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Abstract. We present a set of extensions to Montana’s popular Strongly
Typed Genetic Programming system that introduce constraints on the
structure of program trees. It is demonstrated that these constraints can
be used to evolve programs with a naturally imperative structure, us-
ing common high-level imperative language constructs such as loops. A
set of three problems including factorial and the general even-n-parity
problem are used to test the system. Experimental results are presented
which show success rates and required computational effort that compare
favourably against other systems on these problems, while providing sup-
port for this imperative structure.

1 Introduction

Evolving high-level imperative programs with genetic programming (GP) [1] is
challenging. Programs are required to abide by complex structural rules just
to be legal, and introducing commonly used constructs such as iteration bring
further complexities to ensure that programs terminate and can be evaluated
effectively. Because of these challenges, the GP research community has tradi-
tionally focused on the evolution of functional programs with a simple nested
structure. However, the success of recent work using GP to perform tasks such as
bug fixing commercial imperative programs [2], demonstrates the value of being
able to evolve high-level imperative code. Modern imperative languages such as
C/C++, Java and Python are widely used in the software development industry,
so the evolution of code in this form is highly relevant for any application of GP
in this area.

In this paper, we introduce Strongly Formed Genetic Programming (SFGP),
a novel approach to constraining the structure of the program trees evolved with
GP. SFGP extends previous work by Montana on Strongly Typed Genetic Pro-
gramming [3] and combines it with constraints similar to those used by Koza in
his work on constrained syntactic structures [1]. We demonstrate how the addi-
tional structural constraints of SFGP can be used to evolve high-level imperative
code within a tree representation.

The rest of this paper is organised as follows. Section 2 discusses some of the
previous work on evolving imperative programs. Section 3 then gives a detailed



2 Tom Castle and Colin G. Johnson

description of how SFGP works. Section 4 describes the experiments that were
conducted with the results presented and discussed in section 5. Finally, we
conclude and summarise some of the research that this work leads on to in
section 6.

2 Background

Some of the earliest attempts at evolving imperative programs were with a linear
GP [4, 5] approach. In linear GP, programs are comprised of a sequence of either
machine code or interpreted higher- level instructions. The instructions read from
and write to registers. The main incentive for using linear GP is faster execution
speed [6], since the instructions can often be executed directly on hardware with
little or no interpretation.

Grammar-guided GP is another area that has prompted work into imperative
GP. Grammars provide a mechanism for constraining source code that is gen-
erated within a valid predefined syntax. O’Neill and Ryan [7] evolved multi-line
C programs in their Grammatical Evolution (GE) system to solve the Santa Fe
ant trail problem. While shown to be successful at solving this problem, the use
of the standard GE algorithm in evolving more complex imperative programs
is difficult since it uses context-free grammars which lack the expressiveness
to describe semantic constraints. Other authors [8–10] have described exten-
sions to GE that use context-sensitive grammars, but none go as far as using
the extensions to evolve imperative programs. More recently, Langdon [11] has
demonstrated how a grammar-guided GP system can be used to evolve com-
pilable C++ CUDA kernels. Other grammar-based approaches have made use
of context-sensitive grammars such as DCTG- GP [12] and LOGENPRO [13]
which uses logic grammars to induce programs in a range of languages, includ-
ing imperative C programs.

Montana proposed Strongly Typed Genetic Programming (STGP) [3] to al-
low nodes to define data-type constraints on their inputs that will be satisfied
by the algorithm. This removes the need for the nodes to satisfy the closure
property [1]. STGP does not provide any explicit mechanism for restricting the
structure of program trees as grammars do, but the data-typing constraints do
go some way to providing the restrictions necessary for supporting an imper-
ative structure. Imperative programs are inherently composed of sequences of
statements which are to be executed in order. Koza [1] used ProgN functions
to achieve something similar. However, as McGaughran and Zhang [14] observe,
this approach may provide a sequential ordering but it does so without a control
structure that corresponds to any standard imperative constructs. They go on
to present their own system based on a method of chaining statements.

3 Strongly Formed Genetic Programming

In this section we describe our method of evolving programs with a naturally
high-level imperative structure. We refer to the method by the name Strongly
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Formed Genetic Programming (SFGP), since it extends Montana’s STGP, with
additional constraints to the structure or form of the program trees.

Let us first clarify the limitation of STGP with an example. STGP requires
all non-terminals to define the required data-type of each of their inputs. But,
no limitation can be imposed on which terminal or non-terminal will provide
that input. The child node may be any terminal or non-terminal of the correct
data-type. Consider a type of node that performs the variable assignment oper-
ation. Any non-trivial imperative program is likely to require such a node. This
Assignment node will require two inputs: a variable, and a value of the same
data-type to assign to that variable. STGP can easily constrain these two inputs
to be of the same data-type, but requires additional constraints to limit the first
child to be a Variable node, rather than any other node of that data-type. The
same problem exists with constraining code-blocks to contain only statements,
and loop constructs that require a variable to update with an index.

SFGP resolves this problem by introducing an additional requirement of non-
terminal nodes; that they define both a data-type and a node- type for each ar-
gument. The node-type property of an argument is defined as being the required
terminals or non-terminals that can be a child node at this point, which when
evaluated will return a value of the specified data- type. This therefore provides
an explicit constraint on the shape and structure of program trees. In the case
of an integer Assignment node, this can be used to state that the first child
should not only be of an integer data-type, but should also specifically be a
Variable node. These constraints must then be satisfied throughout the evo-
lutionary process with minor modifications to the initialisation, mutation and
crossover operators, as described in the following sections.

3.1 Initialisation

SFGP uses a grow initialisation procedure to construct random program trees,
where each node is selected at random from those with a compatible data-
type and node-type required by its parent (or the problem itself for the root
node). Montana’s grow initialisation operator made use of lookup tables to check
whether a data-type is valid at some depth, but the addition of a second con-
straint excessively complicates these tables. The alternative is to allow the algo-
rithm to backtrack when no valid nodes are possible for the required constraints.
At each step, if no valid nodes are possible within the available depth, then the
function returns an error, and if the construction of a subtree fails with an error
then an alternative node is chosen and a new subtree generated at that point.
The algorithm ensures that all program trees that are generated satisfy all data-
type and node-type limitations and that each tree is within the maximum-depth
parameter.

Pseudo-code for the grow initialisation algorithm is listed in algorithm 1.
The GenerateTree function is initially called with a data type parameter that
is the required return type for the problem and a node type parameter which
defines the node-type required for the root of the program tree. On all problems
in this paper, a root node of SubRoutine is used, which is intended to model a
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Algorithm 1 Initialisation procedure, where dt, nt and depth are the required
data-type, node-type and maximum depth. The filterNodes(S, dt, nt, depth)
function is defined to return a set comprised of only those nodes in S with the
given data-type and node-type, and with non-terminals removed if depth = 0.

1: function GenerateTree(dt, nt, depth)
2: V ← filterNodes(S, dt, nt, depth)
3: while V not empty do
4: r ← removeRandom(V )
5: for i← 0 to arity(r) do
6: dti← required data-type for ith child
7: nti← required node-type for ith child
8: subtree← generateTree(dti, nti, depth− 1)
9: if subtree 6= err then

10: attach subtree as ith child
11: else
12: break and continue while
13: end if
14: end for
15: return r . Valid subtree complete
16: end while
17: return err . No valid subtrees exist
18: end function

module of code such as a function or method. This means that all programs that
are generated have the same basic imperative structure, shown in figure 1. The
SubRoutine node requires two children: a CodeBlock with a void data-type and
a Variable with the same data-type as the subroutine. Nodes with a void data-
type do not return a value. When evaluated, a subroutine’s code-block, which
is a list of some predefined number of statements, is first executed and then the
value of the variable is returned as the result of the subroutine.

3.2 Mutation

Our mutation operator employs the initialisation algorithm to grow new subtrees
of the same data-type and node-type as an existing randomly selected node in
a program tree. This node is then replaced with the newly generated subtree.
The initialisation procedure is able to generate trees within a given maximum
depth, so replacement subtrees are generated to be no deeper than the maximum
depth parameter, minus the depth of the mutation point. Assuming the set of
available nodes is unchanged, then it should always be possible to generate a legal
replacement subtree for any existing node, but it is possible that the replacement
is syntactically or semantically identical to the existing subtree. It is possible that
this could lead to a high degree of neutral mutation if the syntax contains little
variety.
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Fig. 1: The imperative structure of all program trees. In this paper, CodeBlocks
with exactly 3 statement arguments were used. This was an arbitrary choice and
an alternative size may produce different results. Evaluation executes each of the
code-block’s statements, before returning the value of the sub-routine’s variable.

3.3 Crossover

The subtree crossover operator has been modified to maintain the node-type
constraint while exchanging genetic material between two program trees. A node
is selected at random in one of the programs. A second node is chosen at random
from those nodes in the other program that are of the same data- type and node-
type as the first node. The subtrees rooted at these two selected nodes are then
exchanged. Those resultant child programs that have depths that exceed the
maximum depth parameter are discarded.

3.4 Polymorphism

When implemented with an object-oriented approach, SFGP is able to support a
simple form of polymorphism for both the data-type and node-type constraints.
In figure 1 the CodeBlock node is shown to have a sequence of children with a
Statement node-type. In an object-oriented system, this can be interpreted as
any object that is an instance of the Statement class, or any sub-class. Nodes
such as Assignment, IfStatement and ForLoop may then be implemented as
sub-classes of Statement and may all appear in this position. In fact, it makes
little sense to create a node of the type Statement itself, it is merely used
to maintain the hierarchy of node-types. We refer to such node-types as ab-
stract node-types. Expression is another abstract node-type that is used fre-
quently. Data-type constraints can make use of the same polymorphic properties.
If Integer and Float are both sub-classes of a class called Number, then either
may appear where a required data-type of Number is specified. Note that the
object-oriented approach we refer to here is a property of the implementation,
rather than of the evolved programs, which are not themselves object-oriented.
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3.5 Syntax

In this section we itemise the list of nodes that are used in the rest of this paper,
along with the required data-type and node-types for their arguments.

– SubRoutine - requires a void CodeBlock and a Variable of the same data-
type as the sub-routine. On evaluation, the code-block is evaluated and then
the value of the variable is returned as the result. In all our experiments,
SubRoutine is defined as the required root node-type.

– CodeBlock - is defined to require a fixed number of child nodes (3 used in
all cases within this paper) of a Statement node-type and a void data-type.
On evalutation, each child will be evaluated in sequence. CodeBlock has a
void data-type and so does not return a value.

The following node-types are all subtypes of the abstract Statement node-
type. All statements have a void data-type and so do not return any value.

– Loop - requires two children: an integer Expression and a CodeBlock. The
expression is evaluated to provide a number of iterations to perform, and the
code-block is evaluated the specified number of times. To maintain reason-
able evaluation times, the number of iterations is capped at 100. No variables
are manipulated by this loop construct.

– ForLoop - requires an integer Variable, which is updated with the index on
each iteration from 1 to an upper bound; an integer Expression which is
evaluated once to supply the upper bound (capped at 100 iterations) and a
CodeBlock which is evaluated once per iteration.

– ForEachLoop - requires three children: a Variable of the element data-
type, an Expression of some pre-defined array data-type and a CodeBlock.
The code-block is evaluated once for each element of the array obtained
by evaluating the expression argument. For each iteration, the value of the
element is assigned to the variable.

– IfStatement - requires one boolean Expression and one CodeBlock. The
code-block is conditionally evaluated only if the expression evaluates to true.

– Assignment - requires one Variable and one Expression input. Both in-
puts are required to have the same data- type specified on construction. On
evaluation the expression is evaluated, and the result is assigned as the value
of the variable.

The following node-types are all subtypes of the abstract Expression node-
type. All expressions have non-void data-types.

– Add, Subtract, Multiply - require two integer Expression children each,
with the integer result of the arithmetic operation returned.

– And, Or, Not - require two, two and one boolean Expression children re-
spectively, with the boolean result returned.

– Literal - holds a fixed literal value of a given data-type.
– Variable - holds a value of a given data-type which may be modified (by

assignment) throughout evaluation. The data-type of a variable is fixed at
construction.
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4 Experiments

A series of experiments were carried out to demonstrate SFGP’s ability to gen-
erate programs composed of standard programming constructs, within the im-
perative structure enfored by our constraints. All experiments were carried out
using the EpochX evolutionary framework [15], with our own extension in which
the representation and operators were implemented as described in section 3.
500 runs were performed on each of three problems: factorial, Fibonacci and
even-n-parity. These problems were chosen because they require the use of es-
sential programming constructs such as loops and arrays and have also been used
numerous times previously in the literature [16–18]. A maximum of 50 genera-
tions and a population of 500 were used on all problems. The subtree crossover
and subtree mutation operators were chosen from with probabilities 0.9 and 0.1
respectively and tournament selection was used with a tournament size of 7. All
other control parameters used are outlined in tables 1, 2 and 3.

4.1 Factorial

The program to be evolved here is an implementation of the factorial function.
One input is provided, which is the integer variable i, where the ith element of
the sequence is the expected result. The first 20 elements of the sequence were
used to evaluate the quality of solutions, with a normalised sum of the error used
as an individual’s fitness score. The fitness function is defined in (1), where n is
the size of the training set, i is the ith training case, f(i) is the correct result
for training case i, and g(i) is the estimated result for training case i returned
by the program under evaluation. Each individual which successfully handles all
training inputs is tested for generalisation using a test set consisting of elements
21 to 50 of the sequence.

Fitness =

n∑
i=0

|f(i)− g(i)|
|f(i)|+ |g(i)|

(1)

Table 1: Parameter tableau for the factorial problem

Root data-type: Integer

Root node-type: SubRoutine

Max. depth: 6

Non-terminals: SubRoutine, CodeBlock, ForLoop, Assignment, Add,
Subtract, Multiply

Terminals: i, loopV ar1, 1 (integer Literal)

1 The additional input loopVar is an integer variable, provided specifically for use by
the ForLoop construct to contain the iteration index. Its initial value is 0.
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4.2 Fibonacci

The Fibonacci problem was posed in a similar form as factorial, with an integer
variable input i and an expected output which is the ith element of the Fi-
bonacci sequence. Two further inputs were also provided in the form of variables
containing the value of the first two elements of the sequence; 0 and 1. The same
function (1) was also used to determine an individual’s fitness, with the training
inputs comprised of the first 20 elements of the Fibonacci sequence. A test set
made up of elements 21 to 50 of the sequence were used to test the generalisation
of successful programs.

Table 2: Parameter tableau for the Fibonacci problem

Root data-type: Integer

Root node-type: SubRoutine

Max. depth: 6

Non-terminals: SubRoutine, CodeBlock, Loop, Assignment, Add, Subtract

Terminals: i, i0, i1

4.3 Even-n-Parity

The boolean parity problems are widely used as a benchmark task in the GP
literature [1, 5, 19]. However, they have only occasionally been tackled in the
general form; for all values of n [18, 20]. A program which successfully solves the
even-n-parity problem, must receive as input an array of booleans, arr, of any
length and must return a boolean true value if an even number of the elements
are true, otherwise it must return false. All possible inputs to the 3-bit even-
parity problem were used as the training data, as used by Wong and Leung [18].
The fitness of an individual was then a simple count of how many of the 8 inputs
were incorrectly classified. A test set consisting of all possible input arrays of
lengths 4 to 10 was used to test the generalisation of solutions that successfully
solved the training cases.

Table 3: Parameter tableau for the even-n parity problem

Root data-type: Boolean

Root node-type: SubRoutine

Max. depth: 8

Non-terminals: SubRoutine, CodeBlock, ForEachLoop, IfStatement,
Assignment, And, Or, Not

Terminals: arr, boolV ar1, boolV ar22

2 boolVar1 and boolVar2 are boolean variables for use by the ForEachLoop and root
SubRoutine constructs. Their initial values were arbitrarily set as false.
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5 Results

Table 4 lists a summary of the results, with the success rates and generalis-
ability of the solutions that were discovered in the experiments. The table also
describes the computational effort that was required to solve each problem, with
the related performance curves displayed in figures 2a, 2b and 2c. The required
computational effort was calculated in the manner of Koza [1] to be the number
of individuals that must be processed to guarentee a solution with 99% confi-
dence.

Previous attempts at evolving recursive structures that can generate the
Fibonacci sequence include Harding et al [16], who used Self-Modifying Cartesian
GP to generate both the first 12 and first 50 elements of the sequence with success
rates up to 90.8% and up to 94.5% of those able to generalise to 74 elements of
the sequence. In [21], a Linear GP system was used to achieve success rates up
to 92%, and which generalised in 78% of cases. Other approaches have been less
successful. Agapitos and Lucas used Object Oriented GP[17] to get success rates
up to 25% on the first 10 elements of the sequence, but required a minimum
computational effort of 2 million. Their success rates were slightly improved on
the factorial problem, on which they report a 74% success rate and a minimum
effort of 600,000. However, they note that their approach, which relies on Java’s
Reflection mechanism, is computationally expensive.

The even parity problems are considered to be difficult problems for GP to
solve [20]. Koza’s experiments required 1,276,000 individuals to be processed to
yield a solution to just the 4-bit version of the problem and was unable to solve
the problem with any higher number of bits without the use of automatic func-
tions. In contrast, SFGP produced potential solutions with just 30,500 individu-
als processed, 81.4% of which were able to solve the general form of the problem
including the 4-bit version. Other research has tackled the general even-n-parity
problem. Agapitos and Lucas[17] required 680,000 individuals to be processed,
where they used all the even-2-parity and even-3-parity problems as training
data. In [18], Wong and Leung used just the even-3-parity problems as training
inputs and reported their minimum computational effort as 220,000.

Table 4: Results summary, where Train% is the proportion of runs that produced
at least one solution for all training cases and Test% is the proportion that pro-
duced a solution that generalised to solve all test cases. The confidence interval
for the computational effort is calculated using the Wilson ’score’ method [22].
The Evals column shows the number of program evaluations required to find a
solution, which is a product of the effort and number of training cases.

Train % Test % Effort 95% CI Evals

Factorial 70.8 70.6 29,400 25,800 - 33,500 588,000
Fibonacci 61.6 59.8 41,500 35,600 - 48,500 830,000

Even-n-Parity 91.6 81.4 30,500 26,400 - 35,400 244,000
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(b) Fibonacci
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(c) Even-n-parity

Fig. 2: Performance curves, where P (M, i) is the success rate and I(M, i, z) is
the number of individuals to process to find a solution with 99% confidence.

The primary reason for SFGP’s greater performance on even-n-parity is likely
to be due to the use of the ForEachLoop node, which encapsulates the necessary
behaviour of performing an operation on each element of the array. The other
studies mentioned relied on complex recursive structures developing through
evolution.

5.1 Example solution

As an example, one typical solution to the factorial problem that was found by
SFGP is displayed below:

public long getFactorial(long i) {

loopVar = loopVar;

long x = i;

loopVar = 1L;

for (long y = 1L; y <= x; x++, loopVar = x) {

loopVar = (loopVar * i);

i = loopVar;

loopVar = loopVar;

}

i = i;

return i;

}
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This example program is expressed using Java syntax, but the abstract syn-
tax trees generated by SFGP can be interpreted as programs in the syntax of
any programming language that supports the imperative constructs used. This
program has not undergone any post-processing, and contains statements such
as i = i which will have no impact on the result. These could easily be identified
and removed by static analysis tools. Note that the loop structure contains the
necessary infrastructure to ensure the index variable is updated but the bounds
remain immutable, as defined by the ForLoop node that it represents.

6 Conclusions

In the course of this paper, we have introduced Strongly Formed Genetic Pro-
gramming (SFGP) and demonstrated how it can be used to constrain the struc-
ture of program trees. In particular, we have shown that it is able to constrain
evolved program trees to a more natural high-level imperative structure and
make use of some standard imperative language constructs such as loops. The
program trees that are evolved using this system may be easily expressed in the
syntax of modern imperative programming languages. The results of using this
imperative structure, that have been presented, compare very favourably with
existing systems on these problems.

One current limitation with SFGP, that we would like to address in future
work, is the lack of support for generic functions. Other possible future work
includes investigating the impact of the arbitrary settings that have been used
in this paper, such as the iteration bound on loop constructs and the fixed
number of statements in a code-block. Support for imperative concepts such as
variable declarations and recursion could also be of some value.
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