
The camel has two humps (working title)

Saeed Dehnadi and Richard Bornat
School of Computing, Middlesex University, UK

January 10, 2006

Abstract

Learning to program is notoriously difficult. A substantial minority of students fails in every
introductory programming course in every UK university. Despite great academic effort, the
proportion has increased rather than decreased over the years, and despite a great deal of
research into teaching methods and student responses, we have no idea of the cause.
It has long been suspected that some people have a natural aptitude for programming, but
until now there has been no psychological test which could detect it. It is not correlated with
age, with gender, or with educational attainment; nor is it correlated with any of the aptitudes
measured in conventional ‘intelligence’ or ‘problem-solving-ability’ tests.
We have found a test for programming aptitude, of which we give details. Remarkably, we
can predict success or failure even before students have had any contact with any programming
language, and with total accuracy. We present statistical analyses to prove the latter point. We
speculate that programming teaching is therefore ineffective for those who are bound to fail and
pointless for those who are bound to succeed.

1 Introduction

Despite the enormous changes which have taken place since electronic computing was invented in
the 1950s, some things in the industry remain stubbornly the same. In particular, most people can’t
learn to program: typically between 30% and 60% of a university computer science department’s
intake fail the first programming course.1 Experienced teachers are weary of the fact. Bright-eyed
novice teachers who begin by believing that everybody must have been doing it wrong gain bitter
experience, and so life goes on.
Computer scientists have long searched for a test for programming aptitude, if only to reduce the
terrible waste of expectations that each first year represents, but so far to no avail. Programming
aptitude does vary a little according to general educational attainment (we believe that we have
evidence of this: see section 6), but it’s far too weak an association to be of much use. John Lewis
are right to take their programmers from Oxbridge rather than polytechnics, there are perhaps as
many good programmers in high-class classics courses as in low-class computing courses, but the
class prejudice nakedly obvious in those kinds of policies and judgements can’t be allowed to stand.
We really need an aptitude test.

1 Nowadays in the UK one has to say that they ought to fail, but because of misguided Quality Assurance procedures
and the efforts of colleagues who doggedly believe in the normal curve, very many of them are mistakenly and
cruelly ‘progressed’ into following courses. That process so far degrades the quality of computer science education
as to be of burning academic, professional and intellectual importance, but in this paper it must be by the by.
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It isn’t just a UK problem. A study undertaken by nine institutions in six countries [31] looked
at the programming skills of university computer science students at the end of their first year of
study. All the participants were shocked by the results, which showed that at the conclusion of
their introductory courses many students still did not know how to program. Lister and others, in
[28], looked at seven countries and found the same thing.

“Unfortunately, many students find it difficult to learn [to program]. Even universities
that can select from among the best students report difficulties in teaching Java.” [10]

Whatever is the cause of the problem, it isn’t a lack of motivation on anybody’s part. Students
joining programming courses are enthusiastic to find out how a set of instructions can apparently
impart intelligence to an electronic machine, and teachers are keen to help them. Many of them are
disappointed to find that they cannot learn how to do it. For family reasons or because of a lack
of pastoral support and a dearth of escape routes (in universities outside Oxbridge), they generally
struggle on to the end of the course, disillusioned and with a sense of personal failure. Those who
can learn, on the other hand, are frustrated by the slow pace of the teaching, which is moderated to
the perceived needs of the strugglers. Teachers become demoralised that once again they’ve failed
to crack the problem. Everybody tries their best, and almost everybody ends up unhappy, until
the next year when everybody starts again with their motivational batteries fully charged.
The cause isn’t teaching materials or methods either. Essentially, the computer science community
has tried everything (see section 2) and nothing works. Graphics, artificial intelligence, logic pro-
gramming languages, OOP, C, C++, PROLOG, Miranda: you name it, we’ve tried it. We’ve tried
conventional teaching, lab-based learning by discovery, remedial classes, everything. We’ve tried
enthusiasm and cold-eyed logical clarity. Nothing makes a difference. Even the UK’s attempt in
the 1980s to teach the whole UK population to program with the BBC Micro came to nothing.
Interviewing and testing the intake has no effect either. We’ve tried giving them tea, we’ve talked
to their parents, we ask them if they have a computer in their bedroom (yes, but they only play
games on it), we’ve tried giving them automatic acceptance on application. Some of us even tried
accepting highly-motivated arts students (Tony Hoare in Belfast because he was once such a one,
and one of us (Bornat) in London because he knew that A-level Maths wasn’t a good predictor of
success), only to find that the poor things failed at an even greater rate than their nerdy colleagues.
Snake oil is the industry’s preferred remedy for programming failure (after class prejudice and
racism) and they apply it liberally to education. One of us recalls a meeting of the Conference of
Professors and Heads of Computing at the University of East Anglia in the late 1990s, addressed
by a snake-oil salesman who said that he could teach anybody to program in only fourteen days,
and why were we making such a fuss? We listened politely, and I left by bus shortly afterwards,
in despair. As for class prejudice, the head of IBM UK once famously opined that he got better
programmers by selecting classicists rather than computer programmers (he might have added,
classicists who can row) and John Lewis, a major UK retailer, only recruits from Oxbridge and
does not take notice of field of study.
Up to this point, then, the computer science community is essentially stuffed, up a creek without
a paddle, in a box canyon looking at a blank wall, bereft of ideas. Nil desperandum, because this
paper shows the way out, gives us a paddle, revitalises our enthusiasm, restores our flexibility, by
describing a predictive test for programming aptitude.
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2 Related work

There are two obvious directions of research in the area of first programming teaching and learning.
Either we look at the learner to try to find out what they are doing and thinking, or we look at the
teacher to see what they are trying to do and with which and to whom. The first kind of study is
what is reported in this paper, but the second predominates in the literature.
Learners are hard to experiment on, but teachers make excellent subject: they are keen to change
what they teach, how they teach it, when they teach it, how they assess their students’ performance,
and we don’t know what else. On the other hand it is very difficult to research the results of
experiments on teachers: for ethical reasons there are rarely if ever control groups, the Hawthorn
effect dominates, and all you get is a weak result that when when we did things this way we think
our results got better: the sort of result that crumbles the first time it meets the sunlight.
Since many of the researchers are programmers themselves, there is a great temptation to try
technological fixes, and the simplest fix is to try a new programming language, sometimes even
one devised and implemented on the spot by the researchers themselves. The plains of history
are littered with the whitening skulls of studies which tried to show that the One Language That
All Can Understand had been discovered: Prolog, Logo, Miranda, Pascal and even C were once
capering through the long grass under the fond gaze of educationalists. Java is merely the latest
in a long line of delusory mirages.
The other kind of technical fix, in these days of graphical user interfaces, is the IDE (integrated
development environment). Surely, if we make programming a bit more point-and-click then it will
get easier. Well, no it doesn’t, actually. The skulls pile up pretty high there, because IDEs are
good MSc and PhD projects (programming languages are a bit harder).
Some of the published research is so far off beam that it’s hard to know what the researchers
were thinking. Dyck and Mayer, for example, in [16], looked at the comprehension of statements
in BASIC and what they believed were similar statements in English. The subjects who were
examined on BASIC were familiar with BASIC, and those who dealt with English statements
were familiar with English. They found a correlation between the time it took their subjects to
comprehend similar statements in the two languages.
Soloway was a pioneer in the area, counting, cataloguing and classifying novices’ mistakes and
misconceptions. Adelson and Soloway, in [1], reported that domain experience affects novices’
ability to understand the sort of programming problems that they are asked to solve. Bonar and
Soloway, in [6], catalogued bugs, trying to use them to guess what their subjects were thinking
as they programmed, and found that just a few types of bug cover almost all those that occur
in novices’ programs. In [5] the same authors put forward the startling theory that having prior
knowledge of one programming language has a negative impact on novices’ attempts to program in
a second language. Soloway and Spohrer, in [38], looked at background knowledge. They opined
that skill in natural language had a great deal of impact on novices’ conceptions and misconceptions
of programming.
Putnam and others, in [35], found that novices’ misconceptions about the capabilities of computers
could have a massive negative impact on their success at programming. Many students apparently
tried to use meaningful names for their variables, hoping that the machine would be able to read
and understand those names and so perceive their intentions.
Kessler and Anderson, in [26], looked at students learning recursion and iteration. They came to
the distinctly underwhelming conclusion that those who didn’t have the first idea what they were
about didn’t have and couldn’t make good learning strategies either.
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Du Boulay, in [4], tried to catalogue the difficulties that students experienced. He identified orient-
ation (what programming is), machinery (understanding what a computer is), notation, structure
in formal statements, and pragmatics (how to debug). He also categorised students’ mistakes into
misapplications of analogies, overgeneralisations, and inapppropriate interactions of different parts
of a program.
Pennington, in [33], looked at the way that expert programmers understand problem domains
and programs. He found that, despite the admonition of the computer science establishment to
construct programs top down, experts buld them bottom-up. His experts knew no more about
their programming language than novices did, but they did know a lot more about their problem
domains, and they utilised it.
Perkins and others, in [34], thought that they had found alternative strategies in learners. Some
they called “stoppers”, who appeared to give up at the first difficulty. Others, called “movers”
seemed to use natural language knowledge to get beyond an impasse.
Van Someren, in [39], looked at novices learning Prolog. He came to the conclusion that those who
were successful had a mechanical understanding of the way that the language implementation –
the Prolog virtual machine – worked. He also noticed that the difficult bits of Prolog – unification
and depth-first search – gave rise to difficulties.
Mayer, in [29], noticed that the formal nature of programming (he called it syntactic knowledge) is
the difficult bit. He believed that experts were able to think semantically. In [30] he showed that
people who know how their programs work do better than those who do not. Canas and others, in
[13], came to the same sort of conclusion.
Adamzadeh and others, in [2], looked at debugging. They found that the majority of good debuggers
are good programmers, but not vice-versa.
Hewett, in [20], tried to use the study of psychology to motivate learning to program. His subjects
enjoyed the experience, and no doubt learned some psychology along the way.
Linn and Dalbey, in [27], castigated teachers who go too fast for some of the members of their class.
Murnane, in [32], tried to relate programming to psychological theories, specifically Chomsky’s
notion of natural language acquisition and Piaget’s theories of education. Winslow, in [42] tried to
distinguish between novices and experts: experts can solve problems better than novices, it would
seem.
Brusilovsky and others, in [12], described the language KyMir, now lost on the great plain of dead
languages.
Amongst the vast collection of work trying out programing tools and IDEs are Giannotti [17],
Ramadhan [37], Boyle and Margetts [11], Boyle et al [7], Boyle and Green [8], Boyle and others [9],
Gray et al [18], Quinn [36] and Chalk et al [14]. Unfortunately none of it amounts to anything at
all.
Thomas Green, in [19], put forward the notion of cognitive dimensions to characterise programming
languages and programming problems. Like Detienne [15], he rejects the notion that programming
languages can be ‘natural’: they are necessarily artificial, formal and meaningless.
Johnson-Laird has contributed the idea of mental models to the study of people’s competence
in deductive reasoning. With Wason [41] he discovered that people make systematic errors in
reasoning, and that they tend to draw on the content of premises to inform their conclusion, in
ways that aren’t deductively valid [40]. The results seemed to contradict the notion that humans
use formal rules of inference when reasoning deductively, but the authors couldn’t put forward any
alternative theory.
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Later, Johnson-Laird put forward the theory that individuals reason by carrying out three funda-
mental steps [21]:

1. They imagine a state of affairs in which the premises are true – i.e. they construct a mental
model of them.

2. They formulate, if possible, an informative conclusion true in the model.

3. They check for an alternative model of the premises in which the putative conclusion is false.
If there is no such model, then the conclusion is a valid inference from the premises.

Johnson-Laird and Steedman implemented the theory in a computer program that made deductions
from singly-quantified assertions, and its predictions about the relative difficulty of such problems
were strikingly confirmed: the greater the number of models that have to be constructed in order to
draw the correct conclusion, the harder the task [25]. Johnson-Laird concluded [22] that compre-
hension is a process of constructing a mental model, and set out his theory in an influential book
[23]. Since then he has applied the idea to reasoning about Boolean circuitry [3] and to reasoning
in modal logic [24].
And so on and on. Apart from Green and Johnson-Laird, there are no theories. Apart from So-
loway’s observation that prior knowledge of a programming language is a bad thing, Ahmazadeh
et al’s that good programmers aren’t always good debuggers, and Pennington’s finding that pro-
grammers don’t write top-down, there are no results at all. There is absolutely nothing to show
from all those IDEs and tools, and all those fancy programming languages have vanished without
trace. It’s a pretty dismal picture. No wonder teachers become dispirited.

3 The experiment

From experience it appears that there are three major hurdles which trip up novice programmers.
In order they are:

• assignment and sequence;

• recursion / iteration;

• concurrency.

Few programmers ever reach concurrency, which is the highest hurdle of the three. Recursion is
conceptually difficult, and iteration is mathematically complicated. Assignment and sequence, on
the other hand, hardly look as if they should be hurdles at all: storage of / remembering information
and doing one thing after another are part of everyday patterns of life and thought, and you might
have expected (as at first do most teachers) that students’ experience could be analogised into some
kind of programming expertise. Not so: it is a real hurdle, and it comes at the very beginning of
most programming courses. We decided to investigate it.
We devised a test, with questions as illustrated in figure 1. Each question gave a sample Java
program, declaring a couple of variables and executing one, two or three assignment instructions.
We had some notion of the mental models that a student might use to answer our questions.
In particular we believed that they would read the equality sign ‘=’ as a description of equality.
We expected that, given earlier instruction in arithmetic and algebra, they would have an idea
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1. Read the following statements  

and tick the correct answer in  

the front column.     

 
int  a = 10; 

int  b = 20; 

 

a = b; 

 

The new values of a and b are: 

  

! a = 30           b =  0 

! a = 30           b = 20 

! a = 20           b =  0 

! a = 20           b = 20 

! a = 10           b = 10 

! a = 10           b = 20 

! a = 20           b = 10 

! a = 0            b = 10 

! If none, give the correct values: 

         a =        b =  

 

 

 

Figure 1: A sample test question

that equality was related to substitution of equals for equals, and we invented our mental models
accordingly. (Note that in this we were assisted by the decision of the Java designers, which as
computer scientists we would normally excoriate, to use the equality sign to indicate assignment.)
The middle column gives a multiple-choice list of the alternative answers which correspond to the
models we had decided upon.2 The blank column was for rough work: we found the marks that
the subjects made here occasionally helpful.
Our intention was to observe the mental models that students used when thinking about assignment
instructions. We did not use Johnson-Laird’s theories of deductive reasoning directly, but we
assumed that our subjects, in answering questions about a computer program, would necessarily
use a mental model of the program. We were able to make our programs look quite like the
mathematical formulae that our subjects would have encountered in school arithmetic and algebra
lessons, and we were therefore able to predict with considerable accuracy the mental models that
very many of our subjects employed.
We expected that after a short period of instruction our novices would be fairly confused and so
would display a wide range of mental models. We expected that as time went by the ones who
were successfully learning to program would converge on a model that corresponds to the way that
a Java program works. So we planned to administer the questionnaire just after the students had
begun to be taught about assignment and sequence, at the very beginning of their course, then
a second time to the same subjects after the topic had been taught, and then a third time just
before the examination. We planned to correlate the results of these three administrations with
each other and also with the subjects’ marks in the normal end-of-course examination.
The mental models of assignment that we expected our subjects to use are shown in table 1. Note
that model 10 (equality) overlaps with models 2 (right-to-left copy) and 4 (left-to-right copy): the
difference could be detected, if necessary, by looking at questions which included more than a single
assignment instruction.

2 By accident we had missed out two models which, by symmetry, we ought to have included. In figure 1 there
should have been ten elements in the list, rather than eight, but in the event our error didn’t obscure our result.
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Table 1: Anticipated mental models of assignment

1. Value moves from right to left (a := b; b := 0 – third line in figure 1).

2. Value copied from right to left (a := b – fourth line of figure 1, and the ‘correct’ answer).

3. Value moves from left to right (b := a; a := 0 – eighth line of figure 1).

4. Value copied from left to right (b := a – fifth line of figure 1, and a reversed version of
the ‘correct’ answer).

5. Right-hand value added to left (a := a+b – second line of figure 1).

6. Right-hand value extracted and added to left (a := a+b; b := 0 – first line of figure 1).

7. Left-hand value added to right (b := a+b – omitted in error).

8. Left-hand value extracted and added to right (b := a+b – omitted in error).

9. Nothing happens (sixth line of figure 1).

10. A test of equality: nothing happens (fourth and fifth lines of figure 1).

11. Variables swap values (seventh line in figure 1).

3.1 First administration

In a bizarre event which one of the authors insists was planned, and the other maintains was a
really stupid idea that just happened to work, the test was first administered to about 30 students
on an adult education course at Barnet College before they had received any programming teaching
whatsoever. Those students had no particular pattern of age, gender and educational background.
Though we did no detailed interviews, we believe that none had any previous contact with pro-
gramming, and that all or almost all had some school mathematics teaching that made the equality
sign familiar. The test was anonymised, in that the students invented nicknames for themselves.
The same test was then administered to about 30 students in the first-year programming course
at Middlesex University, once again before they had received any programming teaching. They
were mostly male, aged about 18-20, from the middle range of educational attainment and from
families towards the lower end of income distribution. Again the answers were anonymised; again,
we believe, the students had had no contact with programming but had received basic school
mathematics teaching.
There was an attempt to administer the test to another 30 or so students on a foundation (pre-
degree) programming course at Middlesex University. That administration failed, because the stu-
dents (rightly, in our opinion) were incensed at the conduct of their teaching and the arrangements
for their study, and simply refused to do anything that wasn’t directly beneficial to themselves.
In total, the test was successfully administered to over 60 subjects.
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3.2 Second administration

The test was administered again to the same subjects (with the exception of the foundation year)
after about the first three weeks of teaching. Anonymisation introduced difficulties, because some
students had forgotten their nicknames. Comparison of handwriting and some inspired guesses
mean that we got almost all of them.

3.3 Third administration

Because of what we found on the first and second administrations, there was no third administra-
tion.

3.4 Correlation

We correlated the results of the first and second administrations, using the code of anonymity.
Because it would have been difficult to get hold of the detailed exam results, we averaged the
results of a couple of conventional in-course exams that one of us had already administered as part
of the normal teaching process. With our subjects’ assistance we broke the code of anonymity, and
correlated the text and in-course exam results, as well as the crude pass/fail results of the official
examination, which were publicly available.

4 Results

It seems absurd to administer a test to subjects who can have no idea what the questions meant.
Humans are clever animals, though, and most of our subjects seem to have guessed, perhaps from
the use of ‘new’ in the heading of the multiple choice column, that the questions were about change
rather than mathematical equality. It appears to us that for the most part they used models which
were about change.
We could hardly expect that students would choose the Java model of assignment (model 2 in table
1), but it rapidly became clear that despite their various choices of model, in the first administration
they divided into three distinct groups with no overlap at all:

• 44% used the same model for all, or almost all, of the questions. We called this the consistent
group.

• 39% used different models for different questions. We called this the the inconsistent group.

• The remaining 8% refused to answer all or almost all of the questions. We called this the
blank group.

We did not interview our subjects to determine anything about their group membership. We do
not know whether students chose consciously or unconsciously to follow one strategy or another,
nor how conscious choices (if any) were motivated, nor what those choices mean. We have no
information about how group membership correlates with earlier education, with age, with gender
or with anything else.
Speculation is part of science, though, and those to whom we have recounted this tale have usually
been ready to try it. Told that there were three groups and how they were distinguished, but not
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Table 2: Stable group membership between first and second administrations

Consistent (A2) Inconsistent (A2) Total
Consistent (A1) 26 1 27

Inconsistent (A1) 11 13 24
Blank (A1) 5 5 10

0–9 10–19 20–29 30-39 40-49 50-59 60-69 70-79 80-89 90+

Figure 2: In-course exam results

told their relative sizes, we have found that computer scientists and other programmers have almost
all predicted that the blank group would be more successful in the course exam than the others:
“they had the sense to refuse to answer questions which they couldn’t understand” is a typical
explanation. Non-programming social scientists, mathematicians and historians, given the same
information, almost all pick the inconsistent group: “they show intelligence by picking methods to
suit the problem” is the sort of thing they say. Nobody, so far, has predicted that the consistent
group would be the most successful. Remarkably, it is the consistent group that is successful. We
speculate on the reasons in section 5.
Table 2 shows our first result. There is essentially no movement from consistent to inconsistent
(one person, who did not otherwise take part in the course, did switch but we doubt that he took
the second administration seriously). There is some movement – almost half – from inconsistent
or blank to consistent. Everyone who had been blank in the first test became either consistent
or inconsistent. Despite the apparent mixing, a χ2 test assures us that, with p ≤ 0.0001, the two
populations are distinct.
The in-course exam results are shown in figure 2: hardly a classic double-hump curve, but by
no means a normal curve either. When redrawn in figure 3 to distinguish those who had been

Table 3: End-of-course exam pass/fail statistics

Consistent Inconsistent/Blank Total
Pass 23 20 43
Fail 2 16 18

Total 25 36 61
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Figure 3: Consistent (blue) and inconsistent (red) in-course exam results
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Table 4: In-course exam pass/fail statistics (pass mark 50%)

Consistent Inconsistent/Blank Total
Pass 21 9 30
Fail 4 27 31

Total 25 36 61

0–9 10–19 20–29 30-39 40-49 50-59 60-69 70-79 80-89 90+

Figure 4: Non-switchers (red), switchers (blue) and consistent (green) in-course exam results

consistent in the first test (blue) from those who had been inconsistent or blank (red) it is clear
that we do have a double hump. Drawing up a table to distinguish those who passed from those
who failed in the final official examination against performance in our first test gives us table 3.
The examination is not very good at distinguishing the populations, but our test is robust: a χ2

test gives us p ≤ 0.01. If we look again at figure 3 and select a pass mark of 50% (chosen before we
saw the double-hump data, honestly!) we get table 4: a much starker statement of the position.
The switchers in table 2 are not entirely indistinguishable from those who stay put, but they
are much more like them than they are like the consistent group. Figure 4 compares the three
populations. The switchers (blue) are a little bit farther to the right – that is, get slightly higher
marks – than the non-switchers, but they are clearly distinguishable from the consistent group
(green).
We believe that our data analysis supports the notion that there are indeed two groups with different
levels of performance. Because of the nature of the examinations, which were intentionally asking
very simple questions and were designed so that a guesser could score substantially,3 those who can
program weren’t very much separated from those who could not. We must turn to other data to
see more separation: see section 6.

5 Speculation

We believe that we have confirmed every programming teacher’s belief that there are two popula-
tions in initial programming courses, and found a test which distinguishes them, separating those
subjects who are capable of success – the consistent group – from those who are not – the rest.
Since nobody ever leaves the consistent group, we can claim that we have a predictive test which
can be taken prior to the course to determine, with a very high degree of accuracy, which students
will be successful. This is, so far as we are aware, the first test to be able to claim any sort of

3 Another effect of misguided Quality Assurance, and once again that must be by the by.
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Figure 5: Double-humped exam results in formal proof

predictive success.
It has taken us some time to come to terms with this fact and to believe in our own results. It
now seems to us, although we are aware that at this point we do not have sufficient data, and so
it must remain a speculation, that what distinguishes the two groups is their different attitudes to
meaninglessness.
Formal logical proofs, and therefore programs – which are formal logical proofs that particular
computations are possible, expressed in a formal system called a programming language – are
utterly meaningless. To write a computer program you have to come to terms with this, to accept
that whatever the problem seems to mean, the machine will blindly follow its meaningless rules and
come to some meaningless conclusion. In behaving consistently in the test, the consistent group
showed a pre-acceptance of this fact: they are capable of seeing mathematical calculation problems
in terms of rules, and can follow those rules wheresoever they may lead. The inconsistent group,
on the other hand, looks for meaning where it is not. The blank group knows that it is looking at
meaninglessness, and rejects it.
If we are right, and we stress again that we do not yet have sufficient data to make the assertion,
then it is impossible to teach programming to the inconsistent and blank group. They will never
come to terms with the meaninglessness of mechanical computation, and so it is cruel to make them
try. On the other hand, it is pointless to teach programming, at least so far as the assignment and
sequence topic is concerned, to the consistent group. All they need is to be pointed at the correct
model of assignment, and they are off.
Programming teachers have always suspected that teaching programming is impossible for much
of the class, and we have added to that that it is pointless for the rest. A dark cloud, indeed, but
one with a substantial silver lining: there is a substantial minority that is destined to be capable
of learning to program.

6 Teaching formal logic

One of us (Bornat), disillusioned and dispirited after 30 years of trying to teach programming and
30 years of failure to eradicate the double hump, turned to formal logic. He had written a proof
calculator, Jape [43], and hoped that with mechanical assistance students could at least learn to
make formal proofs. He speculated that the size of programming languages might confuse many
students: Java, the teacher’s programming language of choice at the end of the 20th century and at
the beginning of the 21st, is defined loosely but at great length in several hundred pages (you need
to know the library before you can do anything in Java, so you need to read the library specification
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Figure 6: High achievers’ (red) and low achievers’ (blue) exam results in formal proof

0-11 12..22 23-33 34-44 45-55 56-66 67-77 78-88 89-99 100-
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0-11 12..22 23-33 34-44 45-55 56-66 67-77 78-88 89-99 100-

110

Figure 7: High achievers’ (red) and low achievers’ (blue) exam results in informal disproof

before you start). Natural Deduction, on the other hand, can be defined precisely on a single side
of a single A4 sheet, in a normal font size. It is small and conceptually simple: surely it can be
taught!
Well, up to a point. Figure 5 shows the results from a test on formal logical proof. Unlike the in-
course examinations of section 3, students were strongly discouraged from guessing, with negative
marks for wrong answers in multiple-choice questions and extensive unseen proof problems. As a
consequence,two humps are clearly visible, with one at 33-40 (about 50%) and another at 65-72
(about 85%). This data was collected long before our test was developed, so we can’t analyse it
further, but it is rather nice evidence of the double-hump phenomenon.
There is more. Within the course there were several sub-groups, due to the vagaries of university
admissions procedures. The group called G500 were admitted to a computer science course and had
higher than average A-level scores within the population of students admitted to UK universities.
The group called GG51 had very much lower than average A-level scores, and had been admitted
to a maths and computing course largely to boost numbers in the mathematics department. When
we separate out the scores of G500 students and GG51 students, in figure 6, we can see that the
G500s have a larger success hump and a failure hump centred on 33-40 – about 50% – whereas the
GG51s have a smaller success hump and a proportionally much larger failure hump at about 16 –
about 20%. (These two graphs don’t add up to give figure 5 because there were other groups on
the course.)
We speculate from this data that the proportion of programmers in the population varies according
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to ‘intelligence’ or educational attainment at least.
There is still more. The same students, on the same course, when given an nonformal topic – con-
structing Kripke trees to demonstrate counter-examples to constructive logical assertions, a task
which involves assigning meaning to formulae and is therefore not at all like programming – gener-
ated normal curves in a test. Figure 7 shows the data. It also shows the difference in attainment:
the G500 hump is well within the passing zone, if a little bit lower than the administrator-desired
55%, whereas the GG51 hump is well below the pass mark of 40%. But a normal curve for all that!

7 Conclusion

There is a test for programming aptitude, or at least a test for success in a first programming
course. We don’t understand how it works any more than you do. An enormous space of new
problems has opened up before us all.
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