
Let’s Make Refactoring Tools User-extensible!

Huiqing Li
School of Computing

H.Li@kent.ac.uk

Simon Thompson
School of Computing

S.J.Thompson@kent.ac.uk

Abstract
We present a framework for making a refactoring tool ex-
tensible, allowing users to define refactorings from scratch
using the concrete syntax of the language, as well as to
describe complex refactorings in a domain-specific lan-
guage for scripting. We demonstrate the approach in practice
through a series of examples.

The extension framework is built into Wrangler, a tool for
refactoring Erlang programs, but we argue that the approach
is equally applicable to tools for other languages.

Categories and Subject Descriptors D.2.3 [SOFTWARE
ENGINEERING]: Coding Tools and Techniques; D.2.6 []:
Programming Environments; D.2.7 []: Distribution, Main-
tenance, and Enhancement

General Terms Languages, Design

Keywords Erlang, refactoring, Wrangler, API, DSL, anal-
ysis, program transformation, extensible, concrete syntax.

1. Introduction
What do we mean when we say ‘refactoring’? Interpreted
narrowly, it is the process of invoking a refactoring tool to
perform one of a fixed repertoire of transformations, whereas
the term ‘refactoring’ is often also used for any process of
transforming our programs so that they work in a different
way, though preserving their original behaviour. A recent
study by Murphy-Hill et. al. [14] reports that up to 90% of
refactoring is done ‘by hand’ in practice.

Why such a low proportion of tool use? Tools can only
support a limited collection of transformations, and these
will be the common, ‘vanilla flavoured’ refactorings such
as renaming, function or method extraction, data-type and
class-based refactorings and so on. Users who want to do
something more complex, which will typically also be more

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
WRT, June 01 2012, Rapperswil, Switzerland.
Copyright c© 2012 ACM /12/06-978-1-4503-1500-5. . . $10.00

specific to their application, will have to implement their
refactorings for themselves. This could simply mean doing
the whole refactoring ‘by hand’ in an editor or IDE – which
may well provide support for some of the steps – or it could
involve the user extending an existing refactoring tool for
their own purposes.

The latter option – to extend an existing tool such as the
Java refactorer in Eclipse – is attractive in theory but sel-
dom used in practice. The cost of understanding the internal
representation of programs, the internal APIs and the overall
architecture of the tool means that it’s just not cost effective
for the working programmer to take this option.1

In this paper we advocate designing refactoring tools for
ease of extension, and report on the extensibility framework
built into the Wrangler [11] refactoring tool for Erlang [2].
While this is a tool for a specific language, rather than a
generic tool (a point we discuss in more detail in Section
7), the approach and the lessons learned are applicable to
refactoring tools for any language. The guiding principle of
the design is to improve the cost-benefit ratio, making it
simple for a user to define powerful new refactorings with
as little effort as possible; in particular:

• Users are able to specify transformations using the con-
crete syntax of Erlang [9], rather than some internal rep-
resentation of a syntax tree (or an XML version of it).
This means that users – who will understand how to write
Erlang programs – can express transformations through
templates and rules written in a familiar language rather
than having to learn something new.
• Information about static semantics that forms the basis

for most refactoring pre-conditions is accessible through
a simple API.
• As the study [14] points out, some 40% of refactorings

performed using a tool occur in batches. We provide a
high-level domain-specific language for building com-
plex refactorings from simpler components [10].
• We specify a callback interface so that user-defined

refactorings can be invoked from within Wrangler, em-

1 The study [14] suggests that even when tools are configurable, this facility
tends not to be used in practice, perhaps because a manual tweak to the
default behaviour is easier to do than changing the configuration.

bedded in either Emacs or Eclipse. Doing this allows
user-defined refactorings to be applied interactively, pre-
viewed and undone, just as for their built-in counterparts.
This allows users to develop refactorings in an iterative,
test-driven, style.

The main goal of this paper is to prove the usefulness
of the framework through a series of examples in Section 6
that demonstrate the practicality of making refactoring tools
user-extensible. Before that we briefly introduce Erlang and
Wrangler in Section 2, and give a high-level overview of
the extension framework: Section 3 covers the template- and
rule-based framework for defining elementary Erlang refac-
torings, Section 4 the domain-specific language for describ-
ing complex refactorings, and Section 5 the callback in-
terface (or Erlang behaviour) for refactorings. After the
examples, Section 7 discusses related work and Section 8
draws some conclusions and addresses future work.

2. Erlang and Wrangler
Erlang [2] is a strict, impure, dynamically typed functional
programming language with support for macros, higher-
order functions, pattern matching, concurrency, distribution,
fault-tolerance, and dynamic code loading.

An Erlang program consists of a number of modules, each
of which defines a collection of functions. Only functions
exported explicitly through the export directive may be
called from other modules. In Erlang, a function name can
be defined with different arities, and the same function name
with different arities represent entirely different functions.
Calls to functions defined in other modules generally qualify
the function name with the module name: the function F
from the module M is called thus: M:F(...).

Wrangler [11], downloadable from http://www.github.
com/RefactoringTools, is an open source tool that sup-
ports interactive refactoring, API migration and “code smell”
detection for Erlang programs. Wrangler is implemented in
Erlang, and is integrated with (X)Emacs as well as with
Eclipse through the ErlIDE plugin. Wrangler supports a va-
riety of built-in structural refactorings, as well as facilities to
detect and eliminate duplicate code [8].

Wrangler uses an Abstract Syntax Tree (AST) to repre-
sent Erlang programs. The AST representation generated is
designed so that all the nodes in the tree have a uniform
structure; building on this we extend nodes with various an-
notations such as location, static semantic information, etc.
We call the extended ASTs annotated ASTs (AAST). Wran-
gler preserves the original layout of the program as much as
possible, and supports undo of refactorings and preview of
refactoring results.

Wrangler, as an interactive refactoring tool, allows the
user to perform what we term selective refactorings. By this
we mean refactorings that involve a single local transfor-
mation, but may be applicable to multiple places across the
project. An example of this kind of refactoring is to replace

the use of lists:map/2 with a list comprehension through-
out a project. Selective refactoring allows the user to choose
which candidates to refactor, and which not.

3. Composing Elementary Refactorings
In this section, we give an overview of how to write new

refactorings from scratch in Wrangler.

3.1 Templates and Rules
The template- and rule-based API allows Erlang program-
mers to express program analysis and transformation in Er-
lang concrete syntax. In Wrangler, a code template is de-
noted by an Erlang macro ?T whose only argument is the
string representation of an Erlang code fragment that may
contain meta-variables. A meta-variable is a placeholder for
a syntax element in the program, or a sequence of syntax el-
ements of the same kind. We also support meta-atoms, that
only match atoms, which in Erlang represent function names
and so forth.

Syntactically a meta-variable is an Erlang variable, end-
ing with the character ‘@’. A meta-variable ending with
a single ‘@’ represents a single language element, and
matches a single subtree in the AST; a meta-variable ending
with ‘@@’ is a list meta-variable that matches a sequence of
elements of the same sort. For instance, the template

?T("erlang:spawn(Args@@, Arg1@)")

matches the applications of spawn function to one or more
arguments, where Arg1@ matches the last argument, and
Args@@ will match the remaining arguments, if any.

Templates are matched at AST level, that is, the tem-
plate’s AST is pattern matched to the program’s AST using
structural pattern matching techniques. If the pattern match-
ing succeeds, the meta-variables/atoms in the template are
bound to AST subtrees, and the context and static seman-
tic information attached to the subtrees matched can be re-
trieved as described below in Section 3.2.

The template-based API is not only used to retrieve in-
formation about a program, but also to define transformation
rules used in the transformation of a program. A rule defines
a basic step in the transformation of a program; it involves
recognising a program fragment to transform and construct-
ing a new program fragment to replace the old one, and is
denoted by a macro ?RULE with the format of

?RULE(Template, NewCode, Cond),

where Template is a template representing the kind of code
fragment to search for; Cond is an Erlang expression that
evaluates to true or false; and NewCode is an Erlang ex-
pression that returns the new code fragment in the format of
a string or an AST. All the meta-variables/atoms declared in
Template are made visible to NewCode and Cond by means
of parse transformation, i.e., applying transformations to the
parse tree generated by the compiler before it is further pro-
cessed and checked for errors, and can be referenced in

defining them; furthermore, it is also possible for NewCode
to define its own meta-variables to represent code fragments.

Erlang allows a programmer to make many arbitrary syn-
tactic decisions while constructing an expression or func-
tion. For example, a case expression in Erlang can have
multiple expression clauses, and there is often flexibility in
the order of the clauses. This flexibility will significantly
increase the number or complexity of the rules that have
to be written to describe a transformation. To address this
problem, we have introduced the concept of a meta-rule that
provides a concise way to express a collection of rules that
a user has to write in order to cover the various syntactic
choices that could be made when writing an expression. Like
rules, a meta-rule is denoted by a macro ?META RULE with
the format of

?META RULE(Template, NewCode, Cond),

however, a meta rule uses more flexible algorithms for pat-
tern matching, and for the generation of new object code.
More details about meta-rules can be found in the Wrangler
documentation.

3.2 Support for Program Analysis
Program analysis plays a vital role in refactoring. Very often
the program analysis process needs to collect some syntactic
or semantic information from an AST. This task is supported
by Wrangler in two ways. First, information derived from the
program by Wrangler is attached to the AST as annotations:
we provide functions to extract these annotations from the
AST. Second, information available at different nodes can
be collected together: our API provides a macro to support
this collection.

The Erlang macro ?COLLECT is defined to allow informa-
tion collection from nodes that match the template spec-
ified and satisfies certain conditions. Calls to the macro
?COLLECT have the format:

?COLLECT(Template, Collector, Cond),

in which Template is a template representation of the kind
of code fragments of interest; Cond is an Erlang expression
that evaluates to either true or false; and Collector is
an Erlang expression which retrieves information from the
current AST node. We call an application of the ?COLLECT
macro a collector.

3.3 AST Traversal Strategies
Each transformation rule or collection macro is written to
be applied to a particular node of an AST; in order for
these operations to be applied across a complete AST it is
necessary to use an AST traversal strategy, as introduced
in [1]. An AST traversal strategy walks through the AST in
certain order, and applies transformation rules to nodes that
meet certain conditions or collects some information from
each node visited when program analysis is concerned.

A number of pre-defined AST traversal strategies are
provided through the Wrangler API. Traversal strategies can
be distinguished according to three criteria:

• The purpose of the traversal, i.e., collection informa-
tion (TU) or AST transformation (TP).
• The termination condition for the traversal (FULL/STOP/

ONCE), i.e. whether to continue the AST traversal after a
successful match and how.
• The order in which the AST nodes are visited, i.e top-

down traversals (TD) or bottom-up traversals (BU).

In Wrangler, a traversal strategy macro is named to reflect
the three aspects above. For example, the traversal strategy
FULL TD TU means that the AST is to be traversed top-down,
all the nodes will be visited, and the traversal will return the
information collected.

A traversal strategy macro takes two arguments. The first
is a collection of transformation rules or a collection of
information collectors, and the second specifies the scope
to which the transformation or analysis is to be applied.

4. Scripting Composite Refactorings
The idea of composite refactorings was first proposed by

Opdyke [16], and investigated by Roberts [17] and others.
Existing approaches to composite refactoring tend to focus
on the derivation of a combined precondition for a composite
refactoring, so that the entire precondition of the composite
refactoring can be checked on the initial program before per-
forming any transformation [3, 7]. The ostensible rationale
for this is to give improved performance of the refactoring
engine. However, given the usual way in which refactoring
tools are used in practice – where the time to decide on the
appropriate refactoring to apply will outweigh the execution
time – we do not see that the efficiency gains that this ap-
proach might give are of primary importance to the user.

In contrast, our aim is to increase the usability and ap-
plicability of the refactoring tool, by expanding the way in
which refactorings can be put together. Our work does not
try to carry out precondition derivation, instead each primi-
tive refactoring is executed in the same way as it is invoked
individually, i.e., precondition checking followed by pro-
gram transformation. While it may be less efficient when an
atomic composite refactoring, whose meaning we will ex-
plain later, fails during the execution, it does have its advan-
tages in expressivity. In an overview, Wrangler’s framework
tries to address the following limitations when composite
refactorings are described manually:

• When the number of primitive refactoring steps involved
is large, enumerating all the primitive refactoring com-
mands could be tedious and error prone.
• The static composition of refactorings does not support

generation of refactoring commands that are program-
dependent or refactoring scenario dependent, or where a

subsequent refactoring command is somehow dependent
on the results of an earlier application.
• Some refactorings refer to program entities by source lo-

cation instead of name, as this information may be ex-
tracted from cursor position in an editor or IDE, say.
Tracking of locations is again tedious and error prone;
furthermore, the location of a program entity might be
changed after a number of refactoring steps, and in that
case locations become untrackable.
• Even though some refactorings refer to program entities

by name (rather than location), the name of a program
entity could also be changed after a number of refactoring
steps, which makes the tracking of entity names hard
or sometimes impossible, particularly when non-atomic
composite refactorings are involved.

We resolve these problems in a number of ways:

• Each primitive refactoring has been extended with a refac-
toring command generator that can be used to generate
refactoring commands in batch mode. A command gener-
ator searches the AST of a program for refactoring candi-
dates according to the constraints on arguments specified,
and returns a set of refactoring commands.
• A command generator can generate commands lazily, i.e.,

a refactoring command is generated only as it is to be ap-
plied, so we can make sure that the information gathered
by the generator always reflects the latest status, including
source locations, of the program under refactoring.
• Wrangler always allows a program entity to be referenced

using its original name, as it performs name tracking be-
hind the scenes.
• Finally, and most importantly, we provide a small domain-

specific language (DSL) to allow composition of refactor-
ings in a compact and intuitive way. The DSL allows users
to have fine-grained control over the generation of refac-
toring commands and the interaction between the user and
the refactoring engine so as to allow decision making dur-
ing the execution of a composite refactoring.

4.1 Transactions: atomic vs non-atomic composition
We use the notion of atomic and non-atomic to control the
propagation of failure during the execution of a composite
refactoring. If a composite refactoring succeeds only if all
of its direct constituent refactorings succeed, then we say
this composition is an atomic composition; a non-atomic
composite refactoring always succeeds. The failure of an
atomic composite refactoring will leave the original program
unchanged. Another way of expressing this would be to say
that atomic refactorings are treated as transactions.

4.2 The Domain-Specific Language
We give an overview of the definition of the DSL now, but
more details can be found in [10]. The DSL, as shown in

RefacName ::= rename fun | rename mod

| rename var | new fun | gen fun | ...
PR ::= {refactoring, RefacName, Args}
CR ::= PR

| {interactive, Qualifier, [PRs]}
| {repeat interactive, Qualifier, [PRs]}
| {if then, fun()→ Cond end, CR}
| {while, fun()→ Cond end, Qualifier, CR}
| {Qualifier, [CRs]}

PRs ::= PR | PRs, PR

CRs ::= CR | CRs, CR

Qualifier ::= atomic | non atomic

Args ::= ...A list of Erlang terms...

Cond ::= ...An Erlang expression that evaluates to

a boolean value...

Figure 1. The DSL for scripting composite refactorings

Figure 1, is defined in Erlang syntax, using tuples and atoms.
In the definition, PR denotes a primitive refactoring, and
CR denotes a composite refactoring.

• A primitive refactoring is, by definition, an atomic com-
posite refactoring. A primitive refactoring is an ele-
mentary behaviour-preserving source-to-source program
transformation that consists of a set of preconditions and
a set of transformation rules. When a primitive refactoring
is applied to a program, all the preconditions are checked
before the program is actually transformed by applying
all the transformation rules. A primitive refactoring fails
if the conjunction of the set of preconditions returns false;
otherwise the primitive refactoring succeeds.
• {interactive, Qualifier, [PRs]} represents a list of

primitive refactorings to be executed in an interactive way,
that is, before the execution of every primitive refactoring,
Wrangler asks the user for confirmation that he/she really
wants that refactoring to be applied. The confirmation
question is generated automatically by Wrangler.
• {repeat interactive, Qualifier, [PRs]} also repre-

sents a list of primitive refactorings to be executed in an
interactive way, but different from the previous one, it al-
lows user to repeatedly apply one refactoring, with differ-
ent parameters supplied by the user, until he/she decides
to stop. The user-interaction is carried out before each run
of a primitive refactoring.
• {if then, fun() → Cond end, CR} represents the

conditional application of CR, i.e., CR is applied only if
Cond, which is an Erlang expression, evaluates to true.
We wrap Cond in an Erlang function closure to delay its
evaluation until it is needed.
• {while, fun() → Cond end, Qualifier, CR} allows

CR, which is generated dynamically, to be continually ap-

plied until Cond evaluates to false. Qualifier specifies
whether the refactoring is to be applied atomically or not.
• {Qualifier, [CRs]} represents the composition of a list

of composite refactorings into a new composite refactor-
ing, where the qualifier states whether the resulting refac-
toring is applied atomically or not.

5. Generic Refactoring Behaviour
While every refactoring has its own pre-condition analysis

and transformation rules, there are some parts of the refac-
toring process that are common to most refactorings, such
as the generation and annotation of ASTs, the outputting of
refactoring results, the collecting of change candidates, and
the workflow of the refactoring process. We can use an Er-
lang behaviour to capture this genericity.

An Erlang behaviour is an application framework that
is parameterized by a callback module. The behaviour im-
plements the generic parts of the problem, while the call-
back module implements the specific parts. We have defined
two behaviours, namely gen refac and gen composite refac.
gen refac is the behaviour to use when defining a primitive
refactoring, whereas gen composite refac is the behaviour
for defining a composite refactoring.

With both behaviours, we aim to encapsulate those parts
that are generic to all refactorings in the behaviour module,
and let the user to handle the parts that are specific to the
refactoring under consideration. Another advantage of hav-
ing a refactoring behaviour is the ease of integration with an
IDE. Since the integration only involves the IDE and the be-
haviour module, it is done by Wrangler; the developer of the
callback module need not be concerned.

6. Examples
In this section, we demonstrate our approach by means of

four examples. All the examples are available for download
(as part of Wrangler).

Example 1. Remove an argument. Removing an unused
argument from a function definition is a common refactor-
ing supported by most refactoring tools. Part of the imple-
mentation of this refactoring is shown in Figs 2 and 3. The
part of code not shown includes two more transformation
rules, which handle the M:F/A format representation of func-
tion names and the function type specification respectively,
and the function for refactoring modules that directly depend
on the current module; however this should not affect one’s
understanding of the way in which refactorings are imple-
mented in Wrangler. We explain the implementation now.

• Line 2 declares that this module implements the gen refac
behaviour, and lines 4-5 exports the callback functions
that are required by gen refac.
• This refactoring needs the user to specify the index of the

argument to be removed, and lines 6-7 defines the prompt
used when asking the user to input the index.

1. -module(refac_remove_an_argument).

2. -behaviour(gen_refac).

3. -include_lib("wrangler/include/wrangler.hrl").

4. -export([input_par_prompts/0,select_focus/1,

5. check_pre_cond/1,selective/0,transform/1]).

6. -spec input_par_prompts() -> [string()]

7. input_par_prompts() -> ["Parameter Index : "].

8. -spec select_focus(Args::#args{}) ->

9. {ok, syntaxTree()} |{ok, none}

10. select_focus(_Args=#args{current_file_name=File,

11. cursor_pos=Pos}) ->

12. api_interface:pos_to_fun_def(File, Pos).

13. -spec check_pre_cond(Args::#args{})->

14. ok | {error, Reason}

15. check_pre_cond(Args=#args{focus_sel=FunDef,

16. user_inputs=[Ith]}) ->

17. {_M,_F,A} = api_refac:fun_define_info(FunDef),

18. case Ith>=1 andalso Ith=<A of

19. true -> check_pre_cond_1(Args, Ith);

20. false -> {error, "Index is invalid."}

21. end.

22. check_pre_cond_1(#args{focus_sel=FunDef},Ith) ->

23. IthArgs=?STOP_TD_TU(

24. [?COLLECT(

25. ?T("f@(Args@@)when Guard@@-> Bs@@;"),

26. lists:nth(Ith, Args@@),

27. true)], FunDef),

28. case lists:all(fun(A) ->

29. api_refac:type(A) == variable

30. andalso api_refac:var_refs(A) ==[]

31. end, IthArgs) of

32. true -> ok;

33. false ->{error, "Parameter cannot be removed."}

34. end.

Figure 2. Remove an argument (part 1)

• lines 8-12 defines the callback function select focus,
which allows the user to select the function of interest by
pointing the cursor to the function definition, and returns
the AST representation of the function selected.
• Lines 13-34 implements the pre-condition checking. The

API function fun define info takes the function defini-
tion as input, and returns the module name, function name
and arity of the function in a tuple. Apart from checking
that the index value is valid, the pre-condition also checks
that the argument to be removed is represented as a vari-
able, and not used by the function definition. Since an Er-
lang function could consist of multiple function clauses,
the argument from each clause needs to be checked; the
collecting of these arguments is done by the code between
lines 23-27, where a COLLECT macro is used together with
an AST traversal strategy. i.e. STOP TD TU, to retrieve the
argument from each clause.
• The callback function transform defined in Fig 3 performs

the program transformation using the AST traversal strat-
egy FULL TD TP, which does a full top-down traversal of

35. transform(Args=#args{current_file_name=File,

36. focus_sel=FunDef,

37. user_inputs=[Ith]}) ->

38. MFA = api_refac:fun_define_info(FunDef),

39. ?FULL_TD_TP([rule1(MFA,Ith),rule2(MFA,Ith)],[File]).

40. rule1({M,F,A}, Ith) ->

41. ?RULE(?T("f@(Args@@) when Guard@@ -> Bs@@;"),

42. begin

43. NewArgs@@=delete(Ith, Args@@),

44. ?TO_AST("f@(NewArgs@@) when Guard@@->Bs@@;")

45. end,

46. api_refac:fun_define_info(f@) == {M, F, A}).

47. rule2({M,F,A}, Ith) ->

48. ?RULE(?FUN_APPLY(M,F,A),

49. begin

50. Args = api_refac:get_app_args(_This@),

51. NewArgs=delete(Ith, Args),

52. api_refac:update_app_args(_This@, NewArgs)

53. end, true).

54. delete(Ith, Args) ->

55. ... delete the Ith argument from a list...

Figure 3. Remove an argument (part 2)

transform(_Args=#args{search_paths=SearchPaths})->

?FULL_BU_TP([replace_bug_cond_macro_rule(),

logic_rule_1(),

.....

if_rule_1()], SearchPaths).

replace_bug_cond_macro_rule() ->

?RULE(?T("Expr@"), ?TO_AST("false"),

is_bug_cond_macro(Expr@)).

logic_rule_1() ->

?RULE(?T("not false"),?TO_AST("true"),true).

if_rule() ->

?RULE(?T("if Conds1@@, false,Conds2@@ -> Body1@@;

true -> Body2@@

end"), Body2@@, true).

is_bug_cond_macro(Expr) ->

api_refac:type(Expr) == macro andalso

is_bug_cond_name(?PP(Expr)).

is_bug_cond_name::string()-> boolean().

is_bug_cond_name(Str) -> ..check the macro name....

Figure 4. Eliminating Bug Pre-conditions

the AST while trying to apply the rules to the each of the
nodes visited. The first rule, i.e. rule1 defined between
lines 40-46, removes the Ith parameter from the func-
tion clause definition, and the second rule, i.e. rule2 de-
fined between lines 47-53 removes the Ith argument from
an application site of the function. The pre-defined macro
FUN APPLY is used to capture the various ways a function
can be called in Erlang. The function delete is a normal
Erlang function that deletes the Ith element from a list.

Example 2. Bug pre-condition This example illustrates
the implementation of a refactoring that is more application-

specific, therefore not likely to be included in the distribution
of refactoring tools. Without tool support, this kind of refac-
toring is likely to be applied manually. This example shows
how little effort a user needs to invest to implement a partic-
ular refactoring that meets his/her own needs.

This particular example comes from testing, and specifi-
cally testing based on models. It is often necessary to patch
a faulty model to be able to continue testing, otherwise the
same faults keep being detected, and no new faults are found.
The solution is to add macros to the code: if the bug is
present in the code, the macro is true, otherwise it is false.
However, when delivering the code after testing, it is nec-
essary to remove uses of those macros. This is a repetitive
process, and previously had to be done manually. One of the
files we examined contains 43 use places of the bug macros;
obviously, manual refactoring of all these use cases could be
a time-consuming process, particularly if it had to be per-
formed repeatedly.

The actual refactoring is simple: recognise the macro ap-
plications of syntax ?xxx bug nnn, replace the macro ap-
plication with ‘false’, and clean up the code accordingly.
For example, the code fragment

if ?com bug 006 -> set raw data(Id, Data, NewS);

true -> NewS

end

should be refactored to the variable NewS.
To automate this refactoring process, we once again im-

plement a gen refac behaviour. This refactoring does not
need user input, focus selection or pre-condition checking,
therefore the only salient function is the transform call-
back function. The definition of transform together with
some of the rules are shown in Fig 4. In total, 14 rules were
defined to handle various scenarios. With this refactoring
support, eliminating bug pre-condition macros becomes a
matter of simply pressing a button.

The previous two examples demonstrate how Wrangler’s
template- and rule-based API makes it feasible for users to
define refactorings themselves. With the next two examples,
we will demonstrate how Wrangler’s DSL makes it practical
for users to script composite refactorings.

Example 3. Batch prefixing of module names. Renam-
ing module names is one of the most common refactorings.
When a collection of modules need to be renamed in a sys-
tematic way, refactoring support for batch renaming of mod-
ule names becomes handy, but composite refactorings of this
kind are not supported by most refactoring tools. Wrangler’s
DSL support for composite refactorings means that batch
renaming of module names is easy to achieve: for exam-
ple, Fig 5 shows the script that adds a given prefix to ev-
ery Erlang module name in a project. The script implements
the gen composite refac behaviour, i.e. all the callback func-
tions required by this behaviour are defined by this module.
This refactoring asks the user to input the prefix, as shown
by the function input par prompts.

1. -module(refac_batch_prefix_module).

2. -export([input_par_prompts/0, select_focus/1,

3. composite_refac/1]).

4. -behaviour(gen_composite_refac).

5. -include_lib("wrangler/include/wrangler.hrl").

6. input_par_prompts() -> ["Prefix: "].

7. select_focus(_Args) -> {ok, none}.

8. -spec composite_refac(Args::#args{})->

9. composite_refac().

10. composite_refac(_Args=#args{user_inputs=[Prefix],

11. search_paths=SearchPaths}) ->

12. {non_atomic,

13. {refac_, rename_mod,

14. [{file, fun(File)->

15. filename:extension(File)==".erl"

16. end},

17. {generator, fun(File) ->

18. Prefix++filename:basename(File)

19. end},

20. false, SearchPaths])).

Figure 5. Batch prefixing of module names

The script of this composite refactoring is defined in func-
tion composite refac. Lines 13-20 use the refactoring com-
mand generator for the rename mod refactoring, represented
as a tuple with refac as the first element, to generate a
collection of refactoring commands. The command gener-
ator says that for every file in the directories specified by
SearchPaths, if this file is an Erlang file, i.e. has a file ex-
tension of .erl, then generate a rename mod command for
this file, and the new module name is generated by prefixing
the original module name with the prefix given by the user.

The ‘false’ in line 20 tells the command generator
that all the commands should be generated before the first
refactoring is to be applied, i.e. no lazy command generation
is used. Finally, the top-level qualifier non atomic says that
if one of the refactorings fails to rename a module, the
refactoring process does not fail as a whole.

Example 4. Batch clone removal Wrangler’s similar code
detection functionality [8] is able to detect code clones in an
Erlang program, and help with the clone elimination process.
For each set of code fragments that are clones of each other,
Wrangler generates a function, named new fun, which rep-
resents the least-general common abstraction of the clones;
cloned code fragments can then be replaced by applications
of this function, thus eliminating duplicate code.

The general procedure to remove such a clone in Wran-
gler is to copy and paste the function new fun into a module,
then carry out a sequence of refactoring steps as follows:

• Rename the function to reflect its meaning.
• Rename variables if necessary, especially those of the

form NewVari , which are generated by the clone detector.
• Swap the order of parameters if necessary.
• Export the function if some clones are in other modules.

{atomic,

[{interactive, atomic, RENAME_FUNCTION new_fun},

{atomic, RENAME_VARIABLES NewVar*},

{repeat_interactive, atomic, SWAP_ARGS},

{if_then, NOT_EXPORTED, ADD_TO_EXPORT},

{non_atomic, {refac, fold_expr, CLONE_INSTANCES}}

]}

Figure 6. Batch Clone Elimination

• For each module that contains one or more cloned code
fragments, apply the ‘fold’ refactoring to replace the
clones in that module with calls to the new function.

The process can be scripted as a gen composite refac be-
haviour, and full details are given in [10]; here we review
the top-level structure, as given in Fig. 6.

• The whole refactoring is atomic, i.e. a single transaction.
• This does not stop parts of the refactoring not being

transactions (i.e. non-atomic): if replacing a particular
clone instance fails, this will not affect the correctness
of the refactoring. On the other hand, swapping function
arguments must be a transaction: we must have all the
arguments in the correct order before we continue.
• We may we need to export the renamed function, but we

don’t know its new name. The infrastructure will track
this, and allow us to refer to the function by its old name.
• Aspects of the refactoring are interactive: we prompt for

names of variables and functions. Interactions can also be
repeated, as in the case of swapping argument positions.

7. Related Work

Rule-based structural transformation is used by many
other meta-programming paradigms, we discuss these now.

TXL [4] is a generalised source-to-source translation sys-
tem. A TXL program takes as input a context-free grammar
in BNF-like notation, and a set of transformation rules to be
applied to inputs parsed using the grammar.

Stratego/XT [1] is a language for transformation of ab-
stract syntax trees, and XT is a bundle of transformation
tools that combine it with tools for other aspects of program
transformation, such as parsing, pretty-printing, etc.

The ASF+SDF [19] meta-environment supports program
analysis, transformation, generation of interactive program
environments and pretty-printers, etc. As the successor of the
ASF+SDF, the recently-released RASCAL [6] is a language
that aims to provide a general framework for high-level
integration of source code analysis and manipulation.

JunGL [20] is a DSL for implementing refactorings, com-
bining an imperative core, ML-like algebraic data types with
pattern-matching for representing syntax trees, and features
for defining attributes on edges between AST nodes. In-
stead of providing declarative descriptions of transforma-
tions, JunGL relies on imperative modification of the AST.

The tools above give powerful support for program trans-
formation, and infrastructure on which to build program
analysis; others explicitly support the analysis of conditions
for composite refactorings; we examine these now.

The idea of composite refactorings was proposed by
Opdyke [16], and investigated by Roberts [17]. This work
focused on the derivation of a composite refactoring’s pre-
conditions from the pre- and postconditions of its constituent
refactorings. Ó Cinnéide [3] extends Roberts’ approach in
various ways including static manual derivation of pre- and
postconditions for a composite refactoring.

ContTraCT is an experimental refactoring editor for Java
[7], allowing composition of larger refactorings from ex-
isting ones. ContTraCT has two basic composition opera-
tions: AND and OR, that correspond to the atomic and non-
atomic composition described in this paper. A formal model
based on the notion of backward transformation description
is used to derive the preconditions of an AND-sequence.

Extensibility has long been a question for those designing
refactoring tools [13]. MOOSE [15] is a language-generic
environment that provides support for re-engineering com-
plex software systems. While it is clearly tailorable, and
has been used successfully in a variety of projects, it is
too heavyweight for the working programmer to use. More-
over, the effort of tuning a system of this sort to handle the
specifics of a language (see e.g. [18] on renaming in Java)
makes it difficult for it to perform as well as a system de-
signed for a particular language.

Jbrx [12] is a Java refactoring tool that provides extensi-
bility through giving users access to a program representa-
tion in XML, over which they can describe transformations
and pre-conditions, but this requires users to learn both XML
and the Sapid/XML tool platform.

RubyTL [5] is the closest to our work, in presenting
a language for describing Ruby program transformations,
embedded in Ruby. It does not combine this with the use of
concrete syntax for specifying new atomic transformations;
rather it concentrates on transformations on (meta-)models.

8. Conclusions and Future Work
We have presented the API and DSL based approach taken

by Wrangler to make it practical for users to define for
themselves elementary and composite refactorings. Through
a series of examples, we have demonstrated the usability and
power of this framework. We believe that making refactoring
tools user-extensible is crucial step towards removing the
barriers that inhibit the full take-up of refactoring tools.

In the future, we aim to carry out more case studies to see
how the support for user-defined refactorings is perceived by
users, and whether this changes the way they refactor their
code. We will also explore how this work applies to other
tools, such as HaRe, a refactoring tool for Haskell programs.

This research was supported by EU FP7 collaborative
project 215868, ProTest (www.protest-project.eu).

References
[1] M. Bravenboer, K. T. Kalleberg, et al. Stratego/XT 0.17.

A language and toolset for program transformation. Sci. of
Computer Prog., 72(1-2), 2008.

[2] F. Cesarini and S. Thompson. Erlang Programming. O’Reilly
Media, Inc., 2009.

[3] M. O. Cinnéide. Automated Application of Design Patterns:
A Refactoring Approach. PhD thesis, Trinity College Dublin,
2000.

[4] J. R. Cordy. Source Transformation, Analysis and Generation
in TXL. In PEPM, 2006.

[5] J. S. Cuadrado, J. G. Molina, and M. Menarguez. Rubytl: A
practical, extensible transformation language. In 2nd Euro-
pean Conference on Model Driven Architecture, 2006.

[6] P. Klint, T. van der Storm, and J. J. Vinju. RASCAL: A
Domain Specific Language for Source Code Analysis and
Manipulation. In SCAM, 2009.

[7] G. Kniesel and H. Koch. Static Composition of Refactorings.
Sci. Comput. Program., 52, August 2004.

[8] H. Li and S. Thompson. Incremental Code Clone Detection
and Elimination for Erlang Programs. In Fundamental Ap-
proaches to Software Engineering (FASE’11), 2011.

[9] H. Li and S. Thompson. A User-extensible Refactoring Tool
for Erlang Programs. Technical Report 4-11, School of Com-
puting, Univ. of Kent, UK, 2011.

[10] H. Li and S. Thompson. A Domain-Specific Language for
Scripting Refactoring In Erlang. In Fundamental Approaches
to Software Engineering (FASE’12), 2012.

[11] H. Li, S. Thompson, G. Orosz, and M. Töth. Refactoring with
Wrangler, updated. In ACM SIGPLAN Erlang Wkshp, 2008.

[12] K. Maruyama and S. Yamamoto. Design and Implementation
of an Extensible and Modifiable Refactoring Tool. In Pro-
ceedings of IWPC ’05. IEEE Computer Society, 2005.

[13] T. Mens and A. V. Deursen. Refactoring: Emerging Trends
and Open Problems, 2003.

[14] E. Murphy-Hill, C. Parnin, and A. P. Black. How We Refac-
tor, and How We Know It. IEEE Transactions on Software
Engineering, 99, 2011.

[15] O. Nierstrasz, S. Ducasse, and T. Gı̌rba. The Story of Moose:
an Agile Reengineering Environment. In Proceedings of the
10th European software engineering conference. ACM, 2005.

[16] W. F. Opdyke. Refactoring Object-Oriented Frameworks.
PhD thesis, Univ. of Illinois, 1992.

[17] D. B. Roberts. Practical Analysis for Refactoring. PhD thesis,
Univ. of Illinois, 1999.

[18] M. Schäfer, T. Ekman, and O. de Moor. Sound and extensible
renaming for java. In OOPSLA ’08. ACM, 2008.

[19] M. van den Brand et al. The ASF+SDF Meta-environment: A
Component-Based Language Development Environment. In
Compiler Construction, volume 44, 2001.

[20] M. Verbaere et al. JunGL: A scripting Language for Refactor-
ing. In Proceedings of the 28th international conference on
Software engineering(ICSE), 2006.

