
Upgrading Fortran Source Code Using Automatic Refactoring

Dominic Orchard Andrew Rice
Computer Laboratory, University of Cambridge

dominic.orchard@cl.cam.ac.uk andrew.rice@cl.cam.ac.uk

Abstract
Many of the computer models used in scientific research
have been developed in Fortran over many years. This evo-
lutionary process means these models often use deprecated
language features and idioms that impede software main-
tenance, understandability, extension, and verification. To
mitigate this, we built CamFort, an open-source automatic
refactoring tool for upgrading Fortran source code. We de-
scribe functionality in CamFort for removing equivalence
statements and common blocks, and for introducing struc-
tured data types, and give examples of how these transfor-
mations can benefit codebase robustness.

Categories and Subject Descriptors D.3.2 [Programming
Languages]: FORTRAN, Fortran 90; K.6.3 [Software Man-
agement]: Software maintenance

Keywords Fortran, refactoring, language evolution, com-
putational science, Haskell

1. Introduction
The approach of computational science uses computer tech-
nology to collect and analyse data, and to express com-
plex scientific theories completely via computer models.
Such models share the software quality goals of traditional
software engineering, such as verifiability, maintainability,
understandability, and portability. However, many of these
goals are not readily achieved in the sciences. For example,
the need for better verification has been highlighted by sev-
eral recent cases, including researchers in biology retracting
five papers (three from Science) due to a single programming
error invalidating their results [4]. The importance of model
maintainability and sustainability is also being increasingly
recognised (e.g., the EPSRC released £5 million in 2010 to
support long-term software sustainability in science [2]).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WRT ’13, October 27, 2013, Indianapolis, Indiana, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2604-9/13/10. . . $15.00.
http://dx.doi.org/10.1145/2541348.2541356

In computational science, imperative languages such as
Fortran and C remain popular, often due to the legacy of pre-
ceding models. With over fifty years of history, Fortran has
shown remarkable longevity, in part due to its evolution with
frequent (re)standardization efforts [3], and the continued
development of tools and compilers. Fortran’s retirement has
been advocated for over 20 years [1], yet it remains the stan-
dard in many research labs around the world. Other than
legacy, Fortran is attractive to scientists because of high-
level array support, low runtime overhead (hence predictable
and controllable performance), and ease of optimisation.

Due to Fortran’s long history, many compilers continue
to support the older language standards of the 1960s and
70s. This perpetuates the existence of legacy code using
deprecated features that are now widely recognised to be
dangerous. Such features are a source of program errors and
prevent further transformations. We therefore advocate, as
have others [8, 11], for automatic refactoring tools to provide
a pathway to upgrading, or modernising, legacy code.

To this end, we built CamFort, an analysis and automatic
refactoring tool to support maintenance, verification, under-
standing, and further refactoring of Fortran code. Our tool
currently focuses on language features and programming
idioms related to manual memory and data management.
We show here three refactorings from CamFort: equivalence
statement elimination (Section 2.1), common block elimina-
tion (Section 2.2), and derived data type introduction to re-
place a manual data-structuring idiom (Section 2.3).

Context of our work We are running an inter-disciplinary
project at the University of Cambridge between computer
scientists and natural scientists to leverage state-of-the-art
programming language research for more effective program-
ming in the sciences. We are studying a number of models,
mostly written in Fortran, developed within the university.
CamFort if part of our Fortran research infrastructure, pro-
viding the basis of additional tools for collecting data on
programming idioms (to inform future language and tool de-
signs) and for experimenting with new language extensions.

CamFort is open source and available online at http:
//www.cl.cam.ac.uk/research/dtg/camfort

Related work There are number of restructuring and refac-
toring tools for Fortran. A recent survey is provided by
Tinetti and Méndez [11]. Our refactorings are not currently

http://www.cl.cam.ac.uk/research/dtg/camfort
http://www.cl.cam.ac.uk/research/dtg/camfort

supported by other tools, with the exception of refactoring
common blocks to modules (Sect. 2.2) in Photran [9], plus-
FORT [10], and VAST/77to90 [13]. Photran provides vari-
ous Fortran refactorings via an Eclipse IDE extension. It can
be adapted for more specific tasks, for example refactoring
global variables to allow MPI-based parallel programs to be
converted to Adaptive MPI implementations [7].

Implementation CamFort is essentially a compiler front
end, parsing Fortran files to an abstract syntax tree (AST)
representation, performing standard and Fortran-specific
program analyses, and AST transformations. CamFort out-
puts analysis reports and Fortran code. Much of Fortran is
recognised by the parser, from Fortran 66 to 2003 standards.

CamFort is implemented as an embedded domain-specific
language in Haskell for rapid prototyping of program anal-
yses and transformations, in a compositional style. Standard
components include type analysis, dataflow analyses, and
inspection and transformation of nodes in a subtree of a cer-
tain kind (e.g., all assignments). Refactorings may produce
redundant code which is optimised separately by dead-code
elimination to reduce the footprint of refactored code.

Data-type generic programming approaches are used for
rapid development and a relatively small implementation.
For example, a pleasingly terse algorithm merges (possibly
refactored) ASTs with their source codebase, producing a
refactored codebase with textual changes only at refactored
nodes, i.e., preserving formatting and comments of the orig-
inal codebase. Since the algorithm is data-type generic, it
does not need rewriting if the AST definition changes.

2. Refactoring with CamFort
Throughout, the term program unit refers to programs, sub-
programs (functions or subroutines), or modules.

2.1 Equivalence statement elimination
Equivalence statements declare a number of variables to be
aliased to the same memory location, possibly of different
types, with syntax of the form:

equivalence (var1, var2 [, vars])

where [, vars] is an optional comma-separated list of vari-
ables; an equivalence statement has two or more variables
(which may also be arrays or constant offsets into arrays).

An equivalence statement that aliases variables of differ-
ent types introduces implicit unsafe casting such that a piece
of memory is viewed through the lens of different types.

Equivalence statements are widely recognised as danger-
ous (they are banned in the UK government’s Met Office
Fortran coding standard [5]). In the past, equivalence state-
ments were used to reduce memory usage. However, mem-
ory capacity is now much less of a concern. Instead, any
aliasing in a program is an opportunity for unintended side
effects, for example when equivalenced variables are live in
the same region of code. Furthermore, if the types differ,

1 integer :: x, y, i
2 equivalence (x, y)
3 x = 0
4 x = 5
5 do i = 1, x
6 x = x + i
7 end do
8 print ’(i8, i8)’, x, y

(a) Example with equivalence

1 integer :: x, y, i
2

3 x = 0
4 x = 5
5 do i = 1, x
6 x = x + i
7 y = x
8 end do
9 print ’(i8, i8)’, x, y

(b) CamFort refactoring of (a)

(2,0): removed equivalence
(3,0): added copy: y = x due to refactored equivalence
(4,0): added copy: y = x due to refactored equivalence
(6,3): added copy: y = x due to refactored equivalence
r(3,0),(4,0): removed dead code from refactoring
r(7,0): WARNING: y and x interfere here (possible bug)

(c) CamFort refactoring log

Figure 1. Example refactoring of equivalence statements

then the implicit unsafe type casts are a potential source of
data errors, which are hard to understand statically.

Refactoring Our refactoring eliminates equivalence state-
ments, inserting copy statements, e.g., var1 = var2, when-
ever var2 is updated and var1 and var2 are equivalenced.
If the types of equivalenced variables differ, an explicit un-
safe type cast is inserted in the copy statement, provided
by Fortran 90’s transfer intrinsic. For example, var1 =

transfer(var2,var1) copies var2 to var1 at the type of
var1, preserving the bit-level data.

Figure 1 shows an example program fragment and its
refactoring, along with the refactoring log provided to the
user. This information could inform an IDE’s feedback to
the user. Note, three copy statements are generated, but two
are dead-code eliminated. The statement x = 0 is dead in
the original program, but is not removed in order to preserve
the original program structure; dead-code elimination is only
performed on code introduced by the refactoring.

Benefits Our refactoring makes explicit the implicit alias-
ing and casting introduced by equivalence statements. This
serves to highlight potential sources of error. For example,
the refactoring makes explicit when equivalenced variables
are live at the same program point by introducing a copy
statement that is not subsequently dead-code eliminated,
e.g., Figure 1(b) line 7; both x and y are live at line 7 hence
the inserted copy is not eliminated. This implies interference
between the two variables, which may be unintended and
therefore a source of program error. This is made explicit in
the code and reported to the user.

Equivalence elimination also assists further refactoring.
For example, equivalence statements impede the refactoring
of a variable’s type (e.g., from single- to double-precision
floating point, a common change in scientific code). If a vari-
able is equivalenced, changing its type introduces a potential
source of data error through unsafe casting. Eliminating the
equivalence statements makes the casts explicit, which could

be replaced with safe data conversions, or all equivalenced
variables could be refactored to the same type.

2.2 Common block elimination
Common blocks provide sharing between program units,
akin to global variables. Their declaration comprises a list of
variables (declared in the containing scope), with syntax:

common /name/ vars

where vars is a list of comma-separated variables (the fields
of the block) and /name/ is an optional name. There may
be arbitrarily many named common blocks in a program
and a single unnamed common block (declared by eliding
/name/). Each program unit which shares values via a par-
ticular common block includes a common block declaration
of that name, but may declare fields of different name, type,
and even length. Figure 2(a) gives an example of sharing be-
tween a main block and subroutine via an unnamed common
block, with differing variable names (cf. line 3 and 9).

Common blocks were used extensively in older, pre-
Fortran 90 code for sharing values and saving memory [11].
However, they are widely known to be problematic [5]. Sim-
ilarly to equivalence statements, they allow data aliasing
which may lead to unexpected interference, as well as im-
plicit unsafe casts. Further, common blocks are not checked
for consistency between program units, which may be sepa-
rately compiled with differing common block declarations.

CamFort provides two ways to refactor common blocks:
1) explicit parameter passing, and 2) modules.

Refactoring to parameter passing Variables shared by a
common block are refactored as parameters, illustrated in
Figure 2(b). Since Fortran uses call-by-reference (or call-
by-copy-restore) any updates to a and b in bar are seen in
the main program. This refactoring is useful when common
blocks are used minimally in subroutines/functions and the
inserted parameters do not clutter the code. Explicit unsafe
casts can also be inserted (using transfer) if required.

Refactoring to modules A more elegant refactoring uses
modules (discussed previously [8]) replacing common blocks
with a single declaration point for the variables shared be-
tween program units, unifying the names and types [6]. Fig-
ure 2(c) illustrates the approach. Where variable names dif-
fer, these variables are matched to the module declaration
using the renaming syntax of use statements (e.g., line 7).

Benefits Similarly to equivalence elimination, common
block elimination exposes potential data errors from implicit
casts, potential sources of interference due to aliasing, and
facilitates further refactorings (e.g., type refactorings).

Our refactoring to modules applies only to common
blocks with the same field lengths and types, since mod-
ules unifies these. This is more powerful than the approach
of plusFORT, where common blocks must also use the same
variable names [10][§2.7.6]. Our parameter-passing refac-
toring however allows different field lengths and types, and

1 program foo
2 integer :: x, y
3 common x, y
4 call bar()
5 end program foo
6

7 subroutine bar()
8 integer :: a, b
9 common a, b

10 a = a + b
11 end subroutine bar

(a) Common block example

1 program foo
2 integer :: x, y
3

4 call bar(x, y)
5 end program foo
6

7 subroutine bar(a, b)
8 integer :: a, b
9

10 a = a + b
11 end subroutine bar

(b) Parameter refactoring

1 program foo
2 use common
3 call bar()
4 end program foo
5

6 subroutine bar()
7 use common, a => x, b => y
8 a = a + b
9 end subroutine bar

common.f90:

1 module common
2 integer :: x
3 integer :: y
4 end module common

(c) CamFort refactoring of (a) using modules

Figure 2. Example refactoring of a common block

is therefore more general. However, it introduces excessive
code clutter if common blocks are used frequently. In con-
trast, the module approach gives a single, clear definition of
the shared data, scaling better with more complex codebase.

2.3 Derived data type introduction
In the past, a common idiom used arrays to group large pa-
rameter sets, manually implementing a kind of record type.
In this idiom, an array provides manual records with named
fields defined by variables bound to array indices, manu-
ally defining record projection. For example, Figure 3(a) de-
clares an array p of parameters of distance and time val-
ues, where variables d1, d2, t1, t2 provide projections, e.g.,
p(d1). These manual projections require programmer effort
and are a potential source of error if projections overlap un-
intentionally. Further, we have seen cases where these arrays
are large and unwieldy yet could be decomposed into more
meaningful subsets based on projection variable usage in the
program: some subsets of projection variables are used dis-
jointly or with small amounts of overlapping use.

Refactoring CamFort refactors this idiom into Fortran 90
derived data types (essentially named records resembling C
structs [6]). Figure 3(b) shows example syntax.

Manual records are decomposed based on semantic rela-
tionships between the projection variables. The refactoring
first constructs an interference graph (as is used in regis-
ter colouring algorithms) for variables which index an array
(e.g., d1 in p(d1)), where two variables have an edge be-
tween if a value is computed involving both variables.

A derived data type is generated from each disconnected
subgraph of the interference graph, where each node of the
subgraph generates a variable declaration of the type of
the original array elements. Data type names are generated

1 real p(0:3)
2 integer :: d1, d2, t1, t2
3

4 d1 = 0
5 t1 = 1
6 d2 = 2
7 t2 = 3
8

9 p = ... ! init p
10 v1 = p(d1) / p(t1)
11 v2 = p(d2) / p(t2)

(a) Manual records example

1 type X1
2 real :: d1, t1
3 end type X1
4 type(X1) p1
5

6 type X2
7 real :: d2, t2
8 end type X2
9 type(X2) p2

10

11 p = ... ! init p
12 v1 = p1%d1 / p1%t1
13 v2 = p2%d2 / p2%t2

(b) CamFort refactoring of (a)

Figure 3. Example refactoring of manual records

by taking the per-character mode (most frequent character)
from the variable names within, with a wildcard character X
if there is no unique mode. Each derived data type declara-
tion is followed by a value declaration of this type.

Finally, the original declarations and value definitions of
the projection variables are removed from the program and
array indexing is replaced with derived data type projection,
e.g., p%d1 replaces p(d1).

Figure 3(b) shows the refactoring for our example, where
d1, t1 and d2, t2 form disconnected subgraphs in the in-
terference graph. Note, the refactoring only succeeds if pro-
jection variables are non-overlapping static constants (up to
copy propagation). Otherwise, the refactoring reports which
constants overlap or cannot be statically determined.

The refactoring allows further decomposition of derived
data types by taking minimal cuts of subgraphs of the inter-
ference graph (i.e., splitting subgraphs into two by removing
the smallest number of edges). This process can be iterated.
Further work is to refactor data types by merging adjacent
declarations that have the same structure (types), thus in-
creasing abstraction and reducing code size. For example,
Figure 3(b) would have its two data types merged into one.

Benefits In the manual approach, extending the record
means increasing the array size, adding a new lookup vari-
able, and propagating these changes throughout. Derived
data type introduction therefore makes code much easier
to maintain, understand, and extend. The refactoring also
identifies errors in manual record projections arising from
unintended overlap of projection variables.

3. Conclusion & further work
We advocate for refactoring of legacy code as languages
evolve to avoid “sedimentary programs” with layers of past
and present code. CamFort goes toward upgrading Fortran
code to a modern form, eliminating deprecated features and
introducing structure data types. This assists the mainte-
nance, verification, extension, and understandability of code.

The Haskell embedded domain-specific language ap-
proach makes CamFort well-placed to support further refac-

torings (e.g., those suggested by Overbey and Johnson [8]).
There is scope for improving this approach further (e.g.,
adapting source-code query languages [12]) to ease the de-
velopment of new analyses and refactorings. We also intend
to use the CamFort analysis framework as a basis for col-
lecting data on programming patterns/idioms used in scien-
tific modelling. For example, how common are parallelisable
loops that could be executed on a GPU? This will provide
invaluable data for future language and tool designs.

Acknowledgments Grateful thanks to Andy Hopper for
his support, Sam Aaron, Andrew Friend, Alan Mycroft, and
Raoul-Gabriel Urma for their comments, and Mark Sydall
for discussing Fortran transformation. This research was
supported by a Google Focused Research Award.

References
[1] D. Cann. Retire Fortran? A debate rekindled. In Proc.

ACM/IEEE Conf. on Supercomputing, pages 264–272, 1991.

[2] EPSRC. Core e-Science program strategy, Retr. Aug 2013.
http://www.epsrc.ac.uk/research/ourportfolio/themes/

researchinfrastructure/subthemes/einfrastructure/

escience/Pages/strategy.aspx.

[3] M. N. Greenfield. History of FORTRAN standardization.
In Proceedings of the National Computer Conference, pages
817–824. ACM, 1982.

[4] Z. Merali. Computational science: Error, why scientific pro-
gramming does not compute. Nature, 467(7317):775–777,
2010.

[5] Met office: Fortran 90 standards, Retrieved Aug 2013.
http://research.metoffice.gov.uk/research/nwp/

numerical/fortran90/f90_standards.html.

[6] M. Metcalf. Why Fortran 90? Technical report, CM-
P00065587, 1991.

[7] S. Negara, G. Zheng, K.-C. Pan, N. Negara, R. E. Johnson,
L. V. Kalé, and P. M. Ricker. Automatic MPI to AMPI pro-
gram transformation using Photran. In Euro-Par 2010 Parallel
Processing Workshops, pages 531–539. Springer, 2011.

[8] J. L. Overbey and R. E. Johnson. Regrowing a language:
refactoring tools allow programming languages to evolve. In
ACM SIGPLAN Notices, volume 44, pages 493–502, 2009.

[9] Photran – An Integrated Development Environment and
Refactoring Tool for Fortran, Retrieved July 2013. http:

//www.eclipse.org/photran/.

[10] PlusFORT Manual, Retrieved October 2013. http://www.

polyhedron.com/plusfortmanual/index.html.

[11] F. G. Tinetti and M. Méndez. Fortran legacy software: source
code update and possible parallelisation issues. In ACM SIG-
PLAN Fortran Forum, volume 31, pages 5–22. ACM, 2012.

[12] R.-G. Urma and A. Mycroft. Source-code queries with graph
databases–with application to programming language usage
and evolution. Science of Computer Programming, 2013.

[13] VAST/77to90, Retrieved October 2013. http://www.

crescentbaysoftware.com/vast_77to90.html.

http://www.epsrc.ac.uk/research/ourportfolio/themes/researchinfrastructure/subthemes/einfrastructure/escience/Pages/strategy.aspx
http://www.epsrc.ac.uk/research/ourportfolio/themes/researchinfrastructure/subthemes/einfrastructure/escience/Pages/strategy.aspx
http://www.epsrc.ac.uk/research/ourportfolio/themes/researchinfrastructure/subthemes/einfrastructure/escience/Pages/strategy.aspx
http://research.metoffice.gov.uk/research/nwp/numerical/fortran90/f90_standards.html
http://research.metoffice.gov.uk/research/nwp/numerical/fortran90/f90_standards.html
http://www.eclipse.org/photran/
http://www.eclipse.org/photran/
http://www.polyhedron.com/plusfortmanual/index.html
http://www.polyhedron.com/plusfortmanual/index.html
http://www.crescentbaysoftware.com/vast_77to90.html
http://www.crescentbaysoftware.com/vast_77to90.html

	Introduction
	Refactoring with CamFort
	Equivalence statement elimination
	Common block elimination
	Derived data type introduction

	Conclusion & further work

