
Multicore Scheduling for Lightweight
Communicating Processes

Carl G. Ritson, Adam T. Sampson, Frederick R.M. Barnes

School of Computing, University of Kent, Canterbury, Kent, UK

Abstract

Process-oriented programming is a design methodology in which software
applications are constructed from communicating concurrent processes. A
typical process-oriented design involves the composition of a large number of
small isolated component processes. These concurrent components allow for
the scalable parallel execution of the resulting application on both shared-
memory and distributed-memory architectures. In this paper we present
a runtime designed to support process-oriented programming by provid-
ing lightweight processes and communication primitives. The runtime’s
scheduler, implemented using lock-free algorithms, automatically executes
concurrent components in parallel on multicore systems. Heuristics dynam-
ically group processes into cache-affine work units based on communication
patterns. Work units are then distributed via wait-free work-stealing. Ini-
tial performance analysis shows that, using the algorithms presented in this
paper, process-oriented software can execute with an efficiency approaching
that of optimised sequential and coarse-grain threaded designs.

Key words: Concurrency, Multicore, Process-oriented, Scheduling

Note: the final published version of this article is available in the Science of
Computer Programming 77(6), Elsevier. Doi: 10.1016/j.scico.2011.04.006.

1. Introduction

Interest in concurrent programming techniques is growing as a result of
the increasing ubiquity of multicore systems on the desktop, and in mobile

Email addresses: cgr@kent.ac.uk (Carl G. Ritson), ats@offog.org (Adam T.
Sampson), frmb@kent.ac.uk (Frederick R.M. Barnes)

Preprint submitted to Science of Computer Programming May 8, 2012



Pause UpsampleCamera Display

User

Buffer

Figure 1: Pausable camera display, process-oriented pipeline example.

and embedded systems. Designing applications which scale to current and,
more importantly, future multicore systems is an important research topic.
Process-oriented programming is one concurrency paradigm available for
creating such scalable software.

Process-oriented programming employs concurrency as a design tool for
constructing software applications. Small independent concurrent processes
are composed to form larger components, which through continued compo-
sition form the application as a whole. The developer is dissuaded from
using forms of sharing which may introduce race-hazards and aliasing errors;
they may even be prevented from doing so by the compiler [1]. Instead,
interaction between processes takes place via explicit communication and
synchronisation primitives. These expose dependencies at the design level
and permit diagrammatic representations such as Figure 1. While in the past
message-passing designs mapped processes one-to-one to processors [2, 3],
process-oriented designs are intended to be architecture independent [4–7].

Parallel execution potential is inherent in a process-oriented design, and
is bounded only by the number of ready processes. While the size of
components varies with the design style chosen, a typical process-oriented
design can have thousands of processes. Furthermore, as processes are
created and connections between them made at runtime, truly dynamic
systems can be modelled directly as process networks [8, 9]. The explicit
transfer of state using communication allows unmodified designs to be seri-
alised for a single processor [10], and parallelised across shared-memory and
distributed-memory multiprocessor systems [11, 12].

Process-oriented software needs to execute with comparable performance
to a sequential implementation in the absence of hardware parallelism,
and automatically scale when multiple processors are available. To make
this possible, scheduling and communication overheads must be minimised.
Communication between processes must have an overhead comparable to
calling a procedure, or invoking a method on an object. Runtime imple-
mentations which build communication upon common locking and operat-
ing system synchronisation primitives do not provide sufficient performance.
Process-oriented software also requires functionality not provided by many
lightweight threading frameworks (see section 6).

2



In this paper we present implementation details of our runtime kernel
for realising scalable process-oriented programming on multicore systems.
Specifically we contribute:

• Wait-free algorithms for process migration via work stealing [13, 14].

• Automatically grouping communicating processes into cache-affine
work units at runtime.

• Multiprocessor-aware interprocess communication with an average
overhead of only 140 cycles on modern commodity hardware.

• A mechanism for choice over a set of communication channels inspired
by that of the INMOS Transputer [15, 16], made multiprocessor safe.

Our runtime is a C library and provides a C API. It can also be
used through occam-π, a concurrent programming language which supports
process-oriented design [9, 17]. The occam-π language extends original oc-
cam [6] with channel and data mobility. It is rooted in the formalisms of
Hoare’s CSP [10, 18], and Milner’s π-calculus [8].

occam-π is being used as an implementation language for complex sys-
tems and operating systems research [19, 20]. A complex system can be
modelled as agents, each of which is a composition of concurrent processes.
Agents move through and interact with a simulated environment using com-
munication and dynamic changes in connectivity. The environment itself
is also a composition of concurrently executing processes. Simulations can
scale up to hundreds of thousands of processes [21]. Using the runtime
presented in this paper, these simulations can be executed in real time on
commodity workstations, utilising all processing resources available.

The rest of the paper is as follows. In section 2 we introduce our light-
weight processes and a system for scheduling them across multiprocessors
while attempting to enhance cache utilisation. Section 3 describes commu-
nication channels, which can be used to pass information between processes
executing on the same processor or separate processors in a shared-memory
system. Primitives for choice, protecting shared resources and synchronising
large numbers of processes are discussed in section 4. Finally an evaluation
of performance comparing a sample set of applications implemented using
other concurrency frameworks is presented in section 5. Related work is
presented in section 6. Our conclusions and details of possible future work
are in sections 7 and 8.

3



Logical Processor

Process

Process

Process

Head

Tail

Dispatch
Count

Active Queue

Batch

Batch

Process

Process

Process

Head

Tail

Batch

Head

Tail

Migration Window

Run Queue

Figure 2: A logical processor instance schedules batches of processes on each physical
processor. Batches in the migration window can be stolen by other logical processors.

2. Processes

In this section we describe our runtime’s cooperative scheduling model
for concurrent processes. As the fundamental building blocks of process-
oriented software, processes must be lightweight. Our design is intended
to minimise context-switch times and memory usage, as well as exploit
cache-affinity and hardware parallelism.

For reference in later sections we must first describe how processes are
represented by the scheduler kernel. Each process has a process descriptor
used to store state when descheduled or performing certain kernel calls. The
descriptor can be allocated statically on the process stack, or when state
does not need to persist across kernel calls it may be allocated dynamically
at the point of call. In either case, the size of the process descriptor is
eight machine words (32 bytes on a 32-bit machine). This minimal memory
overhead makes the creation of very large numbers of processes practical.

The process descriptor contains the following elements:

Alternation State Priority and Affinity Mask

Communication Data Pointer Stored Instruction Pointer

Queue Link Pointer Stored Stack Pointer

2.1. Scheduling

Our scheduling model is divided into uniprocessor and multiprocessor
components. In this subsection we focus on uniprocessor scheduling. We
also explain how processes can be grouped to enhance cache-affinity (reduce
interprocessor cache communication).

4



For each physical processor in the host system a scheduler instance, a
logical processor, is started. The logical processor contains a run queue,
which is a linked list of batches. Batches are in turn linked lists of process
descriptors, linked using the Queue Link Pointer field. An overview of this
structure can be seen in Figure 2.

The scheduler executes each batch by moving the processes it contains
to its active queue. A dispatch count is calculated based on the number of
processes in the batch (multiplied by a constant) and bounded by the batch
dispatch limit (constant). The dispatch count is decremented each time a
process is taken from the active queue and executed. When the dispatch
count reaches zero, and the active queue is not empty, the current active
queue is stored into a new batch which is added to the end of the run queue.

2.1.1. Batching

As outlined above, batches are the base unit of work stored in scheduler
data structures, and also for migration (see section 2.2). Batches address the
issue of cache thrashing which can occur with process-oriented designs. It is
highly probable that with a large number of processes switched frequently,
the working set will exceed the processor’s cache size. Processes and their
data will be drawn into cache only to be rapidly evicted again, serving few
or no hits. Modern processor architectures rely on cache to compensate
for the high-latency of system memory, so sidelining the cache will severely
restrict performance. The solution is to reduce the size of the working
set by minimising the memory overheads on processes and partitioning the
run queue. Vella proposed and experimented with dividing the run queue
into batches of processes [11, 13]. Each batch is executed multiple times
before moving on to the next. Relatively small batches fit well within
the processor cache. Successive executions permit cache utilisation, thus
improving performance.

Our scheduler attempts to group processes into the same batch when
they communicate or synchronise with each other. By forming batches
in this way, processes which communicate frequently are scheduled on the
same processor, reducing interprocessor traffic. This is an improvement to
Vella’s techniques which used fixed-size batches determined by the developer
and compile-time analysis. Our variable-size batches are formed and split
automatically using runtime heuristics.

Following a context switch, if the dispatch count is not zero, then the
next process on the active queue is dispatched. Otherwise the scheduler
restarts with a new batch. Context switches occur under two conditions.
Most commonly, the current process blocks on a communication or syn-

5



Head TailBatch Batch Batch Batch

Migration Window

Internal

External

Last 
Offset

Window State Word

Active 
Bitmap

Figure 3: A fixed-size migration window array allows one logical processor to “steal”
batches from another. This relates to the Run Queue in Figure 2.

chronisation primitive and is descheduled. Alternatively, a process may
cooperatively yield to the scheduler, in which case it is placed at the end
of the active queue. With the exception noted in section 2.1.2, processes
rescheduled (unblocked) by the currently executing process, for example by
the completion of communication, are also placed on the end of the active
queue. It is this action which draws related processes into the same batch.

2.1.2. Batch Size

If processes are always drawn into a batch during creation and commu-
nication, then one batch will eventually grow to encompass all processes
in the system. This will prevent batching from having caching benefits as
the working set will contain all active processes. Therefore a mechanism
is required to prevent batches growing too large and to separate processes
which lose association.

We observe that in high valency subgraphs of a process-oriented program
network, there will be points when only one process in the subgraph is active.
This process reschedules other processes in the subgraph which may then
in turn become the only active process. Based on this observation we
state that if while executing a batch there is a point at which only one
process is active then that batch is probably optimal, i.e. contains only
one subgraph. Conversely batches which never meet this condition during
execution should be split. Batches are split by placing the head process of
the active queue in one batch, and the remainder in another. This is a unit-
time operation, and so can be carried out frequently. Repeated execution
and split cycles quickly reduce large and unrelated batches to small related
process subgraphs. Erroneous splits will quickly reform based on the other
scheduling rules.

Additional mechanisms to control batch size can be introduced by mod-
ifying the dispatch count in response to specific events. Process creation
is one example. During process creation the new process is placed on the
end of the active queue. Process creation does not cause a context switch;

6



however, the runtime kernel decrements and tests the dispatch count. This
prevents the batch size exceeding the dispatch count. Furthermore, if the
dispatch count reaches zero and the aforementioned conditions for batch
splitting are met, then a process creating many new processes will be split
into a separate batch from the newly created processes. The newly created
batch is then free to migrate (see section 2.2). Thus a process spawning a
large number of children may continue to execute while its children begin
execution on other logical processors in the system.

2.2. Process Migration

In this section we describe how logical processors interact as part of a
multiprocessor system. In particular, we give details of our algorithms for
wait-free work stealing.

Amdahl’s law [22] states that for a fixed problem size, the total parallel
speed up is limited by the sequential overhead. Hence when scheduling
large numbers of processes on a multicore system, a single locked run queue
represents a scalability bottleneck [23]. For this reason we do not use a
global run queue in our runtime design.

Work is distributed between logical processors via migration. Processes
are free to migrate between logical processors, except where restricted by
an explicit affinity setting. Migration occurs in two circumstances:

1. A process which blocks during communication or synchronisation and
is descheduled on one logical processor can be rescheduled by a process
executing on a different logical processor. Unless prohibited by an
affinity setting, the rescheduled process continues execution on the
rescheduling logical processor.

2. A logical processor which runs out of batches to execute may steal
batches from other logical processors [13, 14].

The first case occurs as part of the communication and synchronisation
algorithms outlined in sections 3 and 4. The second case is the mechanism
by which work is spread across the system. It is further underpinned by
the observation that independent long-running subgraphs of processes will
tend to be split into separate batches, which can be stolen by idle logical
processors.

The run queue of each logical processor is private and cannot be accessed
by other scheduler instances. To allow batch migration, a fixed-size window
onto the end of each run queue provides access to other logical processors.
The fixed size of the window allows it to be manipulated using wait-free

7



1. Link the batch into the run queue linked list.

2. Load the window state word (see Figure 3).

3. Generate a new offset by incrementing the last offset, handling roll
over where appropriate.

4. Record the generated offset into the batch data structure.

5. Atomically swap the batch pointer with the window entry at the
generated offset.

6. If the result of the swap is not null, then a batch has been knocked
out of the window; clear its stored offset to indicate it is no longer
part of the window.

7. Update the window state word with the generated offset and active
bitmap. This update is done with a blind write, and thus may
overwrite updates from external dequeues.

Figure 4: Migration window local enqueue algorithm.

algorithms [24, 25]. These provide freedom from starvation and bounded
completion when contention arises, improving scalability over locks.

Lock-free and wait-free algorithms are often complex to implement and
rely on expensive atomic memory operations such as compare-and-swap [26].
Despite this, efficient lock-free algorithms are more scalable than their lock-
based counterparts [27]. The scalability of these algorithms motivated the
decision to refine existing wait-free work-stealing for use in this work [13, 14].

Figure 3 shows the relationship of the migration window to the run
queue. There are three algorithms for accessing the migration window: local
enqueue, local dequeue, and remote dequeue. These algorithms assume a
total store order memory model [28].

2.2.1. Local Enqueue

Figure 4 shows the algorithm used to place a batch onto the run queue
of a logical processor and make it visible in the migration window.

Internal operations on the window will be more common than external
operations, hence the presented algorithms are optimised for the uncon-
tended case rather than the contended case. The effect of this optimisation
is that the final step of the algorithm can produce corruption of the window
state word. In the event of corruption the window will appear to exter-
nal logical processors to contain more batches than it does; however, this
does not affect correct operation of the external dequeue algorithm (only
its operating efficiency). The result is an algorithm with a deterministic
execution time and only one expensive atomic operation.

8



1. Remove the head batch from the run queue linked list.

2. If the batch has no stored window offset then the dequeue is complete
(the batch is not in the window).

3. Atomically swap null with the migration window entry associated with
the batch.

4. If the result is null then the batch has been stolen by an external
scheduler. It is placed on a laundry queue on the logical processor for
later cleanup. Dequeue of this batch fails, and we must restart the
algorithm at step 1.

5. The bitmap in the window state word is updated to clear the associated
bit. As with the enqueue algorithm, this occurs via a blind write.

Figure 5: Migration window local dequeue algorithm.

2.2.2. Local Dequeue

To dequeue a batch from its run queue, a logical processor uses the
algorithm in Figure 5.

While the dequeue algorithm may fail and have to restart, it is bounded
by the number of batches enqueued on the logical processor. In the worst
case, every batch may have been stolen and the scheduler must scan every
batch to discover this. Local scanning does not, however, create direct
contention with other logical processors. Although processors may still
contend for underlying system resources such as the memory bus.

2.2.3. Remote Dequeue

When one logical processor attempts to steal work from the migration
window of another, it does so using the algorithm in Figure 6. This algorithm
requires only two atomic operations in the optimal case.

Having migrated a batch the logical processor copies the contents to a
new local batch data structure and marks the original batch as clean and
discards the pointer to it. The originating logical processor will later collect
the original batch structure and reuse it. This allows each logical processor
to maintain its own pool of batch structures, and minimises cache ping-pong
(inverting the scheme creates higher cache traffic).

3. Communication

Interprocess communication is central to process-oriented programming,
for sharing state and synchronising computation. The efficiency of com-

9



1. Load the window state word, creating a local copy.

2. Rotate the active bitmap by the last offset.

3. Scan the bitmap to select an entry to steal. If the bitmap is empty,
migration fails.

4. Atomically swap the window entry with null.

5. If the result is null, clear the associated bitmap bit (local copy) and
restart at step 3.

6. Atomically clear the window state word bitmap bit; dequeue succeeds
and the result of the atomic swap is the stolen batch.

7. A local copy of the stolen batch is created, and the original batch
marked clean and its reference discarded.

Figure 6: Migration window remote dequeue algorithm.

1. Read the channel word.

2. If it is null or the alternation bit is set (the other party is waiting on
multiple channels):

(a) Store the process state in the process descriptor (instruction
pointer, etc).

(b) Store the destination or source buffer pointer in the process
descriptor (Communication Data Pointer).

(c) Atomically swap the process descriptor with the channel word.
(d) If the result is not null, and the alternation bit is not set, then

the read at step 1 was stale; jump to step 3.
(e) If the alternation bit is set on the result, then trigger the event

(see section 4.1.6).
(f) A context switch occurs and a new process to execute is selected

as described in section 2.

3. The channel word is not null, hence a process is blocked on it.

4. Load the destination or source buffer pointer from the blocked process
descriptor.

5. Copy data or move references and transfer ownership.

6. Reset the channel word to null.

7. Reschedule the process blocked on the channel.

Figure 7: Channel communication algorithm.

munication therefore directly affects the performance of process-oriented
designs.

Our runtime kernel provides a single basic communication primitive for

10



processes to exchange data: point-to-point synchronised channels. Synchro-
nised channels require no buffers and data is copied or moved (depending
on the mode of operation) directly between the source and destination pro-
cesses. Buffered channels can be constructed efficiently by placing buffer
processes between communicating processes. Transactions involving many
parties sharing a channel are implemented by associating the channel with
a mutual exclusion lock (see section 4).

Operations for channel input and output take a source or destination
buffer and a size in bytes to copy. Alternatively the source and destination
may be a reference to a memory object allocated through the runtime kernel,
in which case the reference is moved between the processes together with
ownership of the object.

A channel is represented by a single machine word. The word stores a
pointer to the process descriptor (section 2), a structure guaranteed to be
word-aligned. The lowest order bits of the word also carry state information
about the process descriptor. For the algorithm which follows only the
alternation bit is relevant. It indicates whether the process descriptor stored
in the channel is blocked on this channel or waiting on a number of channels
and events (see section 4.1).

Basic channel communication, regardless of direction, is performed using
the algorithm in Figure 7. Using this algorithm the second process to reach
the channel completes the synchronisation and thus the communication.
This results in, typically, only one of the two processes performing an
expensive atomic operation.

4. Synchronisation

In addition to communication, processes often need to synchronise in
ways which do not involve data exchange. This section describes additional
synchronisation primitives supported by our runtime.

4.1. Alternation

For many purposes, blocking channel communication is sufficient; how-
ever, processes often need to multiplex between a number of channels and
other events. Our runtime kernel supports choice over a number of channels
and timer events: we call this alternation. occam-π supports this via an ALT

language construct.
Alternation allows a process to wait for one of a set of channels to become

ready. When an element of the waited set becomes ready, the process is

11



1. Read the channel word.

2. If the channel word is not null, then atomically clear the not ready flag
of the alternation state. The enable operation completes indicating
the channel is ready.

3. Atomically swap a pointer to the process descriptor with the alterna-
tion bit set into the channel word.

4. If the result is not null, then the value in step 1 was stale. Write the
result back to the channel word and continue as in step 2.

5. Atomically increment the alternation state reference count.

Figure 8: Channel enable algorithm.

rescheduled and can make a choice as to which channel to communicate
with. This is similar to the POSIX select system call.

In this section we present algorithms designed for one process waiting on
a set of exclusively input or output channels, while other processes sharing
those channels commit. This constraint is enforced by the present version
of the occam-π language and inherited from the original occam language.
More general synchronisation algorithms are part of our ongoing research.

The following subsections describe, in order, the steps involved in alter-
nation.

4.1.1. Initialisation

The Alternation State field of the process descriptor is initialised. The
alternation state consists of:

• flags indicating what stage of alternation the process is in. The initial
flags are enabling and not ready.

• a reference count which tracks the number of pointers to the process
descriptor, initially one. When a logical processor triggers an event
which is part of an alternation it takes one of these references. The
alternation only completes when all references have been counted back
through the disable algorithm or via event triggers.

4.1.2. Channel Enabling

Each channel a process alternates over is enabled using the algorithm in
Figure 8.

12



1. Read the channel word.

2. If it does not contain a pointer to the process descriptor of the al-
ternating process, then the channel is ready. The operation returns
indicating the channel is ready.

3. Atomically compare-and-swap null to the channel, if this fails then
the channel just became ready; the algorithm completes as in step 2.

4. Channel is not ready, decrement the reference count in the Alternation

State.

5. Return value indicates channel not ready.

Figure 9: Channel disable algorithm.

1. Read the reference count of the Alternation State.

2. If the reference count is one then alternation is finalised; leave the
algorithm.

3. Save the process state as if to context switch.

4. Atomically decrement and test the reference count.

5. If the reference count does not reach zero then context switch.

Figure 10: Alternation finalisation algorithm.

1. Read the Alternation State of the process descriptor to trigger.

2. Generate a new state with the not ready and waiting flags cleared,
and the reference count decremented by one.

3. Use a compare-and-swap operation to replace the Alternation State.

4. If the operation fails restart at step 1.

5. If the original state had the waiting flag set, or the new reference
count is zero, then reschedule the process.

Figure 11: Event trigger algorithm.

4.1.3. Waiting for Events

Once the process has enabled all the events it makes a kernel call to wait.
An atomic compare-and-swap is used to clear the enabling and not ready

flags, and set the waiting flag. If the compare-and-swap succeeds then the
process is descheduled and a context switch occurs. Failure indicates that
an event has become ready, in which case the enabling flag is atomically
cleared and execution of the process continues.

4.1.4. Channel Disabling

Having been woken up, the process disables channels using the algorithm
in Figure 9.

13



4.1.5. Finalisation

Having disabled all channels, the alternation is finalised using the al-
gorithm in Figure 10. This completes the alternation and communication
with any ready channels may take place.

4.1.6. Event Trigger Algorithm

Logical processors execute the event trigger algorithm (Figure 11) to sig-
nal an alternating process that one of its waited events has become ready.
This is the algorithm referenced at step 2(e) of the basic channel commu-
nication algorithm in Figure 7. If a logical processor in the event trigger
algorithm holds the final reference then it is responsible for rescheduling the
alternating process.

4.2. Mutual Exclusion

Section 3 describes communication channels capable of synchronous
point-to-point exchanges involving pairs of processes; however, there are de-
signs which require multiple communication peers to use the same channel.
This is particularly useful for implementing the deadlock-free client-server
design pattern [29], in which a number of clients communicate with a single
server over channels.

To support this functionality mutual exclusion locks can be associated
with the channel directions. This allows ordered multi-access (used by
multiple processes) channels to be constructed. The lock claim and release
algorithms are non-blocking and prevent starvation using FIFO queuing.
Importantly, the occam-π compiler enforces claim and release semantics on
these locks, so that an application developer cannot forget to release the
channel lock.

4.3. Barriers

Our runtime also supports a barrier synchronisation type. Processes can
enroll, resign and synchronise on such barriers. Processes synchronising on
a barrier are blocked until all other processes enrolled on the barrier are
also synchronising. Barriers may also be communicated by reference over
channels, atomically enrolling the receiver as part of the communication;
this permits semantics such as those described by Welch and Barnes [30].

Barriers of this type are useful in implementing agent simulations. Each
agent is enrolled on a barrier and synchronises on it to maintain time-step
with the other agents in the simulation. With many thousands of agents
synchronising, the performance of barrier operations is critical. It is also
important to minimise the time between barrier completion and returning

14



to the state where all enrolled processes are scheduled for execution across
available logical processors.

5. Performance

In this section we present preliminary results from a number of bench-
marks we have developed to test and compare the performance of our
runtime. The source codes for these benchmarks are publicly available [31].

All our benchmarks were performed on an eight core Intel Xeon work-
station composed of two E5520 quad-core processors running at 2.26GHz.
Each core has two hardware threads and 256KiB of L2 cache, giving a total
of 16 hardware threads and 2MiB L2 cache. Each processor also has 8MiB of
L3 cache and an independent memory bus, creating a non-uniform memory
architecture when both cores from both processors are used. For all tests
the workstation ran Linux 2.6.30. Where appropriate, the taskset utility
and runtime flags were used to restrict the cores on which benchmarks ran.
Unless otherwise noted only one hardware thread was used per core, and
cores in the same processor were selected in preference to cores in separate
processors. For example, benchmark results for five cores will involve four
cores from one processor and one core from the other processor.

Comparison of our results was performed by close reimplementation of
our benchmarks using multiple languages and concurrency frameworks:

• CCSP C – our runtime programmed using its C API.

• CCSP occam-π – our runtime programmed using the occam-π.

• Erlang – a functional programming language with asynchronous mes-
sage passing 1. We used version 5.7.3 with HiPE [32].

• Haskell – a functional programming language with lightweight threads
and one-place buffered channels provided by the MVar primitive. We
used GHC version 6.8.2 [33].

• Java – benchmarks use primitives from java.util.concurrent, in par-
ticular ArrayBlockingQueue. We used OpenJDK version 1.6.0 0 b11.

• pthread C – POSIX threads accessed via the GNU C library. Mutual
exclusion (pthread_mutex_t) and condition variables (pthread_cond_t)
are used to construct one-place buffered communication channels.

1We have not forced synchronised communications, but instead we coerced our designs
to function with asynchronous messaging. This should be a performance benefit for Erlang.

15



1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
p
e
e
d
-u
p

Cores

Figure 12: Scaling performance of mandelbrot set render with increasing numbers of
hardware threads.

5.1. Mandelbrot

In this first benchmark, we test the coarse-grain scalability of our runtime
by calculating iterations of the mandelbrot set using a group of worker
processes. Our example calculates 128 frames or iterations. A central
process farms out lines of each iteration to 128 worker processes. The
workers return the calculated image lines to the central process.

Areas of the mandelbrot set can be independently computed in parallel,
hence execution speed should increase linearly as more processor cores are
utilised. The results in Figure 12 show the our runtime scheduler performs
this parallelisation correctly.

In addition to enabling all cores, the results show further scaling to
all hardware threads (not actual physical processors). Surprisingly, our
runtime scheduler is able to extract further parallelism from these threads
without performance decrease. This suggests the hardware threads are more
computationally capable than expected.

5.2. Process Ring

To examine communication overheads, we construct a ring of n element
processes, and one initiator process. Element processes loop: they receive
an integer token from the previous process in the ring, increment it, then
send it on to the next process. The initiator, adds tokens, counts them
passing and after a given count removes them from the ring. By increasing
the number of tokens “in flight” around the ring, we increase the number of
potentially concurrently executing processes.

16



Table 1: Communication times, calculated using process ring results.

Implementation 1-core (ns) 8-core (ns)

CCSP C 10 67
CCSP occam-π 11 32
Erlang 428 404
Haskell 71 3448
Java 5579 5221
pthread C 2236 2535

Given the time taken for a single token to circulate the ring we can
estimate the average communication time of each language runtime as time÷
((elements+ 1) × roundtrips). For all our examples, there are 255 element
processes and tokens make 1024 round trips. With 255 elements it is likely
that all processes will fit within the processor caches, allowing us to examine
the best-case communication time.

Table 1 shows communication times in nanoseconds. These are based
on the circulation of a single token with one core or eight cores enabled.

The communication times for Erlang and our runtime are relatively
unaffected by the number of processor cores. While both CCSP C and CCSP
occam-π implementations use the same runtime, the occam-π compiler
caches scheduling pointers in registers, reducing the kernel call overhead.
This explains the divergence in the results.

Haskell performance degrades with the addition of cores. We suspect
this reflects internal contention exposed by multiple processors accessing the
Haskell runtime in parallel.

The plot in Figure 13 shows the time taken for 1024 circulations of
64 concurrent tokens as the number of processor cores is increased. With
the exception of POSIX threads and POSIX threads-based Java, all the
implementations show decreased performance with increasing numbers of
cores. This reflects the fact that, for user processes, communicating between
processor cores is more expensive than simulated communication on the
same core. As the number of concurrent processes increases, they are
scheduled on to separate cores, increasing the communication costs. In
particular, the NUMA aspects of the system beyond four cores show up as
a significant degradation of performance.

POSIX threads and Java performance is noticeably improved by more
cores. We speculate that threads are being given processor affinity by
the Linux scheduler. This then improves performance as interprocessor

17



●

1 2 3 4 5 6 7 8

0.
1

0.
5

5.
0

50
.0

Cores

T
im

e 
(s

)

●
● ● ●

● ● ● ●

●

● ●
●

●

●
●

●

CCSP occam−pi
CCSP C
pthread C

●

●

 
Erlang
Haskell
Java

Figure 13: With 64 tokens in the process ring, we increase the number of processor cores.

communication via processor caches is faster than Linux’s context-switch.
While Erlang performance is stable, Haskell performance notably de-

grades with increasing numbers of cores.
Our runtime, while not performing as in the optimal case (single-core),

does control the slow down with increasing numbers of cores. We would not
expect performance to degrade below interprocessor communication time.

5.3. Agent Simulation

As previously mentioned, occam-π is being used for complex systems
modelling as part of the CoSMoS project [34]. The investigators are explor-
ing using process-oriented methodologies for building models of emergent
behaviour, and creating a generic toolkit for doing so. One of the early
models investigated by the group was a process-oriented implementation of
Craig Reynolds’ boids, a simulation of flocking behaviour [35]. The CoSMoS
project’s implementation, occoids, employs agent processes with internal
concurrency to implement the boids and their behaviour rules [19]. Agent
processes move through a grid of location processes, connecting and recon-
necting as they go. The topology of space can be modified by adjusting
the underlying network connections, and this technique has been exploited
to build an implementation which spans a network of computers with only
minor changes to the code base.

18



AgentAgentAgent

Location

Agent Agent

View

LocationLocation

Agent

Figure 14: Simplified occoids process diagram. Boxes represent concurrent processes.
Arrows represent two-way client-server channel connections, with the arrow pointing at
the server. Agent processes connect to their present location, and “see” other agents via
the location’s view.

We have constructed a benchmark based on occoids. Our benchmark is
designed to be easy to implement in other languages, and produces results
which allow the verification of an implementation’s correctness. The simu-
lated space is a two-dimensional torus, and agent positions are represented
as integers relative to the centre of their present location. The occoids
simulation uses floating-point variables so as not to unduly quantise space;
however, integers allow us to easily verify the simulation output and avoid
any associated variations in floating-point support.

With reference to the process diagram in Figure 14: Location processes,
acting as servers, maintain a data structure containing all agents presently
in their grid area. View processes act as servers to clients, but also as
clients to the location processes, building aggregate lists of all agents within
nine adjacent locations each simulation step. Agent processes query a view
process, and calculate a repulsive force from other visible agents, applying an
internal bias. Having determined the force, the agent signals movement to
its location, reconnecting to a new location if appropriate. Agents maintain
a consistent sense of time using barrier synchronisations between activity
phases.

The bias is updated based on the position of the agent and the number
of other agents seen. In effect the bias produces randomised behaviour in
the agents. The initial position of all other agents in the simulation acts as
the seed, and hence can be easily reproduced.

As a comparison to the process-oriented design, we implemented a hand-
optimised data parallel version using POSIX threads. Only one thread is
used per processor core, and each thread executes a fixed number of agents.
Data updates are performed in parallel using fine-grain locking of location
data structures. This version represents the optimal case and appears as

19



●

1 2 3 4 5 6 7 8

2
5

10
20

50
10

0

Cores

T
im

e 
(s

)

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●

CCSP C
CCSP occam−pi
Erlang
Haskell

 
Java
pthread C
pthread DP C

Figure 15: Increasing the number of cores applied to the agent simulation. The simulation
is a 10x10 grid with 1200 agent processes.

pthread DP C in Figures 15 and 16.
Figure 15 shows comparative results as we increase the number of avail-

able processor cores with a fixed-size world grid and number of agents.
With reference to the process-oriented implementations, our runtime pro-
vides a marked improvement in performance and scalability. Haskell fails
to achieve more than 50% speed up, even with eight available processors.
POSIX threads achieves approximately a 150% speed up over eight cores,
while our runtime achieves 500%. Scalability of our runtime also outstrips
the ideal POSIX threads solution over eight cores.

Again, the NUMA nature of the architecture changes the performance
profile of the machine after four cores. This negatively effects the perfor-
mance of all implementations except those using our runtime.

The overall performance of the C version using our runtime is 50% of
the optimal case. Assuming this performance loss is communication and
scheduling overhead then further refinements of our scheduler and compiler
integration should be able to bring performance closer to the optimal case.
The reduced performance of occam-π compared to C is due to more efficient
optimisation of serial code by the GNU C compiler than the occam-π
compiler. We plan to overcome this by targeting GNU C or LLVM assembly
as part of a new compiler we are developing [36].

Figure 16 shows results when scaling the simulation size with eight

20



5 10 15 20

0.
5

1.
0

2.
0

5.
0

10
.0

50
.0

20
0.

0

Grid Area

T
im

e 
(s

)

●

●

●

●

●
●

●

●
● ●

●
●

●
●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

CCSP C
CCSP occam−pi
Erlang
Haskell

 
Java
pthread C
pthread DP C

Figure 16: Simulation time for agents benchmark with increasing grid size. Each grid
location has 12 initial agents. The x-axis is the number of locations in each axis.

cores. Simulation size is controlled by increasing the grid size and number
of agents. In this test our runtime also outperforms other process-oriented
implementations. The other process-oriented implementations increasingly
diverge from the optimal case with increasing problem size. The similarity
of our runtime’s scaling curve to the optimal suggests that refining of our
existing runtime may be sufficient to achieve near optimal performance.

6. Related Work

Many frameworks and languages provide concurrency primitives beyond
those supported by OS threads and locks. This stems from a desire to make
concurrent programming easier, and to avoid common errors associated with
locks and shared-memory [37]. For example message-passing frameworks
such as PVM [38] and MPI [2] provide primitives similar to those presented
in this paper, but do so for a course-grain network environment.

It is also desirable to provide lightweight concurrency primitives when
the number of concurrent elements is high [39], or the application has more
complete information on how they interact and should be scheduled. Of
particular relevance to our work are lightweight runtimes for task paral-
lelism such as Cilk [40], OpenMP [41] and Intel’s Thread Building Blocks
(TBB) [42]. These runtimes employ modern work-stealing scheduler designs

21



similar to our own, but do not provide primitives suitable for implementing
process-oriented designs.

OpenMP and Intel’s TBB emphasize the data parallelism of tasks, and
only provide for communication of data asynchronously via shared mem-
ory. Neither framework provides constructs for communicating data with
synchronisation. OpenMP’s mutual exclusion locks can be used to imple-
ment communication channels. However, unlike POSIX threads, there is no
conditional variable which can be used to efficiently implement resume on
data or buffer space availability. While TBB’s concurrent_queue provides a
communication channel like interface, TBB only permits parallel tasks over
ranges of data and does not support the spawning of continuously running
tasks.

Programming environments such as Cilk [40] and Java’s Fork/Join
framework [43] focus on scheduling finite tasks with well-structured compu-
tational dependencies (directed acyclic graphs). Within these frameworks
the dependency graph provides the scheduling scope and the depth of the
graph can be used to bound the number of active tasks and memory utili-
sation. These bounding guarantees are based on the space requirements of
the serial execution of the same program. Our process-oriented programs do
not necessarily have a serial execution, so this model of space bounding is
not applicable. Furthermore, as the lifetime of individual tasks is bounded,
a LIFO scheduling order is appropriate. Lock-free operations on LIFO
stacks are simpler than those on a FIFO queue. The processes we define in
this paper have unbounded lifetimes and hence FIFO scheduling ensures all
processes are serviced. A FIFO scheduling order distinguishes the schedul-
ing algorithms presented in this paper from those of other work-stealing
schedulers.

Process-oriented programming is very similar to the stream programming
paradigm. Stream programs consist of graphs of concurrent communicating
elements which transform input to output. Process-oriented programming
is distinguished from stream programming in that it permits the dynamic
creation of processes and their runtime reconnection, whereas a stream
program’s data graph is fixed which allows compile-time and instruction-
level scheduling strategies [44].

In the benchmarks presented in this paper (section 5) we have focused
on languages with clear support for implementing process-oriented designs,
examining both Erlang and Haskell. Erlang provides asynchronous message
passing, which can simulate communication channels, and has a shared-
memory multiprocessor runtime [45]. Haskell as a pure functional language
focuses on deterministic parallel graph reduction rather than task interac-

22



tion, but does provide a MVar primitive akin to a one-place buffered com-
munication channel [33]. However, while both Erlang and Haskell provide
support for lightweight concurrency, neither runtime (as tested), employs a
work-stealing scheduler or lock-free algorithms for interprocess communica-
tion.

The Scala programming language provides an actor model of concur-
rency [46, 47]. This form of asynchronous message passing is similar to that
provided by Erlang, except extended with asynchronous channels. However,
where Erlang provides a single message reception primitive, Scala has two
separate receive and react primitives. These correspond to thread-based
operation (receive), and non-returning event-driven operation (react). The
thread-based mode is underpinned by OS threads, whereas the event-driven
mode is lightweight. Therefore the programmer must elect to use the light-
weight construct and structure their program accordingly.

Concurrent ML (CML) is another functional language which provides
lightweight concurrency primitives [48]. It implements channels and mes-
sage passing using continuations on top of Standard ML. We excluded it
from our comparisons as CML was not originally intended for multipro-
cessor execution. A successor language to CML, Manticore, attempts to
address heterogeneous parallelism [49]. Manticore is still in the design
and implementation phases and this prevented us making any performance
comparisons.

Pict is process-oriented programming language based on the π-calculus.
However, while the π-calculus and occam-π use synchronous communication
as a basic primitive, Pict favours asynchronous communication [50]. The
language authors claim this decision was taken to improve performance and
permit the implementation of certain language features. Specifically, the
implementation of choice between communication channels in Pict relies on
asynchronous communication as it is not a language primitive. This intro-
duces the need for garbage collection semantics or a management process in
order to prevent memory leaks [51]. The choice functionality detailed in this
paper is a runtime primitive with constant memory overhead (section 4.1).

In summary, the runtime presented in this paper provides multicore
scheduling for lightweight concurrent communicating processes which can
be defined and reconnected at program run time. In doing so it provides
support for process-oriented programming of multicore systems not provided
by other frameworks for lightweight concurrency.

23



6.1. RMoX

An application and the principle funder of this work is the RMoX
project [20]. RMoX is a process-oriented operating system, whose occam-π
processes are scheduled using the work described here. Use of the occam-π
language and the scheduler described provides a lightweight and scalable
implementation, supporting large numbers of processes in the embedded
systems for which RMoX is designed. Even though small (PC based)
embedded systems are the primary target, RMoX is routinely tested on
desktop systems and we expect it to scale successfully to future massively
multicore systems, without heavy performance penalities, as the benchmarks
here indicate.

7. Conclusions

We have implemented a multicore scheduler for fine-grain concurrent
software developed using process-oriented programming. Process-oriented
designs have a high degree of interprocess communication, and involve many
more processes than physical processors. We address this in our runtime
design by ensuring that:

• The serialisation bottleneck of a global run queue is avoided by
scheduling processes independently on each core.

• Cache utilisation is improved by batching communicating processes.

• No programmer intervention is required to achieve multicore execution
of process-oriented designs. Processes and batches are automatically
distributed and migrated between processor cores.

• Contention within the scheduler is reduced using lock-free algorithms.

• Lock-free algorithm performance is optimised by minimising the num-
ber of atomic instructions, particularly in hot paths.

The performance results presented in this paper show that by addressing
these points our runtime has significantly better performance than a number
of other frameworks for implementing process-oriented designs. Specially,
our runtime brings the performance of process-oriented software close to
that of optimised multithreaded implementations.

Using the runtime presented in this paper, process-oriented design can
be applied to develop software for multicore systems without the associated

24



complexities and hazards of threads, locks and shared-memory. Further-
more, we expect refinements of our runtime design to be able to allow
unmodified process-oriented software to fully utilise hardware parallelism in
future generations of multicore processors [11, 52–54].

8. Future Work

As presented, our runtime does not provide any asynchronous commu-
nication mechanism. Instead, we implement asynchronous messaging using
buffer processes on synchronous channels. While this design decision was
influenced by the target occam-π, a language with no asynchronous commu-
nication primitives, it may be that asynchronous communication warrants
direct implementation. An investigation of the impact of asynchronous
communication on the performance and expressibility of complex systems
simulations is required. It should also be noted that there is an argument
for synchronous channels being easier for developers to reason about and
formally verify.

Further benchmark comparisons of our work are required to provide a
comprehensive picture of performance. In particular, exploring the caveats
of the heuristics detailed here. Research into process-oriented implementa-
tions of other common benchmark suites is part of our future work. One
possibility is to reimplement benchmarks developed for stream programs,
such as the StreamIt benchmark suite [44, 55] – although, as noted in sec-
tion 6, these do not deal with the dynamic nature of process creation and
communication in process-oriented programs.

As the number of processor cores increases, most multiprocessor archi-
tectures develop non-uniform memory architecture (NUMA) characteristics.
To allow increased scalability to this class of machine, we need to add
NUMA-awareness to our scheduler and memory management subsystems,
and reassess the use of atomically mututable bitsets. One promising solu-
tion is to dynamically constrain subsets of the process network and their
associated batches to groups of logical processors.

Finally, our present runtime contains many IA-32 architecture specific
elements. We plan to enhance portability and experiment with possible
compiler integration using LLVM, a technique being investigated for software
transactional memory [56]. At the same time it is our aim to maintain a
very small code base, so as to allow the targeting of embedded systems,
such as those supported by other runtimes for occam-π [57].

25



Acknowledgements

We thank Richard Jones for his feedback on this research. We would
also like to thank the anonymous referees for their detailed comments. This
work was funded by EPSRC grant EP/D061822/1.

References
1. P. H. Welch, F. R. M. Barnes, Mobile Data Types for Communicating Pro-

cesses, in: H.R.Arabnia (Ed.), Proceedings of the International Conference on
Parallel and Distributed Processing Techniques and Applications 2001, Vol. 1,
CSREA Press, 2001, pp. 20–26.

2. W. Gropp, E. Lusk, R. Thakur, Using MPI: Portable Parallel Programming
With the Message-Passing Interface, MIT Press, 1994.

3. A. C. Sodan, Message-passing and shared-data programming models - wish vs.
reality, HPCS 2005 (2005) 131–139.

4. W. Athas, C. Seitz, Multicomputers: message-passing concurrent computers,
Computer 21 (8) (1988) 9–24.

5. M. D. Hill, J. R. Larus, D. A. Wood, Tempest: a substrate for portable parallel
programs, Compcon ’95 (1995) 327–333.

6. D. May, OCCAM, ACM SIGPLAN Notices 18 (4) (1983) 69–79.

7. I. Foster, Compositional parallel programming languages, ACM Trans. Pro-
gram. Lang. Syst. 18 (4) (1996) 454–476.

8. R. Milner, Communicating and Mobile Systems: the Pi-Calculus, Cambridge
University Press, 1999.

9. P. H. Welch, F. R. M. Barnes, Communicating mobile processes: introducing
occam-pi, in: A. Abdallah, C. Jones, J. Sanders (Eds.), 25 Years of CSP, Vol.
3525 of Lecture Notes in Computer Science, Springer Verlag, 2005, pp. 175–210.

10. A. W. Roscoe, C. A. R. Hoare, R. Bird, The Theory and Practice of Concur-
rency, Prentice Hall PTR, Upper Saddle River, NJ, USA, 2005.

11. K. Vella, Seamless Parallel Computing on Heterogeneous Networks of Multi-
processor Workstations, Ph.D. thesis, University of Kent (December 1998).

12. M. Schweigler, A Unified Model for Inter- and Intra-processor Concurrency,
Ph.D. thesis, University of Kent, Canterbury, Kent, CT2 7NF, United Kingdom
(August 2006).

13. K. Debattista, K. Vella, J. Cordina, Wait-free cache-affinity thread scheduling,
IEE Proceedings Software 150 (2) (2003) 137–146.

26



14. R. D. Blumofe, C. E. Leiserson, Scheduling multithreaded computations by
work stealing, J. ACM 46 (5) (1999) 720–748.

15. I. M. Barron, The transputer, in: MiniMicro West 83, San Francisco, CA, Vol.
2(5), 1983, pp. 1–8.

16. INMOS Limited, The T9000 Transputer Instruction Set Manual, SGS-
Thompson Microelectronics, 1993, Document number: 72 TRN 240 01.

17. F. R. M. Barnes, Dynamics and Pragmatics for High Performance Concurrency,
Ph.D. thesis, University of Kent (Jun. 2003).

18. C. A. R. Hoare, Communicating Sequential Processes, Communications of the
ACM 21 (8) (1978) 666–677.

19. P. S. Andrews, A. T. Sampson, J. M. Bjørndalen, S. Stepney, J. Timmis, D. N.
Warren, P. H. Welch, Investigating patterns for process-oriented modelling and
simulation of space in complex systems, in: S. Bullock, J. Noble, R. A. Watson,
M. A. Bedau (Eds.), Proceedings of the Eleventh International Conference on
Artificial Life, MIT Press, Cambridge, MA, USA, 2008.

20. F. R. M. Barnes, A framework for lightweight, flexible and concurrent
operating-systems, EPSRC grant EP/D061822/1. http://rmox.net/ (Feb.
2006).

21. C. G. Ritson, P. H. Welch, A process-oriented architecture for complex sys-
tem modelling, in: A. A. McEwan, S. Schneider, W. Ifill, P. H. Welch (Eds.),
Communicating Process Architectures 2007, Vol. 65 of Concurrent Systems En-
gineering Series, IOS Press, Amsterdam, The Netherlands, 2007, pp. 249–266.

22. G. M. Amdahl, Validity of the single processor approach to achieving large-scale
computing capabilities, in: AFIPS Conference Proceedings, Vol. 30, 1967, pp.
483–485.

23. A. Kaieda, Y. Nakayama, A. Tanaka, T. Horikawa, T. Kurasugi, I. Kino, Anal-
ysis and measurement of the effect of kernel locks in SMP systems, Concurrency
and Computation: Practice and Experience 13 (2) (2001) 141–152.

24. M. Herlihy, A methodology for implementing highly concurrent data objects,
ACM Trans. Program. Lang. Syst. 15 (5) (1993) 745–770.

25. M. Herlihy, Wait-free synchronization, ACM Trans. Program. Lang. Syst. 13 (1)
(1991) 124–149.

26. H. Attiya, N. Lynch, N. Shavit, Are wait-free algorithms fast?, J. ACM 41 (4)
(1994) 725–763.

27. K. Fraser, T. Harris, Concurrent programming without locks, ACM Trans.
Comput. Syst. 25 (2) (2007) 5.

27



28. D. L. Weaver, T. Germond (Eds.), The SPARC Architecture Manual: Version
9, Prentice-Hall, 1994.

29. P. H. Welch, G. R. Justo, C. J. Willcock, Higher-Level Paradigms for Deadlock-
Free High-Performance Systems, in: R. Grebe, J. Hektor, S. Hilton, M. Jane,
P. Welch (Eds.), Transputer Applications and Systems ’93, Proceedings of the
1993 World Transputer Congress, Vol. 2, IOS Press, Aachen, Germany, 1993,
pp. 981–1004.

30. P. H. Welch, F. R. M. Barnes, Mobile Barriers for occam-pi: Semantics, Imple-
mentation and Application, in: J. Broenink, H. Roebbers, J. Sunter, P. Welch,
D. Wood (Eds.), Communicating Process Architectures 2005, Vol. 63 of Con-
current Systems Engineering Series, IOS Press, IOS Press, The Netherlands,
2005, pp. 289–316.

31. CCSP Comparison Benchmarks,
http://projects.cs.kent.ac.uk/projects/kroc/trac/wiki/CCSP.

32. M. Pettersson, K. Sagonas, E. Johansson, The HiPE/x86 Erlang Compiler,
Functional and Logic Programming 2441/2002 (2002) 228–244.

33. T. Harris, S. Marlow, S. Peyton-Jones, Haskell on a shared-memory multipro-
cessor, in: Haskell ’05: ACM SIGPLAN workshop on Haskell, ACM, New York,
NY, USA, 2005, pp. 49–61.

34. Complex Systems Modelling and Simulation infrastructure (CoSMoS),
http://www.cosmos-research.org.

35. C. W. Reynolds, Flocks, herds and schools: A distributed behavioral model,
in: SIGGRAPH ’87: Proceedings of the 14th annual conference on Computer
graphics and interactive techniques, ACM, New York, NY, USA, 1987, pp.
25–34.

36. C. G. Ritson, Translating ETC to LLVM Assembly, in: P. H. Welch (Ed.),
Communicating Process Architectures 2009, Vol. 67 of Concurrent Systems
Engineering Series, IOS Press, Amsterdam, The Netherlands, 2009, pp. 145–
158.

37. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, T. Anderson, Eraser: a
dynamic data race detector for multithreaded programs, ACM Trans. Comput.
Syst. 15 (4) (1997) 391–411.

38. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, V. Sunderam,
Parallel Virtual Machine: A Users’ Guide and Tutorial for Networked Parallel
Computing, MIT Press, 1994.

39. T. V. Eicken, D. E. Culler, S. C. Goldstein, K. E. Schauser, Active messages:
a mechanism for integrated communication and computation, in: Proceedings

28



of the 19th Annual International Symposium on Computer Architecture, 1992,
pp. 256–266.

40. R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall,
Y. Zhou, Cilk: an efficient multithreaded runtime system, in: PPOPP ’95:
Proceedings of the fifth ACM SIGPLAN symposium on principles and practice
of parallel programming, ACM, New York, NY, USA, 1995, pp. 207–216.

41. OpenMP Application Program Interface, Version 3.0 (May 2008).

42. Intel Threading Building Blocks 2.1,
http://www.intel.com/software/products/tbb/.

43. D. Lea, A Java Fork/Join Framework, in: JAVA ’00: Proceedings of the ACM
2000 conference on Java Grande, ACM, New York, NY, USA, 2000, pp. 36–43.

44. M. Kudlur, S. Mahlke, Orchestrating the execution of stream programs on
multicore platforms, SIGPLAN Not. 43 (6) (2008) 114–124.

45. J. Armstrong, R. Virding, C. Wikström, M. Williams, Concurrent Program-
ming in Erlang, 2nd Edition, Prentice-Hall, 1996.

46. C. Hewitt, Viewing control structures as patterns of passing messages, Artificial
Intelligence 8 (1977) 323–364.

47. M. Odersky, M. Odersky, Scala actors: Unifying thread-based and event-based
programming, Theoretical Computer Science.

48. J. H. Reppy, Concurrent programming in ML, Cambridge University Press,
New York, NY, USA, 1999.

49. M. Fluet, M. Rainey, J. Reppy, A. Shaw, Y. Xiao, Manticore: a heterogeneous
parallel language, in: DAMP ’07, ACM, New York, NY, USA, 2007, pp. 37–44.

50. B. C. Pierce, D. N. Turner, Pict: A programming language based on the pi-
calculus, in: Proof, Language and Interaction: Essays in Honour of Robin
Milner, MIT Press, 1997, pp. 455–494.

51. B. C. Pierce, D. N. Turner, Concurrent objects in a process calculus, in: Theory
and Practice of Parallel Programming, Springer-Verlag, 1995, pp. 187–215.

52. M. D. May, P. W. Thompson, P. H. Welch, Networks, Routers and Transputers,
IOS Press, Amsterdam, 1993.

53. A. Acharya, M. Tambe, A. Gupta, Implementation of production systems on
message-passing computers, IEEE Transactions on Parallel and Distributed
Systems 3 (4) (1992) 477–487.

29



54. H. Lu, S. Dwarkadas, A. Cox, W. Zwaenepoel, Message passing versus dis-
tributed shared memory on networks of workstations, Supercomputing, 1995.
Proceedings of the IEEE/ACM SC95 (1995) 37–37.

55. M. I. Gordon, W. Thies, S. Amarasinghe, Exploiting coarse-grained task, data,
and pipeline parallelism in stream programs, SIGARCH Comput. Archit. News
34 (5) (2006) 151–162.

56. P. Felber, C. Fetzer, U. Müller, T. Riegel, M. Süßkraut, H. Sturzrehm, Trans-
actifying applications using an open compiler framework, in: TRANSACT,
2007.

57. C. L. Jacobsen, M. C. Jadud, The Transterpreter: A Transputer Interpreter,
in: I. R. East, D. Duce, M. Green, J. M. R. Martin, P. H. Welch (Eds.),
Communicating Process Architectures 2004, Vol. 62 of Concurrent Systems
Engineering Series, IOS Press, 2004, pp. 99–106.

30


