
Mutual Exclusion by Interpolation

Jael Kriener and Andy King

University of Kent, Canterbury, CT2 7NF, UK

Abstract. The question of what constraints must hold for a predicate
to behave as a (partial) function, is key to understanding the behaviour
of a logic program. It has been shown how this question can be answered
by combining backward analysis, a form of analysis that propagates de-
terminacy requirements against the control flow, with a component for
deriving so-called mutual exclusion conditions. The latter infers condi-
tions sufficient to ensure that if one clause yields an answer then another
cannot. This paper addresses the challenge of how to compute these
conditions by showing that this problem can be reformulated as that of
vertex enumeration. Whilst directly applicable in logic programming, the
method might well also find application in reasoning about type classes.

1 Introduction

Given two sets of constraints, C1 and C2, defined over the same vector of vari-
ables x, it is interesting to know exactly which variables of x are sufficient to
distinguish between C1 and C2. That is, which elements of x need to be ground
(fixed by being fully instantiated) so as to ensure that if C1 is satisfiable then
C2 is unsatisfiable, and vice versa. We call a groundedness condition on a subset
of x that has this property a mutual exclusion condition for C1 and C2.

These conditions have clear applications in logic programming [1, 2] and pos-
sible applications in functional programming, as is explained in Section 2. The
problem is how to compute these conditions simply and do so in a way that
is efficient. If C1 and C2 are systems of Herbrand constraints, such as the con-
straints C1 = (X = [Y|Ys],Z = [Y|Zs]) and C2 = (X = [],Z = []), then the
problem can be made more tractable by applying abstraction. In particular, ob-
serve that the linear constraints S1 = (X = 1 + Ys,Z = 1 + Zs,Ys ≥ 0,Zs ≥ 0)
and S2 = (X = 0,Z = 0) describe the sizes of the terms that satisfy C1 and C2

respectively, where term size is quantified using the list-length norm [3, 4]. For in-
stance, C1 has as one its solutions X = [a, b, c],Y = a,Ys = [b, c],Z = [a],Zs = []
which is described by the size constraints X = 3,Ys = 2,Z = 1,Zs = 0 which, in
turn, satisfies S1. The value of abstraction is that a mutual exclusion condition
for S1 and S2, for instance the groundness condition X ∨ Z, is also a mutual
exclusion condition for C1 and C2: if X is fixed and S1 (resp. C1) is satisfiable
then S2 (resp. C2) is unsatisfiable and vice versa, and likewise for Z.

However, even whithin the simpler domain of linear constraints, it was not
obvious how these conditions can be found except by repeated application of

existential quantifier elimination [1, 2], an operation that is fundamentally expo-
nential [5]. In this paper we address this problem by providing an alternative and
elegant way for computing mutual exclusion conditions over linear constraints by
applying Craig interpolation [6], a topic that has attracted much interest recently
in program verification [7]. In doing so, we make the following contributions:

– we explain how a variant of Craig interpolation for linear systems [8] can be
generalised to the problem of inferring mutual exclusion conditions, thereby
avoiding quantifier elimination entirely;

– we argue that through an application of Farkas’ Lemma [9] the problem can
be solved using lexicographical reverse search (lrs) [10], an algorithm that is
renowned for it space and time efficiency [11];

– we show how the resulting algorithm is anytime, which is always desirable
from an algorithmic perspective [12], that is, an algorithm that enumerates
mutual exclusion conditions one by one, for instance X then Z or vice versa,
the join of which constitutes the most general condition, in this case X ∨ Z.

– we justify the approach with correctness arguments and experimental results.

The following presentation is structured as follows: Section 2 motivates the
study with problems drawn from logic and functional programming. Section 3
outlines three techniques that are ultimately combined to provide a way of com-
puting mutual exclusion conditions. Section 4 explains the combination and ar-
gues correctness. Section 5 presents an implementation and experimental data.
Sections 6 reviews the wider context whilst Section 7 outlines directions for
future work. Section 8 concludes.

Finally, a note on presentation: As mentioned above, our original motivation
for this work stems from our interest in determinacy inference for logic programs.
Therefore, we approach the central question from the logic programming point
of view - where we use code, we will use Prolog syntax and conventions. We hope
readers from other contexts will forgive this presentational bias.

2 Motivation

Mutual exclusion is of interest in both functional and logic programming.

2.1 Applications in the Functional Setting

In the functional setting, the issue of mutual exclusion between constraints over
the same variables arises in the context of type classes and overlapping instances
thereof. A simple example of this in Haskell is the Show class and following pair
of instance declarations:

class Show t where show :: t -> String

instance Show a => Show [a] where ...

instance Show [Char] where ...

2

The first instance is a general instance of show for lists of as, the second is one
specifically for strings. There is no way of guaranteeing that the show functions
defined in these two instances behave equivalently for strings. Unless a deter-
ministic choice between the two instances can be made, this overlap introduces
a non-determinacy into a functional program which, of course, is highly unde-
sirable. Peyton-Jones et al. [13] propose a framework that accepts some overlap,
provided that a unique most specific instance can be found for each point of use.
This allows, for instance, the example above, since at each point where the two
instances of Show are both applicable, the second is more specific than the first.
There are, however, cases of overlap which cannot be handled adequately by this
requirement (see [14] for a more detailed discussion and example).

Currently the Hugs interpreter simply rejects overlapping instances. The
Glasgow Haskell Compile (GHC), by default, does the same. Yet, GHC gives
the user the option of allowing overlap, in which case it attempts to find the
most specific applicable instance at all points of use (see [15, Section 7.2]). Even
so, GHC only detects overlap when it poses a problem. Namely when a multi-
ply overloaded method is called with a combination of arguments that does not
allow the compiler to chose deterministically between the available instances.

In general, a type class C is defined by a declaration of the following form,
where t1 to tn are type parameters, m is a method of type t′1 → . . . → t′i and
each t′j depends on zero or more of t1 to tn:

class C t1 . . . tn where m :: t′1 → . . .→ t′i

The choice between two instances of C, I1 and I2, is determined by the con-
straints, c1 and c2, over 〈t1, . . . , tn〉 imposed in the declarations of I1 and I2.
These constraints can take one of the many forms like tk = [a], tk = (a, b), etc
for some types a, b, and arise from partial instantiations (e.g. ‘[a]’ in the ex-
ample above) in the type declaration itself. Or they can be of the form D tk, for
some type class D, and be propagated from a so-called context (e.g. ‘Show a’ in
the example above), prefixed to the type declaration of the instance by ‘=>’.

By finding all and only those parameters on which c1 and c2 are inconsistent,
mutual exclusion inference could improve the situation in two ways:

– Inference of safe use: Suppose a method m is implemented twice in a pair
of instances overlapping I1 and I2, I1 and I2 are mutually exclusive on a
parameter tk and the type of m depends on tk. Then m can be used safely, if
it is called in such a way that tk is ground (i.e. m’s use is not polymorphic at
tk). In this fashion, mutual exclusion inference can determine safe ‘modes’,
i.e. patterns of polymorphism, of multiply instantiated methods.

– Systematic detection: Two instances I1 and I2 overlap on those parameters,
that do not occur in the mutual exclusion condition between their respective
constraints. If no other way of choosing between the two instances can be
found (e.g. by finding a most specific one), the overlap is irreconcilable and
the program potentially non-deterministic. Mutual exclusion inference can
identify at least some overlap at the point of declaration, rather than the
point of use of the instances, allowing for systematic detection of overlap and

3

providing appropriate guidance on how to avoid it. (To identify all overlap,
the inference would have to be complete. See Section 7.)

2.2 Applications in the Logical Setting

In the logical setting, the issue arises in the context of determinacy or back-
ward correctness [16, Section 1.7], i.e. whether a goal generates an answer once
rather than multiply. An example is subset, which given two sets, represented
as ordered, duplicate-free lists, checks whether the first is a subset of the second:

subset([], _).

subset([X|L1], [X|L2]) :- subset(L1, L2).

subset([X|L1], [Y|L2]) :- X > Y, subset([X|L1], L2).

It is highly desirable that subset behaves as a function when called with the
both arguments ground - a Boolean test should not succeed more than once.
On the other hand, when called with only the second argument ground, subset
can be used to enumerate all subsets of a given set. To be utilisable thus, its
behaviour needs to be relational, not functional, in this latter mode.

The problem of inferring functional modes for a predicate goes by the name
of determinacy inference [1]. A form of determinacy inference for Prolog with
cut has recently been presented [2] that applies backward analysis [17] to reduce
the problem to the task of finding groundness conditions on a set of variables
under which two systems of constraints are mutually exclusive, that is, not si-
multaneously satisfiable. However, the derivation of these conditions proved to
be by far the most time consuming component of the whole implementation [2].

3 Theoretical Components

In this section we present the theoretical foundations for the mutual exclusion
inference presented below. We introduce the three components of the inference
mechanism - interpolation, Farkas’ lemma and the lrs-algorithm - individually,
and in section 4 establish the connections between these components.

3.1 Interpolation

Craig’s interpolation theorem [6] has recently received considerable attention
in verification. The reader is referred to [7] for a survey and discussion. In its
original form the theorem states the following property of first-order logic (where
comps(F) denotes the set of predicate- and constant-symbols in a formula F):

Theorem (Craig 1957). Given two formulae A and B, such that A |= B,
there is a formula I, such that A |= I and I |= B and comps(I) ⊆ comps(A) ∩
comps(B). I is called an ‘interpolant’ of A and B.

The interpolation theorem is frequently stated in the following form (see [18] for
a discussion of the consequences of this change in formulation):

4

Theorem (Craig 1957 - Variation). Given two formulae A and B, such that
A ∧ B |= ⊥ (their conjunct A ∧ B is infeasible), there exists a formula I, such
that A |= I and I ∧ B |= ⊥ and comps(I) ⊆ comps(A) ∩ comps(B). Koács and
Voronkov [18] introduce the term ‘reverse interpolant’ for this formula and we
follow their terminology.

Kraj́ıček [8] translates this result to the theory of linear inequalities over non-
negative variables thus (where vars(E) is the set of variables occurring in E and
∧A is the conjunction of all elements of A):

Theorem (Kraj́ıček 1997). Let A = {A1, . . . , Am} and B = {B1, . . . , B`}
denote systems of linear inequalities of form

∑n
i=1 aixi ≥ b where ai, b ∈ Z and

xi ≥ 0. If (∧A) ∧ (∧B) |= ⊥, then there exists a reverse interpolant I such that
∧A |= I and I ∧ (∧B) |= ⊥ where vars(I) ⊆ vars(A) ∩ vars(B).

For the purposes of mutual exclusion between systems of linear constraints,
we are interested in reverse interpolants of this form. To see this, observe that,
given a reverse interpolant I between two clauses of constraints A and B, the
choice between A and B depends on the truth value of I: If I is satisfied, B
cannot be. If it is not, neither is A. Since grounding vars(I) is sufficient to fix I’s
truth value, it is sufficient to choose deterministically between A and B. Hence,
vars(I) defines a mutual exclusion condition betewen A and B.

Note that in contrast to the original theorem, its variation, and therefore
Kraj́ıček’s result, are completely symmetric and can be generalised to the fol-
lowing corollary.

Corollary 1 (Generalisation of Kraj́ıček 1997). Given n systems of linear
inequalities A1, . . . ,An, such that ∧ni=1(∧Ai) |= ⊥, there is an n-tuple of reverse
interpolants 〈I1, . . . , In〉, such that:

(a) (∧Ak) |= Ik for each k,

(b)
∧k−1

i=1 (∧Ai) ∧ Ik ∧
∧n

i=k+1(∧Ai) |= ⊥ for each k,

(c) vars(Ik) ⊆ vars(Ak) ∩
(⋃k−1

i=1 vars(Ai) ∪
⋃n

i=k+1 vars(Ai)
)

for each k and

(d)
∧n

k=1 Ik |= ⊥.

We refer to 〈I1, . . . , In〉 as an n-tuple of ‘generalised reverse interpolants’ (GRIs)
between the formulae A1 to An.

Note that (c) is weaker than what may be expected. However, it is strong
enough for our purposes, since it ensures that a generalised reverse interpolant
will not constrain variables other than those shared between the system it is
derived from and at least one other system in the original problem. In the con-
text of constraints arising from Prolog predicates, that is sufficient to guarantee
that the n-tuple of GRIs will contain constraints on the head-variables only.
Observe also that this generalised problem subsumes the binary case: Given, for
example, three systems A, B and C, such that (∧A) ∧ (∧B) |= ⊥, there will
be a triple of GRIs (Ia, Ib,>) between the three formulae where > denotes the

5

vacuous inequality. In fact, by enumerating all n-tuples of GRIs between a set of
n formulae, one can decide which of them are pairwise inconsistent, by observing
a tuple of GRIs for which exactly two interpolants are not >.

For the present purpose of mutual exclusion inference, an enumeration of
tuples of GRIs is therefore informative in the following two ways:

– Given a set of n clauses defining some predicate (or a set of instances of a
type class), an enumeration of all n-tuples of GRIs decides which clauses are
mutually exclusive (which instances potentially overlap).

– Furthermore, such n-tuples contain information sufficient to determine on
which variables two clauses are mutually exclusive and thereby allow the
inference of groundedness conditions that ensure that not more that one of
the clause can ever succeed.

3.2 Farkas’ Lemma

Farkas’ Lemma [9] is a result in linear algebra which, since its first publication
over a century ago, has been cited and used in a vast variety of equivalent
formulations. One of these is the following (stated in [19]):

Theorem (Farkas 1907). Let M be a matrix of dimensions m × n and b a
column-vector of length m. Exactly one of the following statements holds:

1. There exists a column-vector x of length n, such that Mx ≤ b.
2. There exists a row-vector v ≥ 0 of length m, such that vM = 0 and vb < 0,

where 0 represents the null-matrix of appropriate dimensions.

We shall use the following straightforward corollary of the above:

Corollary 2 (Corollary of Farkas 1907). Let M be a matrix of dimensions
m × n and b a column-vector of length m. If there is no column-vector x of
length n, such that Mx ≤ b, then there exists a column-vector p ≥ 0 of length
m, such that MTp ≥ 0 and bTp < 0, where AT denotes the transpose of A and
0 represents the null-vector of appropriate dimensions.

To put this into the present context, Farkas’ Lemma states that every system of
m linear inequality constraints over n variables has a dual system of n+ 1 linear
inequalities over m variables such that either the original system has a feasible
solution, x, or the dual system has a feasible solution, p, which exhibits some
inconsistency in the original system. It does so by defining a way of combining
the original system as a weighted sum which reduces to the inconsistent constant
constraint 1 ≤ 0 or some simple equivalent thereof.

Example 1 (A Farkas’ Witness for Inconsistency). Consider the following un-
feasible system of four linear inequalities: x ≤ 0, y + z ≥ 1, 2x ≥ 1, z ≤ 1,
represented by the matrices M and b below. The column-vector p (≥ 0) is a
solution to the dual system MTp ≥ 0 ∧ bTp < 0 defined by Corollary 2:

M =


1 0 0
0 −1 −1
−2 0 0
0 0 1

 b =


0
−1
−1
1

 p =


2
0
1
0


6

When interpreting p’s elements as weights on the original inequalities, their
weighted sum becomes (2x− 2x) ≤ (2× 0− 1) or equivalently 0 ≤ −1.

The relevance for mutual exclusion now becomes apparent. Given a system
that is known to be unfeasible, Farkas’ Lemma provides a witness for that fact,
p, which extracts an unfeasible sub-system by means of discarding irrelevant
constraints, which are simply weighted by zero.

Moreover, the reader will have observed the elegance in the fact that the
problem of finding a suitable p is formulated in the same framework as the
original problem it is derived from. Identifying an inconsistent core of a linear
system requires no new machinery or meta-reasoning over and above what is in
place to try and solve the original system in the first place.

3.3 The lrs-algorithm

The final component is the lrs-algorithm, developed and implemented by Avis
[10]. To establish the necessary connections, we refer to some concepts from the
theory of linear optimisation [20], in particular polyhedra [19].

The Main Theorem for polyhedra [19, Theorem 1.2] states that any polyhe-
dron in n-dimensional space has two equivalent representations: one as a sys-
tem of linear inequalities over n variables (the H-representation), the other as
a set of vertices and rays in n-dimensional space (the V-representation). Each
vertex in the V-representation defines a so-called basic feasible solution of the
H-representation. To explain, let A denote a system of linear inequalities of the
form c · x ≤ b over n variables x, where c is a vector of coefficients. A basic
feasible solution of A is a vector x that satisfies all inequalities in A and, in
addition, x saturates n linearly independent inequalities in A. (A vector x is
said to saturate an inequality c · x ≤ b if c · x = b.) Any solution to A can be
derived from as a linear combination of vertices, or basic feasible solutions, in
the V-representation of polyhedron.

The main function of the lrs-algorithm is vertex enumeration, that is, com-
pute the V-representation of a polyhedron from its H-representation (though
conversion in the other direction is also possible). As we have seen, vertex enu-
meration is equivalent to enumerating the basic feasible solutions of a system of
linear inequalities. The lrs-algorithm is based on the reverse search algorithm
presented by Avis and Fukuda [21]. Again, space-constraints prohibit a detailed
discussion of its functionality, except to say that the method is based on repeated
pivoting, that is, moving from one basic feasible solution to another by replacing
one of the saturated inequalities with another [10]. Among various correctness
results, Avis [10] states the following performance result:

Theorem (Avis 2000). The lrs-algorithm finds all vertices of a polyhedron
defined by m linear inequalities over d variables in time O(md2) per vertex and
O(md) space.

Note that, crucially, the time required for the computation depends on the out-
put, that is the number of vertices in the V-representation. Moreover, lrs does

7

not require any auxiliary data-structures to store a network of vertices, or even
require a stack to realise recursion, which is reflected in its low space complexity.
This motivates reformulating the problem of inferring mutual exclusion condi-
tions as a vertex enumeration problem.

4 Inferring Interpolants for Mutual Exclusion

This section uses two running examples to illustrate the inference of mutual
exclusion condictions: One very accessible (A), the other designed to demonstrate
more interesting features of the method (B). Correctness is also addressed.

The method for inferring tuples of GRIs presented below is the direct appli-
cation of the following two observations:

Observation 1 (Farkas’ Lemma is an Interpolation Result). Corollary 2
of Farkas’ lemma has almost the form of an interpolation result. The difference
lies in the fact that, given n systems {A1, . . . ,An} = A such that

∧n
i=1(∧Ai)

is inconsistent, the interpolation results stated in Corollary 1, stipulate the ex-
istence of a reverse interpolant for each subsystem Ak, which encapsulates the
inconsistency between that Ak and A \ Ai. Whereas Corollary 2 proves the
existence of a single vector p containing information about the entire problem.
The crucial insight is that this p can be treated as fully compositional and be
divided into subvectors pk for each original Ak. Calculating the weighted sums
defined by these subvectors results in a tuple of GRIs. That is seen by noting
that any weighted sum over a subsystem Ak is in fact entailed by Ak. Moreover,
since addition is associative, these entailed inequalities are inconsistent, that is
to say, their sum is equivalent to 1 ≤ 0, provided the original weighted sum is.
Every Farkas witness for inconsistency p, as defined by Corollary 1, therefore
corresponds to an n-tuple of GRIs between the subsystems of A.

Observation 2 (lrs Efficiently Computes Farkas-interpolants). A second
difference between the interpolation results in section 3.1 and Farkas’ lemma is
the fact that the latter is constructive as opposed to the former. That is to say
Corollary 1 asserts the existence of some tuple of GRIs between inconsistent
systems of linear inequalities, but does not prescribe how to derive these tuples.
Corollary 2, on the other hand, provides sufficient information about the vector
p to allow its construction as any solution of a given system of linear inequalities.
The lrs-algorithm is designed to find all basic feasible solutions of such a system
and therefore enumerate the p vectors.

Combining these two observations, we obtain a way to efficiently compute tuples
of GRIs between inconsistent systems of linear inequalities. The inference pro-
ceeds in the following four simple stages: (a) Normalisation, (b) Applying Farkas’
Lemma, (c) Applying lrs and (d) Interpreting the result. To demonstrate, con-
sider the following two examples:

8

Example 2. Below are argument size relationships over non-negative 〈x, y, z〉
that can be derived [22] to describe following two predicates append and multiplex:

app([], L, L).

app([H|L1], L2, [H|L]) :-

app(L1, L2, L).

multiplex([], _, []).

multiplex([A], [B], [A,B,A]).

multiplex([A], [B1,B2], [A,B1,A,B2]).

multiplex([A|As], B, C) :-

append([A|As], [A|As], Anew),

zip(Anew, Bnew, C).

append(x, y, z) :- x = 0, y = z.
append(x, y, z) :- x ≥ 1, y ≤ z − 1.

multiplex(x, y, z) :- x = 0, z = 0.
multiplex(x, y, z) :- x = 1, y = 1, z = 3.
multiplex(x, y, z) :- x = 1, y = 2, z = 4.
multiplex(x, y, z) :- x ≥ 2, z = 2x + y.

Normalisation To apply linear programming, the size relations are normalised by
substituting strict equalities x = y with two inequalities x−y ≤ 0 and y−x ≤ 0
and transforming inequalities into the form a1x1 + . . . + anxn ≤ a0:

Example 3. The size relationships that hold for the ith clause of append can
be represented by the system Ai = MAi

x ≤ bAi
where x = 〈x, y, z〉. Likewise

Bi = MBi
x ≤ bBi

characterises the ith clause of multiplex.

MA1 =


1 0 0
−1 0 0
0 1 −1
0 −1 1

 bA1 =


0
0
0
0

 MA2 =

[
−1 0 0
0 1 −1

]
bA2 =

[
−1
−1

]

MB1
=


1 0 0
−1 0 0
0 0 1
0 0 −1

 bB1
=


0
0
0
0

 MB2
=


1 0 0
−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 −1

 bB2
=


1
−1
1
−1
3
−3



MB3 =


1 0 0
−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 −1

 bB3 =


1
−1
2
−2
4
−4

 MB4 =

−1 0 0
−2 −1 1
2 1 −1

 bB4 =

−2
0
0



Next we combine the matrices MAi
(resp. MBi

) and vectors bAi
(resp. bBi

) thus:

Example 4.

MA =

[
MA1

MA2

]
bA =

[
bA1

bA2

]
MB =


MB1

MB2

MB3

MB4

 bB =


bB1

bB2

bB3

bB4



9

Applying Farkas’ Lemma Applying the Corrollary of Farkas’ Lemma, we know
that each of these systems is infeasible, iff there is a corresponding column-vector
p ≥ 0, such that: MTp ≥ 0 and bTp < 0. We are looking, therefore, for column-
vectors p, which satisfies the following constraints:

Example 5.1 −1 0 0 −1 0
0 0 1 −1 0 1
0 0 −1 1 0 −1

pA ≥ 0 ∧
[
0 0 0 0 −1 −1

]
pA < 0

1 −1 0 0 1 −1 0 0 0 0 1 −1 0 0 0 0 −1 −2 2
0 0 0 0 0 0 1 −1 0 0 0 0 1 −1 0 0 0 −1 1
0 0 1 −1 0 0 0 0 1 −1 0 0 0 0 1 −1 0 1 −1

pB ≥ 0 ∧

[
0 0 0 0 1 −1 1 −1 3 −3 1 −1 2 −2 4 −4 −2 0 0

]
pB < 0

Applying lrs These systems of constraints define vertex enumeration problems.
Running lrs on these problems, we obtain exactly two possible solutions in ex-
ample A and 35 in example B, 12 of which are shown below:

Example 6.

pA1
= 〈1, 0, 0, 0 | 1, 0〉

pA2
= 〈0, 0, 0, 1 | 0, 1〉

pB1
= 〈0, 0, 0, 0, | 0, 0, 0, 0, 0, 0, | 0, 0, 0, 1

2 ,
1
2 , 0, | 1, 0, 1

2 〉
pB2 = 〈0, 0, 0, 0, | 0, 0, 0, 0, 0, 0, | 1, 0, 0, 0, 0, 0, | 1, 0, 0〉
pB5 = 〈0, 0, 0, 0, | 0, 0, 0, 0, 1, 0, | 0, 0, 0, 0, 0, 0, | 2, 0, 1〉
pB6

= 〈0, 0, 0, 0, | 1, 0, 0, 0, 0, 0, | 0, 0, 0, 0, 0, 0, | 1, 0, 0〉
pB11

= 〈0, 0, 0, 0, | 0, 0, 1, 0, 0, 0, | 0, 0, 0, 1, 0, 0, | 0, 0, 0〉
pB12

= 〈0, 0, 0, 0, | 0, 0, 0, 0, 1, 0, | 0, 0, 0, 0, 0, 1, | 0, 0, 0〉
pB16 = 〈0, 0, 1

4 , 0, | 0, 0, 0, 0, 0, 0, | 0, 0, 0, 0, 0, 0, | 12 , 0,
1
4 〉

pB29
= 〈 12 , 0, 0, 0, | 0, 0, 0, 0, 0, 0, | 0, 0, 0, 0, 0, 0, | 12 , 0, 0〉

pB19 = 〈0, 0, 1
4 , 0, | 0, 0, 0, 0, 0, 0, | 0, 0, 0, 0, 0, 1

4 , | 0, 0, 0〉
pB32 = 〈1, 0, 0, 0, | 0, 0, 0, 0, 0, 0, | 0, 1, 0, 0, 0, 0, | 0, 0, 0〉
pB21

= 〈0, 0, 1
3 , 0, | 0, 0, 0, 0, 0,

1
3 , | 0, 0, 0, 0, 0, 0, | 0, 0, 0〉

pB35
= 〈1, 0, 0, 0, | 0, 1, 0, 0, 0, 0, | 0, 0, 0, 0, 0, 0, | 0, 0, 0〉

Interpreting the Result Observe that, unsurprisingly, each of these has exactly
one row for every constraint in the respective normalised system. Interpreting
the elements of each p as multipliers and calculating the thus weighted sum of
the original constraints, we obtain from each p an n-tuple of GRIs:

Example 7.
IA1

= 〈 x ≤ 0, −x ≤ −1〉
IA2

= 〈 z − y ≤ 0, y − z ≤ −1〉

10

IB1
= 〈 > , > , z

2 −
y
2 ≤ 1 , z

2 −
y
2 ≥ 2 〉

IB2
= 〈 > , > , x ≤ 1 , x ≥ 2 〉

IB5 = 〈 > , z ≤ 3 , > , z − y ≥ 4 〉
IB6 = 〈 > , x ≤ 1 , > , x ≥ 2 〉
IB11

= 〈 > , y ≤ 1 , y ≥ 2 , > 〉
IB12

= 〈 > , z ≤ 3 , z ≥ 4 , > 〉
IB16

= 〈 z4 ≤ 0 , > , > , z
4 ≥ 1 〉

IB29
= 〈x2 ≤ 0 , > , > , x

2 ≥ 1 〉
IB19 = 〈 z4 ≤ 0 , > , z

4 ≥ 1 , > 〉
IB32 = 〈x ≤ 0 , > , x ≥ 1 , > 〉
IB21

= 〈 z3 ≤ 0 , z
3 ≥ 1 , > , > 〉

IB35
= 〈x ≤ 0 , x ≥ 1 , > , > 〉

The reader will have observed, that these are in fact n-tuples of GRIs between
the clauses of the original systems.

Example 8. Consider IB11
and IB12

. Since each has > in the first and fourth
position, they each show that B2 and B3 are pairwise inconsistent. The former
exhibits their inconsistency on y, the latter that on z. Hence the groundness con-
dition y∨z is sufficient for clauses 2 and 3 of multiplex to be mutually exclusive (if
one clause is satisfiable then the other is not). Likewise the groundness condition
x ∨ z is sufficient to distinguish between clause pairs 1 and 2 (indicated by IB21

and IB35
), 1 and 3 (by IB19

and IB32
), 1 and 4 (by IB16

and IB29
), and lastly 2 and

4 (by IB5
and IB6

)1. Finally for clause pair 3 and 4 the condition is x∨(y∧z) (by
IB1 and IB2). Thus an overall condition sufficient to ensure that not more than
one clause can ever succeed is (y∨z)∧(x∨z)∧(x∨(y∧z)) = (y∧z)∨(x∧(y∨z)).

By similar reasoning, though on a smaller scale, a condition of x ∨ (y ∧ z) is
inferred for append from IA1 and IA2 .

4.1 Correctness

Lemma 1 (Soundness). Let A be an inconsistent system of linear inequalities
composed of n subsystems. If the above method finds an n-tuple I of entailed
constraints from A, then I is indeed an n-tuple of GRIs between A.

Proof. By Observation 1 and soundness of lrs (Theorem - Avis 2010).

Lemma 2 (Completeness). Let A be a system of linear inequalities, composed
of n subsystems. If A is inconsistent, i.e. there is an n-tuple of GRIs between
the subsystems of A, then the above method finds one.

Proof. By Corollary 1 and completeness of lrs (Theorem - Avis 2010).

1 Since all values are required to be non-negative, the constraint z − y ≥ 4 implies
z ≥ 4; when derriving a groundedness condition from a tuple where the GRIs do not
share all variables, the intersection generally suffices.

11

Minimality Given a set of tuples of GRIs, I, this construction renders a nec-
essary, not just sufficient, mutual exclusion condition between two subsystems
Ai and Aj of a system of linear inequalities A, if the following holds. To express
the condition, let I \ (i, j) denote the subset of I containing all those tuples
which have > in all positions other than the ith and jth. Then the condition is
that I \ (i, j) elements cannot be linearly combined into a tuple Ix, such that
(a) Ix /∈ I \ (i, j), and (b) @Ik ∈ I \ (i, j) such that vars(Ik) ⊂ vars(Ix).

To see this, recall that all non-basic solutions of a system of linear inequalities
can be derived by linear combination of basic feasible solutions. Further, though
each Ik ∈ I defines a disjunct in the condition, Ik defines a redundant disjunct,
if there is another tuple Il, such that vars(Il) ⊆ vars(Ik). Given, therefore, a
condition derived in the manner described above on the basis of a set of tuples
of GRIs, I, it can only be weakened by an additional non-redundant disjunct, if
there is a tuple of GRIs which fulfils (a) and (b).

Even though the sets of n-tuples of GRIs inferred by the above method
generally possess that property, there are exceptions to that rule. They arise
in situations where two clauses each contain more than one constraints on a
common variable and that variable occurs with both a negative and a positive
coefficient in each clause. If that variable occurs in more than one n-tuple of
GRIs, then linear combination of these tuples may result in the cancellation,
and therefore disappearance of that variable.

Example 9. To demonstrate, consider the following two systems:

A1 A2

x− z ≤ 0 −x + z ≤ −1

−x + y ≤ 0 x− y ≤ −1

Each system contains more than one constraint on x and in each system, x
occurs with both a positive and a negative coefficient.

Our method constructs two pairs of GRIs, 〈x − z ≤ 0,−x + z ≤ −1〉 and
〈−x+ y ≤ 0, x− y ≤ −1〉, and thus infers (x∧ y)∨ (x∧ z) as a mutual exclusion
condition between A1 and A2. However, it does not find 〈y−z ≤ 0,−y+z ≤ −2〉,
which is a linear combination of the first two. If this third pair were constructed,
the inferred condition would be weakened to (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z).

As it stands, our method therefore cannot guarantee minimality of the mu-
tual exclusion conditions inferred. In the (uncommon) case described above, the
conditions inferred are stronger than necessary. We discuss a possible solution
to that problem in section 6.

5 Implementation and Experimental Results

In our previous implementation of a determinacy inference [2], the time required
to infer the mutual exclusion conditions dominated all other aspects of the anal-
ysis. We thus compare how the new approach compares against the time required

12

for argument size analysed based on polyhedra [22]. To make the comparison as
fair as possible, the argument size analysis uses Octagons [23], which is a tem-
plate domain that is particularly efficient, rather than general polyhedra [22].

file size lfp (ms) mux (ms)
browse 27 620 0
crypt wamcc 20 670 24
dialog 35 640 0
disj r 59 1010 0
fastcolor 8 60 0
gabriel 31 650 0
ime v2-2-1 44 19910 3
music 11 290 0

file size lfp (ms) mux (ms)
qsort 8 620 0
queens 11 110 0
ronp 34 650 0
rotate 3 30 0
semi 25 3040 0
serialize 17 930 4
shape 10 90 0
treeorder 13 610 1

The column size is the number of predicates in the benchmark; lfp is the time
required to compute the argument size relations; and mux is the time required
to compute the mutual exclusion conditions from the argument sizes. Timings
were performed on 2.53 GHz Macbook Pro. The analyser was implemented in
SICStus 4.0.1 using its linear constraints for realising Octagons and lrs (http:
//cgm.cs.mcgill.ca/~avis/C/lrs.html) for computing the mutual exclusion
conditions. We conclude that mux is no longer the computational bottleneck.

6 Related Work

Overlapping Type Class Instances Morris et al [14] discuss the problem of over-
lapping between instances of the same type class in Haskell. A similar problem
arises in Coq [24]. We are not aware of any existing approaches to this problem
that are oriented towards static analysis, but we believe that mutual exclusion
inference may provide the right basis for such an approach.

Determinacy Checking The earliest framework for determinacy analysis of logic
programs we are aware of is Sahlin’s work [25] which geared towards partial
evaluation and detects whether there are none, one or more than one way in
which a goal can succeed. This approach is further developed by Mogensen [26],
who presents a formal semantics to exhibits its correctness. Dawson et al. [27]
present a bottom-up framework for adding success patterns to predicates so
as to improve determinacy behaviour and promote early failure in unsuccess-
ful computations. More recently, López-Garćıa et al. [28] present a framework
which detects both fully deterministic predicates and predicates with mutually
exclusive clause tests. Their work is sufficiently general to be able to handle con-
straints from different domains, including both linear and Herbrand constraints,
and as well as address the effects of the cut on the determinacy of a predicate.

Interpolation Interpolation has recently found application in model checking [29],
but the majority of approaches of constructing interpolants are based on proof-
analysis [7]. Rybalchenko and Sofronie-Stokkermans [30] discuss the limitations

13

of deriving interpolants from proofs and show how to reduce the problem of
constructing interpolants in linear arithmetic extended by uninterpreted function
symbols to, essentially, three constraint problems. Their reduction makes explicit
use of Farkas’ Lemma. On the one hand their approach is more general than
the work presented here, since constraint solving is applicable in a variety of
domains other than linear arithmetic. On the other hand, this work represent a
generalisation of their approach, since it allows the simultaneous enumeration of
several interpolants between two or more such systems of linear inequalities.

7 Future Work

Our method will not always find the weakest mutual exclusion condition. As ex-
ample 9 illustrates, this arises when two n-tuples of GRIs are combined in such
a way that a common variable is removed in the combination process. These
combinations can be found by adding a single constraint to the lrs formulation
that stipulates that the coefficient of the shared variable is zero. We believe that
this refinement ensures optimality, whilst avoiding expensive quantifier elimina-
tion. However, as yet, we have neither proven that this guarantees optimality
nor found a benchmark program that actually warrants this refinement.

8 Conclusions

We have presented an efficient method for constructing sets of interpolants from
inconsistent systems of linear inequalities. Further, we have shown how to apply
this method to construct mutual exclusion conditions between clauses of Prolog
predicates by applying size abstractions. The conditions inferred are guaranteed
to be sufficient, but they are not, at present, guaranteed to be necessary.

Acknowledgements We thank Samir Genaim and Lunjin Lu for their help with
determinacy inference and Tom Schilling and Matthieu Sozeau for discussions on
type classes. This work was funded by the Royal Society Joint Project JP101405.

References

1. Lu, L., King, A.: Determinacy Inference for Logic Programs. In: ESOP. Volume
3444 of LNCS., Springer-Verlag (2005) 108–123

2. Kriener, J., King, A.: RedAlert: Determinacy Inference for Prolog. TPLP 11
(2011) 537–553

3. Bossi, A., Cocco, N., Fabris, M.: Norms on Terms and their use in Proving Universal
Termination of a Logic Program. Theoretical Computer Science 124 (1994) 297–
328

4. Martin, J.C., King, A., Soper, P.: Typed Norms for Typed Logic Programs. In:
LOPSTR. Volume 1207 of LNCS., Springer (1996) 224–238

5. Weispfenning, V.: The Complexity of Linear Problems in Fields. Journal of Sym-
bolic Computation 5 (1988) 3–27

14

6. Craig, W.: Three Uses of the Herbrand-Gentzen Theorem in Relating Model The-
ory and Proof Theory. J. Symb. Log. 22 (1957) 269–285

7. Weissenbacher, G.: Program Analysis with Interpolants. PhD the-
sis, Magdalen College (2010) http://ora.ouls.ox.ac.uk/objects/uuid:

6987de8b-92c2-4309-b762-f0b0b9a165e6.

8. Kraj́ıček, J.: Interpolation Theorems, Lower Bounds for Proof Systems, and Inde-
pendence Results for Bounded Arithmetic. Journal of Symbolic Logic 62 (1997)
457–486

9. Farkas, J.: Theorie der einfachen Ungleichungen. Journal für die Reine und Ange-
wandte Mathematik 124 (1902) 1–27

10. Avis, D.: lrs: A Revised Implementation of the Reverse Search Vertex Enumeration
Algorithm. In Kalai, G., Ziegler, G.M., eds.: Polytopes - Combinatorics and
Computation. Birkhauser-Verlag (2000) 177–198

11. Goodman, J.E., O’Rourke, J., eds.: Handbook of Discrete and Computational
Geometry. CRC Press (2004)

12. Read, R.C.: Everyone a Winner. Annals of Discrete Mathematics 2 (1978) 107–120

13. Peyton-Jones, S., Jones, M., Meijer, E.: Type Classes: an exploration of the design
space. In: ACM SIGPLAN Haskell Workshop. (1997)

14. Morris, J.G., Jones, M.P.: Instance Chains: Type Class Programming Without
Overlapping Instances. In Hudak, P., Weirich, S., eds.: ICFP, ACM (2010) 375–
386

15. The GHC Team: The Glorious Glasgow Haskell Compilation System User’s
Guide, Version 7.2.1 (2011) http://www.haskell.org/ghc/docs/latest/html/

users_guide.

16. O’Keefe, R.A.: The Craft of Prolog. MIT Press (1990)

17. King, A., Lu, L.: Forward versus Backward Verification of Logic Programs. In:
ICLP. Volume 2916 of LNCS., Springer-Verlag (2003) 315–330

18. Kovács, L., Voronkov, A.: Interpolation and Symbol Elimination. In Schmidt,
R.A., ed.: CADE. Volume 5663 of LNCS., Springer (2009) 199–213

19. Ziegler, G.M.: Lectures on Polytopes. Springer, New York (1995)

20. Bertsimas, D., Tsitsiklis, J.: Introduction to Linear Optimization. 1st edn. Athena
Scientific (1997)

21. Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Applied Mathe-
matics 65 (1996) 21–46

22. Benoy, F., King, A.: Inferring Argument Size Relationships with CLP(R). In:
LOPSTR. Volume 1207 of LNCS., Springer (1996) 204–223

23. Miné, A.: The Octagon Abstract Domain. HOSC 19 (2006) 31–100

24. Sozeau, M.: A New Look at Generalized Rewriting in Type Theory. Journal of
Formalized Reasoning 2 (2009) 41–62

25. Sahlin, D.: Determinacy Analysis for Full Prolog. In: Symposium on Partial
Evaluation and Semantics-Based Program Manipulation, ACM (1991) 23–30

26. Mogensen, T.Æ.: A Semantics-Based Determinacy Analysis for Prolog with Cut.
In: Ershov Memorial Conference. Volume 1181 of LNCS., Springer (1996) 374–385

27. Dawson, S., Ramakrishnan, C.R., Ramakrishnan, I.V., Sekar, R.C.: Extracting
Determinacy in Logic Programs. In: Proceedings of the Tenth International Con-
ference on Logic Programming, MIT Press (1993) 424–438

28. López-Garćıa, P., Bueno, F., Hermenegildo, M.V.: Automatic Inference of Deter-
minacy and Mutual Exclusion for Logic Programs Using Mode and Type Analyses.
New Generation Computing 28 (2010) 177–206

15

29. McMillan, K.L.: Applications of Craig Interpolants in Model Checking. In Halb-
wachs, N., Zuck, L.D., eds.: TACAS. Volume 3440 of Lecture Notes in Computer
Science., Springer (2005) 1–12

30. Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint solving for interpolation.
Journal of Symbolic Computation 45 (2010) 1212–1233

16

