r) =
1

N−n

∑N−n

i=1 Bm
i (r).

4: Perform mk → (mk + 1) for a specific variable k,

keeping the dimension of the other variables unchanged.

5: Repeat steps 1 − 4 and find Bmk+1
i (r); then find

Bm+1
i (r) (the average over all k) and finally calculate

Bm+1(r) as the average over all i in an (m + 1)-
dimensional space.

6: Then MSampEn is estimated by

MSampEn(M, τ , r,N) = −ln[
Bm+1(r)

Bm(r)
]

where r is the tolerance level, N is the length of the

time series, and M and τ are as defined earlier.

To compare the relative complexity of normalized mul-

tivariate time series, the multivariate MSE (MMSE) curves

(multivariate sample entropy plotted as a function of the scale

factor) are used similarly as in the univariate MSE analysis

as described in [4], that is:

• A multivariate time series is considered more complex

than another if for majority of the scales its entropy

values are higher than other;

• A monotonic decrease of the entropy values with scale

factors reveals that the signal only contains information

in the smallest scale.

Using the univariate MSE analysis, it was shown in [4]

that for random white noise (uncorrelated), the sample
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entropy values monotonically decrease whereas for a 1/f
noise (long-range correlated), the sample entropy remains

constant over multiple scales. This indicates that 1/f noise

is structurally more complex than uncorrelated signals.

To illustrate this behaviour for the multivariate case, we

generated a 5-variate time series where originally all the

variables represented realisations of independent 1/f noise.

We then gradually decreased the number of variables that

represent 1/f noise, from 5 to 0 and simultaneously increased

the number of variables that represent white noise from 0

to 5, so that the total number of variables in the system is

always 5. Fig. 1 shows the MMSE curves for these processes.

Notice that as the number of variables representing 1/f noises

decreases, the complexity also decreases at higher scales,

and when all the channels are white Gaussian noises, the

complexity is lowest at higher scales. This confirms that for

multivariate processes with long range correlations, the more

variables/channels have long range correlations, the higher

the complexity of the whole multivariate system.
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Fig. 1. Multivariate multiscale entropy analysis for multivariate white and
1/f noise, each with 10,000 data points. The curves represent an average of
20 independent realizations and error bars the standard deviation (SD).

III. BRAIN CONSCIOUSNESS APPLICATION

In this section, we evaluated multivariate multiscale en-

tropy (MMSE) for the characterization of brain conscious-

ness, particularly, the coma and quasi-brain-death state.

The legal definition of brain death is an irreversible loss

of forebrain and brainstem functions [16], however, brain

death diagnosis procedures are complicated, and some tests

require temporary disconnection from medical support. An

initial prognosis of quasi-brain-death (QBD) is given based

on various methods used for studying brain states using

electroencephalogram (EEG). Studies have shown that large

activity in the alpha band reflects the alertness of a pa-

tient [17], however, standard spectral analyses are unable to

yield information of the brain’s inherent nonlinear complex

dynamics [18], an important feature for brain states diag-

nosis [19]. It is natural to assume that a brain in the states

of coma and quasi-brain-death would have different degrees

of complexity, and that the more stressed the system the

lower the complexity. As a result, methods from nonlinear

dynamics theory such as MMSE are a natural choice in this

context.

A. Data

The EEG data were recorded in the intensive care unit in

Hua Shan Hospital, Shanghai, China using a standardized

10-20 system. The measured voltage signal was digitized

via a portable EEG recording instrument with a sampling

frequency of 1000 Hz. Experimental data were obtained

from 34 patients (16 female, 18 male) of ages ranging from

17 to 85 years old; 17 of the patients were in coma, and

17 in the quasi-brain-death (QBD) state. Unless otherwise

specified, the values of the parameters used to calculate

SampEn are N = 20000, m = 2, τ = 1 and r = 0.15,

chosen on the basis of previous studies indicating good

statistical reproducibility [7]. For MSampEn, we used the

same parameter values for every channel, though there are

few methods in the literature [20] for determining the optimal

embedding parameters of a signal which are beyond the

scope of this paper. For MSE/MMSE, the length of each

coarse-grained sequence is ǫ (scale factor) times shorter than

the length of the original series, so the highest scale factor

used in the analysis was 100.

B. Experimental Results

The univariate multiscale entropy method was first applied

to a single channel EEG signal (FP1) from both coma and

quasi-brain-death patients. We further tested the hypothesis

that the complexity of these time series is encoded in the

sequential ordering of the samples of EEG signals. Therefore,

for each EEG time series, we built a surrogate time series

by shuffling (randomly reordering) the sequence of data

points. In this way, we destroyed correlations among the

data samples while preserving the statistical properties of

the distribution, particularly, the first and second moments. In

Fig. 2, the MSE results for EEG signals from both coma and

quasi-brain-death patients and their corresponding randomly

shuffled time series are presented. From the curves, for scale

1 (corresponding to single scale SampEn), physiological time

series are assigned the lowest values of entropy. However,

the entropy for shuffled time series monotonically decreases

with an increase in the scale factor (similar to white noise),

whereas the biological time series exhibitted higher entropy

for larger scales as compared to the corresponding shuffled

time series. Since EEG behave similarly to 1/f noise, these

results show that biological time series are more complex

than surrogate ones.

Though intuitively coma patients should have higher com-

plexity in EEG than the quasi-brain-death patients, we cannot

ascertain this from single channel MSE curves. To obtain a

more comprehensive view, we applied the proposed multi-

variate multiscale entropy (MMSE) method over all the six

electrodes (FP1, FP2, F3, F4, F7, F8). Fig. 3 shows the result

where for higher MMSE scales the coma patients showed

higher complexity than the QBD patients. This indicates a

reduction in the intra-cortical information flow and lower

812



0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Scale factor

S
am

p
le

 e
n
tr

o
p
y

 

 

EEG signals from coma patients

EEG signals from QBD patients

Shuffled EEG signals from coma patients

Shuffled EEG signals from QBD patients

Randomised QBD

Randomised Coma

Coma

QBD

Fig. 2. Univariate multiscale entropy analysis for EEG signals from coma
and QBD patients and their corresponding randomly shuffled time series.

neuronal process in the brain for the QBD patients. This

also shows inactivation of previously active networks or a

loss of dynamical brain responsiveness to the environmental

conditions. Besides, the findings of our study support the

more general concept of multiscale complexity loss with

aging and disease which also reduces the adaptive capacity

of biological organization at all levels [12].
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Fig. 3. Multivariate multiscale entropy analysis for EEG signals from coma
and QBD patients.

IV. CONCLUSIONS

This paper has extended the recently introduced multi-

scale entropy analysis method to multivariate case, as most

biological systems are typically of multivariate, coupled

and noisy nature. The inherent complexity of biological

structures and complicated dynamics also makes multivariate

multiscale entropy (MMSE) method a natural choice to

reveal the long-range spatio-temporal correlations present in

biological signals. The MMSE method has been applied to

characterize states of brain consciousness from multichannel

EEG recordings, and has shown more conclusive results than

the univariate MSE method.
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