
A Study of Different Quality Evaluation Functions in the
cAnt-MinerPB Classification Algorithm

Matthew Medland
School of Computing

University of Kent, Canterbury
Kent, CT2 7NF

mm443@kent.ac.uk

Fernando E. B. Otero
School of Computing

University of Kent, Canterbury
Kent, CT2 7NF

F.E.B.Otero@kent.ac.uk

ABSTRACT

Ant colony optimization (ACO) algorithms for classification
in general employ a sequential covering strategy to create a
list of classification rules. A key component in this strategy
is the selection of the rule quality function, since the algo-
rithm aims at creating one rule at a time using an ACO-
based procedure to search the best rule. Recently, an im-
proved strategy has been proposed in the cAnt-MinerPB al-
gorithm, where an ACO-based procedure is used to create a
complete list of rules instead of individual rules. In the cAnt-
MinerPB algorithm, the rule quality function has a smaller
role and the search is guided by the quality of a list of rules.
This paper sets out to determine the effect of different rule
and list quality functions in terms of both predictive accu-
racy and size of the discovered model in cAnt-MinerPB. The
comparative analysis is performed using 12 data sets from
the UCI Machine Learning repository and shows that the ef-
fect of the rule quality functions in cAnt-MinerPB is different
from the results previously presented in the literature.

Categories and Subject Descriptors

I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

General Terms

Algorithms

Keywords

ant colony optimization, classification, sequential covering,
rule quality functions, list quality functions

1. INTRODUCTION
Data mining is, in essence, the automated search for use-

ful and usable patterns in data. These patterns are used
by scientists, marketing staff, CEOs, bankers and anyone
with an interest in what their data holds. There are three

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’12, July 7–11, 2012, Philadelphia, Pennsylvania, USA.
Copyright 2012 ACM 978-1-4503-1177-9/12/07 ...$10.00.

main approaches to finding these patterns, and subsequently
three separate data mining tasks. These are classification,
association rule learning and clustering [13]. Of these tasks,
classification is the most studied.

Classification aims to produce a model which can be used
to group objects (physical or metaphorical) and assign a
class value (group name). Therefore, classification problems
can be viewed as optimisation problems, where the goal is to
find the best model that represents the predictive relation-
ships in the data. There are many different model repre-
sentations, such as ‘black-box’ (not easily comprehensible)
models produced by support vector machines (SVM) and
artificial neural networks, and ‘white-box’ (comprehensible)
decision tree and classification rule models.

The approach on which this paper focuses is stochastic
based upon Ant Colony Optimization (ACO), a meta-heuris-
tic inspired by the foraging behaviour of ants [2]. The first
application of ACO for the classification task in data min-
ing was reported by Parpinelli et al. [11], where an ACO
algorithm—called Ant-Miner—is proposed for the discovery
of classification rules. Ant-Miner aims at extracting a list
of IF-THEN classification rules of the form IF antecedent
THEN consequent from a data set—the antecedent is com-
posed by predictor attribute-value conditions, while the con-
sequent corresponds to the class value to be predicted.

Several extensions of Ant-Miner have been proposed in the
literature, as reviewed in [8]. The majority of these exten-
sions maintain the overall structure of the algorithm—i.e.,
the algorithm employs an ACO-based procedure to create
individual rules in order to produce a complete classifica-
tion model (list of rules). This strategy to obtain a list of
classification rules is referred to as sequential covering (or
separate-and-conquer), where each rule is discovered indi-
vidually. Recently, an improved strategy has been proposed
in the cAnt-MinerPB algorithm [10], where an ACO-based
procedure is used to create a complete list of rules instead
of individual rules, and it has been shown to outperform
state-of-the-art rule induction algorithms. One of the main
differences between the Ant-Miner and cAnt-MinerPB algo-
rithms is that in Ant-Miner the search is performed (and
optimised) to find the best individual rules at each step of
the sequential covering, whereas in cAnt-MinerPB the search
is performed (and optimised) to find the best list of rules.
While in Ant-Miner the search is guided by the quality of
an individual rule, in cAnt-MinerPB the search is guided by
the quality of a candidate list of rules.

The importance of the rule quality function in sequential
covering algorithms has been highlighted in [4, 6], and in the

49

context of ACO classification algorithm in [12]. In this paper
we present a study of the effects of rule quality functions, as
well as list quality functions, in the cAnt-MinerPB algorithm.
Different than Ant-Miner and its extensions, cAnt-MinerPB

employs two quality functions in its search procedure: a rule
quality function, which is used to decide whether or not to
prune an individual rule; and a list quality function, which
guides the search (i.e., the pheromone update is based on
the quality of a candidate list of rules). We evaluate differ-
ent combinations of rule quality and list quality functions
in terms of both predictive accuracy and size of the classi-
fication model, and compare the results against the default
combination used in cAnt-MinerPB.

The remainder of this paper is organised as follows. In
Section 2 we discuss related works, focusing on the Ant-
Miner family of algorithms and rule learning heuristics. In
Section 3 we revisit the evaluation functions in greater depth,
and define the functions used in our study. In Section 4 we
describe both the steps for tuning our heuristics (Subsection
4.1) and our final results (Subsection 4.2). Section 5 then
concludes this paper by assessing and aiming to explain our
results.

2. BACKGROUND
Sequential covering, also called separate-and-conquer, is

a classification rule learning approach with two main dis-
crete steps [6]. In essence, the approach finds a rule with
a high quality on the dataset (conquer), and then removes
the examples which are covered by the rule (separate). This
repeats until there are either no or few remaining training
examples.

The effectiveness of a sequential covering algorithm stems
from the quality of the rules that are produced [4, 6]. Some
rules may only cover correctly classified examples (high con-
sistency) but might only cover a small sample (low cover-
age). Conversely, a rule may cover a large portion of the
dataset (high coverage) but mis-classify most of them (low
consistency). Both of these results are undesirable, and rule
quality functions tend to trade one off against the other. It
is for this reason that the rule quality function needs to be
carefully chosen to provide an optimal trade-off, and result
in a list of rules with high predictive accuracy.

Ant-Miner [11] is a sequential covering rule learning meta-
heuristic based upon the foraging behaviour of a colony of
ants. Ants, when searching for routes to food sources, drop
pheromones. The ants tend to move towards areas with a
higher concentration of pheromone, and as a result of the
shortest route being travelled more often, it will have more
pheromone and will therefore be reinforced. This behaviour
has been observed, translated into optimisation algorithms
and is referred to as Ant Colony Optimization (ACO) [2].

The Ant-Miner algorithm works as follows. First, a con-
struction graph is created where each node is a value for
a given variable, with every variable-value pair from the
dataset represented. Each ant then moves from a start node
(with an empty rule) and stochastically chooses a vertex
with a probability based upon the pheromone value and
a heuristic value. The visited vertex is a rule term as a
variable-value pair. The ant will continue to add new terms
until either all variables have been covered, or if by adding
another term, it would decrease the number of covered exam-
ples bellow a predefined threshold. After a rule has been cre-
ated, a pruning procedure removes irrelevant terms from the

Require: training examples
Ensure: best discovered list of rules
1. InitialisePheromones();
2. listgb ← ∅;
3. m← 0;
4. while m < maximum iterations and not stagnation

do
5. listib ← ∅;
6. for n ← 1 to colony size do
7. examples← all training examples;
8. listn ← ∅;
9. while |examples| > maximum uncovered do

10. ComputeHeuristicInformation(examples);
11. rule ← CreateRule(examples);
12. Prune(rule);
13. examples← examples−Covered(rule, examples);
14. listn ← listn + rule;
15. end while
16. if Quality(listn) > Quality(listib) then
17. listib ← listn;
18. end if
19. end for
20. UpdatePheromones(listib);
21. if Quality(listib) > Quality(listgb) then
22. listgb ← listib;
23. end if
24. m← m+ 1;
25. end while
26. return listgb;

Figure 1: High-level pseudocode of the cAnt-
MinerPB algorithm [10].

newly created rule. Once every ant in the colony (of prede-
termined size) has traversed the graph, the best rule (based
on a rule quality function) is selected and the pheromone
levels are adjusted. The pheromone on the terms included
in the best rule increase and the pheromone on the others
(unused terms) decrease. After a rule has been created, all
of the examples covered by the rule are removed from the
dataset and the next rule is created. The algorithm finishes
once the training set has less than a predefined number of
training examples remaining. Most of the proposed exten-
sions of Ant-Miner follow this same strategy to create a list
of rules [8].

cAnt-MinerPB [10] is an ACO classification algorithm that
employs a different search strategy than Ant-Miner. The
main difference in the search strategy of cAnt-MinerPB is
that it aims to create the best list of rules rather than cre-
ating a list of best rules. This change is slight, but has a
profound effect on the algorithm. The ants, rather than cre-
ating one rule each, create an entire model (list of rules)
each. The best model (based on a list quality function) cre-
ated in an iteration is used to update the pheromone values,
and it is compared to the previous best model. If the new
model is better, it survives and may end up being the final
model.

The high-level pseudocode of the cAnt-MinerPB algorithm
is presented in Figure 1 and works as follows. At each it-
eration, an ant in the colony starts with an empty list of
rules and the full training set. The ant then creates a rule,

50

prunes the rule, and removes all of the covered examples
from the training set. It is important to note that the only
stage at which the rule quality function is used is in the
pruning step. The ant then repeats these steps until the
number of examples remaining are below a given threshold.
The list of rules created by the ant is then compared to the
current iteration’s best list of rules based on the list quality
function, and if it is better than the current best, it replaces
the previous best. Once the colony’s best list of rules has
been found, the pheromones of the construction graph are
updated. This entire process repeats until either the max-
imum number of iterations have been reached or until the
colony converges. The best list of rules found is returned at
the end.

This highlights the main differences between Ant-Miner
and cAnt-MinerPB. The Ant-Miner algorithm is guided by
the quality of the individual rule. The best rule found by
the colony is always used, without regard for how this will
affect the quality of the list of rules being created. The
cAnt-MinerPB, on the other hand, has the goal of producing
the best list of rules, with less regard to how rules perform
individually. The entire list of rules is created at once, and
the best is chosen to guide the search.

In evaluating the rules in either algorithm, the quality
of each individual rule is calculated, and in Ant-Miner the
function which calculates this quality may have a large effect
on the quality of the model as a whole. It has been suggested
that traditional non-parametric rule quality functions, such
as Sensitivity× Specificity, accuracy or precision, implement
a fixed trade off [6]. That is, they either prefer consistency or
coverage, with no means of modifying this bias. Parametric
functions, such as the the m-estimate or Klösgen, allow the
user to modify this trade off depending on their application.

Due to the importance of rule quality functions in sequen-
tial covering classification algorithms, there is significant in-
terest in this field and a number of papers have been pub-
lished. One is a mainly theoretical study [6], which looks at
how rule quality functions affect a relatively simple sequen-
tial search algorithm. In this study, it was shown that the
parametrized functions performed well. The m-estimate and
Klösgen functions were amongst the best performing para-
metric functions. A further study [12] focuses on how the
rule quality function can affect ACO-based classification al-
gorithms, which follow the same strategy as Ant-Miner. The
results presented in [12] show that sensitivity × specificity,
used in Ant-Miner and also in cAnt-MinerPB, is not amongst
the best performing rule quality functions that have been
evaluated. These studies, however, are focused on the effect
of the rule quality function in traditional sequential covering
algorithms. As cAnt-MinerPB employs a different strategy,
where the rule quality function has a smaller role and the
search is guided by the quality of a list of rules, it is interest-
ing to evaluate the effects of different rule quality functions,
as well as different list quality functions.

3. EVALUATION FUNCTIONS
The rule evaluation function is the keystone of sequen-

tial covering algorithms. In Ant-Miner (and its variations),
every time an ant creates a rule, its quality is calculated
and the rule is only considered if it has the best quality in
that iteration. In cAnt-MinerPB, however, the rule quality
function has a less prominent role. It is only used during
the pruning stage, as the search is guided by the quality of

a list of rules. It is with these facts in mind that we are
testing different rule quality functions to judge how much
effect each has on cAnt-MinerPB, and also testing different
list quality functions.

3.1 Rule Quality Functions
This section presents the rule quality functions used in our

study. A series of shorthands are being used in the equations
below to condense the formulae and are defined as follows.

TP The number of examples covered by the rule that belong
to the class predicted by the rule (true positives).

FP The number of examples covered by the rule that do
not belong to the class predicted by the rule (false
positives).

TN The number of examples not covered by the rule that
do not belong to the class predicted by the rule (true
negatives).

FN The number of examples not covered by the rule that
belong to the class predicted by the rule (false nega-
tives).

S The total number of examples (TP + FP + TN + FN).

Sensitivity × Specificity.
Sensitivity × Specificity is used in the original Ant-Miner

and in the cAnt-MinerPB. Sensitivity measures the fraction
of true positives covered by the rule and the specificity mea-
sures the fraction of examples of different classes which were
not covered [7]. The Sensitivity × Specificity is given by:

TP

TP + FN
︸ ︷︷ ︸

Sensitivity

·
TN

TN + FP
︸ ︷︷ ︸

Specificity

(1)

Confidence + Coverage.
The Confidence + Coverage was used in AntMiner+ algo-

rithm [9]. The confidence measures the fraction of examples
covered by the rule correctly, and the coverage measures the
importance of the rule by calculating the fraction of correctly
covered examples against all remaining examples. The Con-
fidence + Coverage is given by:

TP

TP + FP
︸ ︷︷ ︸

Confidence

+
TP

S
︸︷︷︸

Coverage

(2)

Jaccard Coefficient.
The Jaccard coefficient calculates the similarity between

sample sets. In our case, the Jaccard coefficient is the frac-
tion of correctly covered examples divided by the number
of all but the examples not covered by the rule that do not
belong to the class predicted by the rule. This rule quality
function has been used in the study presented by Salama
and Abdelbar [12], where it was one of the best performing
functions. The Jaccard coefficient is given by:

TP

TP + FP + FN
(3)

51

Klösgen.
The Klösgen function, when ω = 0, acts as the precision

gain (the precision with respect to (TP+FN)
S

). As ω increases
the Klösgen acts in a manner similar to recall. The transi-
tion from one to the other is not linear, and as ω increases
further it starts acting as coverage. An ω value of 0.4323
was found to be optimum by Janssen and Fürnkranz [6].
We have tested the neighbour values {0.3, 0.35, 0.4, 0.45, 0.5}
in a tuning step, as it will be discussed in Section 4. The
Klösgen is given by:

(
TP + FP

S

)ω

·

(
TP

TP + FP
−

TP + FN

S

)

(4)

m-estimate.
The m-estimate is a parametric function with the param-

eter m. The m value found to be the best by Janssen and
Fürnkranz was 22.466, and this resulted in the best quality
function overall in their study. We have tested the neigh-
bour values {21, 22, 23, 24, 25} in a tuning step, as it will be
discussed in Section 4. The m-estimate is given by:

TP +m · TP
S

TP + FP +m
(5)

3.2 List Quality Functions
This section presents the list quality functions used in our

study. While we focus on lists of rules in this paper, the
list quality functions presented in this section are in fact
classification model evaluation functions.

Predictive Accuracy.
This is the standard list quality function used by cAnt-

MinerPB. It corresponds to the number of correct classifica-
tion divided by the total number of examples. The accuracy
is given by:

number of correct classification

total number of examples
(6)

Micro-Average F-Measure.
The micro-average F-Measure is a commonly used evalua-

tion function in information retrieval and text classification
systems. It involves the global precision (Prmic) and recall
(Remic) values, given by:

Prmic =

∑|C|
i=0 TPi

∑|C|
i=0 TPi +

∑|C|
i=0 FPi

(7)

Remic =

∑|C|
i=0 TPi

∑|C|
i=0 TPi +

∑|C|
i=0 FNi

(8)

where |C| corresponds to the total number of classes, TPi,
FPi and FNi correspond to the number of true positive (the
number of examples of class i predicted as being in class i),
false positive (the number of examples predicted as being
in class i which are not of class i) and false negative (the
number of examples of class i not predicted as being of class
i) of the i-th class, respectively. Given the Prmic and Remic,
the micro-average F-Measure is given by:

(1 + β2) · Prmic · Remic

(β2 · Prmic) +Remic

(9)

where β controls the importance of precision and recall: β

values lower than 1 puts more emphasis on precision than
recall; β values greater than 1 puts more emphasis on recall
than precision; and a β equal to 1 puts the same emphasis
on both precision and recall.

Macro-Average F-Measure.
The macro-average F-Measure is also a commonly used

evaluation function in information retrieval and text classi-
fication systems. The main difference between the micro-
average and macro-average is that in the former, global pre-
cision and recall values are used in the calculation of the
F-Measure, while in the latter, individual precision and re-
call values for each class are used in the calculation. The
precision (Pri) and recall (Rei) values for the i-th class is
given by:

Pri =
TPi

TPi + FPi

(10)

Rei =
TPi

TPi + FNi

(11)

The macro-average F-Measure is given by:

|C|
∑

i=0

(
1

|C|
·
(1 + β2) · Pri · Rei

(β2 · Pri) +Rei

)

(12)

Weighted Macro-Average F-Measure.
The macro-average F-Measure presented in Equation (12)

gives an equal importance for every class. In order to take
the number of examples of each class in the quality function,
we have used a weighted macro-average F-Measure (where
the weight corresponds to the fraction of examples belonging
to the class) given by:

|C|
∑

i=0

(
TPi + FNi

|D|
·
(1 + β2) · Pri ·Rei

(β2 · Pri) +Rei

)

(13)

where |D| corresponds to the total number of examples.

Inverse Weighted Macro-Average F-Measure.
Using the same idea of having different weights for classes,

the inverse weighted macro-average puts more emphasis on
classes with a smaller number of examples (the smaller the
number of examples, the more important the class) and it is
given by:

|C|
∑

i=0

([

1−
TPi + FNi

|D|

]

·
(1 + β2) · Pri · Rei

(β2 · Pri) +Rei

)

(14)

4. COMPUTATIONAL RESULTS
In order to evaluate the different rule and list quality func-

tions, we first determined optimal parameter values for the
parametric functions in a tuning step, described in Subsec-
tion 4.1. These parameter values were then used in our final
experiments, described in Subsection 4.2.

52

4.1 Experimental Setup
We split the process of finding the optimal combinations

of rule and list quality functions into three distinct steps.
Throughout these three experiments we used the automo-
bile, blood transfusion, ecoli, heart-c, heart-h, hepatitis, hor-
se-colic, voting records and zoo datasets from the UCI Ma-
chine Learning repository [3]. These data sets are only used
for parameter tuning and comprise our training data sets.

1. Rule Quality Functions: With the aim of finding
the optimal parameter values for the parametric rule
quality functions—ω parameter for Klösgen (Equation
4) and m parameter for m-estimate (Equation 5), we
ran the cAnt-MinerPB algorithm on our training data
sets for each different rule evaluation function and pa-
rameter value (described in Section 3.1), repeating each
experiment 10 times, each time using 10-fold cross val-
idation. The list quality function was fixed to predic-
tive accuracy, the default list quality function used in
cAnt-MinerPB.

2. List Quality Functions: Using a similar setup of the
previous step, we have determined optimal values for
the β parameter used in the list quality functions based
on the F-Measure—micro-average F-Measure (Equa-
tion 9), macro-average F-Measure (Equation 12), weig-
hted macro-average F-Measure (Equation 13) and inve-
rse weighted macro-average F-Measure (Equation 14).
In this step, the rule quality function was fixed to the
Sensitivity × Specificity, the default rule quality func-
tion used in cAnt-MinerPB.

3. Determining the best combination of rule and
list quality functions: Finally, we then found the
best combination of rule and list quality functions by
testing each of the 5 different rule quality functions
(using the optimised parameters found in the first step)
with each of the 4 different list quality functions (using
the optimised parameters found in the second step).

As a result of the experiments outlined above we have de-
termined a group of optimal rule and list quality functions
pairings, presented in Table 1. In that table, a row corre-
sponds to a pair of rule and list quality functions. Pairing 1 is
the default (baseline) used in cAnt-MinerPB. Pairing 2 cor-
responds to the Klösgen function (with ω equal to 0.5) paired
with the predictive accuracy list quality function. Pairing
3 corresponds to the m-estimate function (with m equal to
21) paired with the predictive accuracy list quality function.
Pairings 3 and 4 are using the Jaccard and Confidence +
Coverage functions, respectively, and are both paired with
the weighted macro F-Measure list quality function (with β

equal to 0.5).

4.2 Evaluating the Optimal Combinations
Once the optimal parameters and pairing (Table 1) had

been determined, we aimed to find which combination is the
most effective. To do this we used a separate set of data sets
from the UCI Machine Learning repository [3]. The sum-
mary of the data sets used is presented in Table 2. During
this experiment, we used 10-fold cross-validation (each fold
having the same class distribution, i.e., stratified folds), and
the default parameters of cAnt-MinerPB [10]: colony size of

Table 1: Optimal combinations of rule and list qual-
ity functions.

Pair Rule Function List Function

1 Sensitivity × Specificity Accuracy

2 Klösgen (ω = 0.5) Accuracy

3 m-estimate (m = 21) Accuracy

4 Jaccard Weighted Macro
F-Measure (β = 0.5)

5 Confidence + Coverage Weighted Macro
F-Measure (β = 0.5)

Table 2: Summary of the data sets used in the ex-
periments.

data set attributes classes size
nominal continuous

balance-scale 4 0 3 625

breast-l 9 0 2 286

breast-tissue 0 9 6 106

breast-w 0 30 2 569

credit-a 8 6 2 690

dermatology 33 1 6 366

glass 0 9 7 214

ionosphere 0 34 2 351

iris 0 4 3 150

liver-disorders 0 6 2 345

parkinsons 0 22 2 195

wine 0 13 3 178

5, 500 iterations and evaporation factor 0.90.1 The only pa-
rameter that has been changed is the minimum number of
examples, which was set to 2 (instead of 10) to test if any of
the rule quality functions are prone to overfitting. Given the
stochastic nature of cAnt-MinerPB, we ran the algorithm 10
times for each fold of the cross-validation.

Table 3 presents the results for each of the function pair-
ings concerning the predictive accuracy and Table 4 presents
the results concerning the size of the discovered list of rules
(measured as the total number of rule conditions). Each
value in those tables represents the average value calculated
over the cross-validation procedure. Table 5 shows the re-
sults of the Friedman statistical test [1, 5] for predictive
accuracy and size of the discovered list of rules. The infor-
mation presented in Table 5 corresponds to the average rank
(first column), where the lower the rank the better the pair-
ing’s performance, the p-value of the statistical test (second
column), and Holm’s post-hoc critical value (third column).

1The binaries and source-code of the cAnt-MinerPB algo-
rithm implementation used in this paper can be found at
http://sourceforge.net/projects/myra. The datasets parti-
tions can be found at http://cs.kent.ac.uk/∼febo.

53

Table 3: Average predictive accuracy (average [standard error]) in %, measured by 10-fold cross-validation.
The value of the most accurate configuration for a given data set is shown in bold.

data set Sen × Spe Klösgen m-estimate Jaccard Conf + Cov

balance-scale 76.99 [0.19] 78.54 [0.32] 80.22 [0.37] 77.05 [0.30] 73.96 [0.23]

breast-l 69.77 [0.60] 62.51 [0.66] 64.26 [0.62] 69.04 [0.57] 63.00 [0.86]

breast-tissue 66.74 [0.91] 62.76 [0.81] 64.30 [0.75] 63.65 [0.72] 62.97 [1.24]

breast-w 93.44 [0.28] 93.14 [0.28] 93.49 [0.25] 93.72 [0.48] 93.60 [0.32]

credit-a 84.49 [0.18] 83.10 [0.30] 82.97 [0.38] 85.22 [0.23] 79.16 [0.27]

dermatology 92.81 [0.44] 92.94 [0.19] 93.23 [0.35] 93.38 [0.42] 91.73 [0.48]

glass 70.66 [0.70] 69.16 [0.60] 68.78 [0.56] 69.74 [0.64] 67.11 [0.68]

ionosphere 90.49 [0.21] 88.45 [0.39] 89.04 [0.43] 90.09 [0.55] 88.70 [0.40]

iris 94.13 [0.29] 93.00 [0.40] 93.27 [0.48] 94.33 [0.11] 93.40 [0.32]

liver-disorders 65.82 [0.38] 64.91 [0.45] 63.57 [0.77] 63.25 [0.28] 64.50 [0.57]

parkinsons 85.49 [0.64] 83.51 [0.28] 83.07 [0.77] 84.43 [0.88] 84.53 [0.78]

wine 91.63 [0.52] 90.63 [0.79] 92.14 [0.56] 92.59 [0.44] 90.90 [0.56]

Table 4: Average number of terms (rule conditions) in the discovered list (average [standard error]) measured
by 10-fold cross-validation. The value of the configuration with the lowest average for a given data set is
shown in bold.

data set Sen × Spe Klösgen m-estimate Jaccard Conf + Cov

balance-scale 20.26 [0.30] 105.21 [1.16] 77.42 [1.50] 20.56 [0.46] 332.07 [6.09]

breast-l 62.96 [1.90] 229.71 [2.51] 199.92 [2.53] 70.03 [1.55] 258.77 [1.52]

breast-tissue 15.93 [0.31] 26.88 [0.33] 21.21 [0.31] 17.72 [0.18] 32.80 [0.22]

breast-w 13.87 [0.20] 22.90 [0.46] 25.29 [0.42] 12.11 [0.20] 18.47 [0.33]

credit-a 29.04 [0.51] 111.82 [1.32] 104.19 [1.96] 29.14 [0.68] 228.96 [2.36]

dermatology 52.13 [0.74] 58.14 [0.98] 54.62 [0.99] 53.40 [0.92] 69.32 [1.70]

glass 28.41 [0.23] 58.86 [0.51] 48.03 [0.41] 29.70 [0.34] 75.68 [1.05]

ionosphere 20.06 [0.24] 30.09 [0.35] 29.15 [0.44] 14.31 [0.18] 24.30 [0.75]

iris 8.78 [0.20] 12.70 [0.22] 12.54 [0.31] 7.32 [0.15] 11.11 [0.26]

liver-disorders 24.31 [0.37] 93.12 [1.34] 79.13 [0.54] 21.30 [0.26] 152.21 [1.24]

parkinsons 12.05 [0.16] 22.29 [0.48] 21.25 [0.36] 11.42 [0.28] 18.50 [0.67]

wine 9.68 [0.31] 13.43 [0.37] 12.81 [0.42] 9.25 [0.15] 13.40 [0.43]

A row is shown in bold when there is a statistically signifi-
cant difference between the average rank of a pairing and the
control pairing (the pairing with the best average rank)—
when the p-value is lower than the critical value—and shows
that the control pairing is significantly better than the pair-
ing in that row.

The Sensitivity × Specificity (Pair 1) and Jaccard (Pair 4)
were the most successful, each achieving an average rank of
2.08 with regards to predictive accuracy. They were also the
highest performing pairings with regards to the size of the
list of rules, with Jaccard achieving an average rank of 1.49
and Sensitivity × Specificity achieving a rank of 1.5. Our
results show that the parametric functions did not perform
well in the cAnt-MinerPB algorithm. The m-estimate func-
tion (Pair 3) achieved the third ranking, while the Klösgen
(Pair 2) achieved the lowest ranking and it was statistically
significantly worse than Sensitivity × Specificity, in terms
of both predictive accuracy and model size. This is differ-

ent than the results presented by Janssen and Fürnkranz
[6], where these parametric functions were amongst the best
performing ones in a traditional sequential covering algo-
rithm. Considering the results presented by Salama and Ab-
delbar [12], our results agree in respect to the use of Jaccard
function, given that Jaccard is amongst the best performing
ones. However, in Salama and Abdelbar study, Sensitivity
× Specificity was amongst the worse performing ones, which
is not the case in the cAnt-MinerPB algorithm.

While Klösgen (Pair 2) and Confidence + Coverage (Pair
5) were statistically significantly worse than Sensitivity ×
Specificity in terms of both predictive accuracy and model
size, they achieved the highest predictive accuracy during
training overall. Therefore, their poor performance in the
test set is likely due to overfitting—the case where the list
of rules created is too tailored to the training set and does
not generalise well, i.e., it has a lower predictive accuracy in
unseen test cases.

54

Table 5: Statistical test results according to the non-
parametric Friedman test with the Holm’s post-hoc
test for α = 0.05.

configuration average rank p Holm

(i) Accuracy

Sen × Spe (control) 2.08 – –

Jaccard 2.08 0.999 0.0500

m-estimate 3.08 0.121 0.0250

Con + Cov 3.83 0.007 0.0167

Klösgen 3.92 0.004 0.0125

(ii) Model Size

Jaccard (control) 1.49 – –

Sen × Spe 1.50 0.999 0.0500

m-estimate 3.42 0.003 0.0250

Con + Cov 4.25 2.04E-5 0.0167

Klösgen 4.33 1.14E-5 0.0125

Although our results did not improve the predictive ac-
curacy or the size of the discovered list of rules, they show
that the rule quality functions which perform well in tradi-
tional sequential covering algorithms do not have the same
performance in cAnt-MinerPB. This suggests that other as-
pects of the algorithm (e.g., solution construction, pruning
procedure, pheromone update) are more interesting to inves-
tigate in order to improve the overall performance of cAnt-
MinerPB.

5. CONCLUSION
Our findings show that, in contrast to the results found by

Salama and Abdelbar [12], the Sensitivity × Specificity rule
quality function is a good choice for cAnt-MinerPB, and that
it performs well alongside the accuracy list quality function.
This is a useful discovery as it means that the current de-
fault selection for cAnt-MinerPB is adequate. In agreement
with Salama and Abdelbar, we have also shown that the
Jaccard coefficient performs well and is comparable to the
rule quality function currently in use. The use of paramet-
ric rule quality functions, used in a similar study by Janssen
and Fürnkranz [6], did not improve the predictive accuracy
of the algorithm and in some cases were statistically signifi-
cantly worse. The difference in results is likely to be an effect
of the new strategy employed by cAnt-MinerPB to search for
the best list of rules instead of the list of best rules.

In our study the optimal rule quality functions and their
parameter values were optimised statically (prior to the run
of the algorithm). It will be interesting to see if a dynamic
selection technique will provide better results, and this is an
interesting future research direction.

6. REFERENCES
[1] J. Demšar. Statistical Comparisons of Classifiers over

Multiple Data Sets. Machine Learning Research,
7:1–30, 2006.

[2] M. Dorigo and T. Stüzle. Ant Colony Optimization.
The MIT Press, 2004.

[3] A. Frank and A. Asuncion. UCI machine learning
repository, 2010.

[4] J. Fürnkranz and P. Flach. ROC ‘n’ Rule
Learning—Towards a Better Understanding of
Covering Algorithms. Machine Learning, 58:39–77,
2005.

[5] S. Garćıa and F. Herrera. An Extension on ‘Statistical
Comparisons of Classifiers over Multiple Data Sets’ for
all Pairwise Comparisons. Machine Learning Research,
9:2677–2694, 2008.

[6] F. Janssen and J. Fürnkranz. On the quest for optimal
rule learning heuristics. Machine Learning,
78:343–379, 2010.

[7] H. S. Lopes, M. S. Coutinho, and W. C. Lima. An
evolutionary approach to simulate cognitive feedback
learning in medical domain. In E. Sanchez, T. Shibata,
and L. A. Zadeh, editors, Genetic Algorithms and
Fuzzy Logic Systems, volume 7, pages 193–207. 1997.

[8] D. Martens, B. Baesens, and T. Fawcett. Editorial
survey: swarm intelligence for data mining. Machine
Learning, 82:1–42, Jan 2011.

[9] D. Martens, M. De Backer, R. Haesen, J. Vanthienen,
M. Snoeck, and B. Baesens. Classification with ant
colony optimization. Evolutionary Computation, IEEE
Transactions on, 11(5):651 –665, Oct 2007.

[10] F. Otero, A. Freitas, and C. Johnson. A new
sequential covering strategy for inducing classification
rules with ant colony algorithms. To appear in IEEE
Transactions on Evolutionary Computation, 2012.

[11] R. Parpinelli, H. Lopes, and A. Freitas. Data mining
with an ant colony optimization algorithm.
Evolutionary Computation, IEEE Transactions on,
6(4):321 – 332, Aug 2002.

[12] K. Salama and A. Abdelbar. Exploring different rule
quality evaluation functions in aco-based classification
algorithms. In Swarm Intelligence (SIS), 2011 IEEE
Symposium on, pages 1 –8, Apr 2011.

[13] I. H. Witten, E. Frank, and M. A. Hall. Data Mining:
Practical Machine Learning Tools and Techniques. 3rd
edition, 2011.

55

