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Abstract. For a given data set, its set of attributes defines its data space repre-
sentation. The quality of a data space representation is one of the most important 
factors influencing the performance of a data mining algorithm. The attributes 
defining the data space can be inadequate, making it difficult to discover high-
quality knowledge. In order to solve this problem, this paper proposes a Genetic 
Programming algorithm developed for attribute construction. This algorithm 
constructs new attributes out of the original attributes of the data set, perform-
ing an important preprocessing step for the subsequent application of a data min-
ing algorithm. 

 
1   Introduction 

This paper addresses the classification task of data mining [3]. In this task the goal of 
a data mining algorithm is to predictive the class of an example (a record, or data 
instance), given the values of a set of attributes for that example. 

For a given data set, its set of attributes defines its data space representation. The 
quality of a data space representation is one of the most important factors influencing 
the performance of a data mining algorithm. The attributes defining the data space 
can be inadequate, making it difficult to discover high-quality knowledge. However, 
when the original attributes are individually inadequate, it is often possible to com-
bine them in order to construct new attributes with greater predictive power than the 
original attributes, facilitating the discovery of knowledge with a high predictive 
accuracy. 

This paper proposes a Genetic Programming (GP) algorithm developed for attrib-
ute construction (also called constructive induction). This algorithm constructs new 
attributes out of the original attributes of the data set, performing an important pre-
processing step for the subsequent application of a data mining algorithm.  

The main motivation for developing a GP algorithm for this task is that it performs 
a global search in the space of candidate solutions (new constructed attributes, in our 
case). In data mining, this has the advantage of coping better with attribute interac-
tion, being less likely to get trapped into local maxima in the search space, by com-
parison with greedy, local search-based data mining algorithms [2], [4]. 



The remainder of this paper is organized as follows. Section 2 reviews attribute 
construction. Section 3 proposes our new GP algorithm for attribute construction. 
Section 4 reports computational results. Finally, section 5 concludes the paper. 

2   A Review of Attribute Construction 

The majority of inductive learning algorithms for the classification task discover 
rules (or another kind of knowledge representation) involving only the original attrib-
utes of the data being mined. In addition, the majority of rule induction methods 
analyze the data on a one-attribute-at-a-time basis. Hence, the performance of these 
methods is considerably limited by the predictive power of individual attributes, so 
that these methods do not cope very well with the problem of attribute interaction. 

The goal of an attribute construction method is to construct new attributes out of 
the original ones, transforming the original data representation into a new one where 
regularities in the data are more easily detected by the classification algorithm, which 
tends to improve the predictive accuracy of the latter. 

Attribute construction methods can be roughly divided into two groups, with re-
spect to the construction strategy: hypothesis-driven methods and data-driven meth-
ods [6]. 

Hypothesis-driven methods construct new attributes out of previously-generated 
hypotheses (discovered rules or another kind of knowledge representation). In gen-
eral they start by constructing a hypothesis, for instance a decision tree, and then 
examine that hypothesis to construct new attributes [13]. These new attributes are 
then added to the set of original attributes, and a new hypothesis is constructed out of 
this extended set of attributes. The new hypothesis is used to generate new attributes, 
and so on. This process is repeated until a given stopping criterion is satisfied, such 
as a satisfactory extended set of attributes has been found. Note that the performance 
of this strategy is strongly dependent on the quality of the previously-discovered 
hypotheses. 

By contrast, data-driven methods do not suffer from the problem of depending on 
the quality of previous hypotheses. They construct new attributes by directly detect-
ing relationships in the data. Two examples of data-driven attribute construction 
methods are GALA and GPCI.  

GALA [8] constructs new attributes using two logical operators, AND and OR. 
First, all original attributes are transformed into boolean attributes. Then it generates 
new attributes by using the AND and OR operators to produce combinations of the 
boolean attributes. Although GALA does not use any evolutionary algorithm to con-
struct attributes, it is interesting to note that apparently it was the “parent” of GPCI 
[7], a GP algorithm for attribute construction. 

Like GALA, GPCI starts by transforming all original attributes into boolean at-
tributes, and then it generates new attributes by using AND and OR operators to 
produce combinations of the boolean attributes. The difference is that is searches for 
new attributes by using a GP algorithm. In essence, each individual of GPCI repre-



sents a new attribute. The terminal set consists of the booleanized original attributes, 
whereas the function set consists of the AND and OR operators. 

The process of attribute construction can also be roughly divided into two ap-
proaches, namely the interleaving approach and the preprocessing approach. 

In the preprocessing approach the process of attribute construction is independent 
of the inductive learning algorithm that will be used to extract knowledge from the 
data. In other words, the quality of a candidate new attribute is evaluated by directly 
accessing the data, without running any inductive learning algorithm. In this approach 
the attribute construction method performs a preprocessing of the data, and the new 
constructed attributes can be given to different kinds of inductive learning methods.  

By contrast, in the interleaving approach the process of attribute construction is in-
tertwined with the inductive learning algorithm. The quality of a candidate new at-
tribute is evaluated by running the inductive learning algorithm used to extract 
knowledge from the data, so that in principle the constructed attributes’ usefulness 
tends to be limited to that inductive learning algorithm. An example of an attribute 
construction method following the interleaving approach can be found in [15]. 

In this paper we follow the data-driven strategy and the preprocessing approach, 
mainly for two reasons. First, using this combination of strategy/approach the con-
structed attributes have a more generic usefulness, since they can help to improve the 
predictive accuracy of any kind of inductive learning algorithm. Second, an attribute-
construction method following the preprocessing approach tends to be more efficient 
than its interleaving counterpart, since the latter requires many executions of an in-
ductive learning algorithm. 

It should be noted that both GALA and GPCI also follow the data-driven strategy 
and the preprocessing approach. However, both these algorithms have the limitation 
that all attributes have to be booleanized in a preprocessing step, before the attribute 
construction method starts to run. Intuitively, this booleanization can lead to a sig-
nificant loss of relevant information. Our proposed GP for attribute construction 
(described in the next section) does not have this disadvantage, since it does not 
require any booleanization of the original attributes. 

3   A New GP for Attribute Construction 

3.1   Individual Representation 

We use a standard tree-structure representation for each individual [9], [1]. The GP 
constructs new attributes out of the continuous (real-valued) attributes of the data set 
being mined. Each individual corresponds to a candidate new attribute. The terminal 
set consists of all the continuous attributes in the data being mined. The function set 
consists of four arithmetic operators, namely “+”, “−”, “ ∗”, “ %” (where the latter is 
protected division [9]), and two relational comparison operators, namely “≤”, “ ≥”.  

The use of these operators in the tree associated with an individual must satisfy 
some constraints about the data types of these operators, as shown in Table 1. As can 
be seen in the table, the arithmetic operators require two continuous input arguments 



and produce a continuous output. The relational comparison operators also require 
two continuous input arguments, but they produce a boolean output. 

Table 1. Data types restrictions for the function set 

Operator Input arguments Output 
+,−,∗,% (continuous, continuous) (continuous) 
≥, ≤ (continuous, continuous) (boolean) 

 
As a result of the data type restrictions shown in Table 1, there are some restric-

tions on the hierarchy of nodes in a tree. These restrictions are shown in Table 2. 
Each cell of this table indicates whether or not (Y or N, respectively) the correspond-
ing combination of parent node and child node is allowed. Note that the relational 
comparison operators (“≥”,“≤”)cannot be used as child nodes. I.e., these operators 
can be used only in the root node of a tree. 

Table 2. Restrictions on the hierarchy of nodes in the tree 

parent node  
+ − ∗ % ≥ ≤ 

+ Y Y Y Y Y Y 
− Y Y Y Y Y Y 
∗ Y Y Y Y Y Y 
% Y Y Y Y Y Y 
≥ N N N N N N 
≤ N N N N N N 

child node 

terminal Y Y Y Y Y Y 
 

We have also used a restriction on the size of the tree associated with an individ-
ual. This restriction consists of specifying a parameter representing the maximum 
tree size (number of nodes) of a tree. As will be seen later, we have done experiments 
with different values of this parameter, to determine how robust our GP is to varia-
tions in the setting of this parameter. 

This size restriction is important for at least two reasons. First, from a predictive 
data mining view point, avoiding the generation of very large trees helps to combat 
overfitting and so potentially improves the predictive power of the candidate attrib-
ute. Second, from a GP viewpoint, this size restriction helps to avoid the effects of 
code bloat [12], [10] – i.e., the tendency of GP trees to grow in an uncontrolled man-
ner.  

It should be mentioned that some GP algorithms specify a predefined maximum 
depth for an individual’s tree. There is no such maximum tree depth in our GP. 
Rather, we have preferred to specify a maximum tree size in terms of the number of 
nodes. The rationale for this choice is that, if a maximum tree depth is specified, the 
GP will probably be somewhat biased to produce balanced trees, growing the trees in 
width after the maximum tree depth has been reached. Such bias seems unnatural, 



limiting the flexibility of the GP to search for solutions (trees) of different shapes. 
Actually, there is some evidence that predefining a maximum tree depth has some 
negative effects in GP [5], [11]. A size restriction based on the total number of 
nodes, rather than tree depth, helps to avoid this kind of problem.  

Note that the function set of our GP is inclusive enough to allow the GP to con-
struct either a continuous attribute or a boolean attribute, depending on the kind of 
operator used in the root node of the individual’s tree. If the root node contains an 
arithmetic operator (“+”,“ −”,“ ∗”, or “%”) the constructed attribute will be continu-
ous, whereas if the root node contains a relational comparison operator (“≥” or “≤”) 
the constructed attribute will be boolean. 

3.2 Selection Method and Genetic Operators 

We use tournament selection. In essence, this method works as follows. First, k indi-
viduals are randomly chosen from the population. Then the individual with the best 
fitness is selected. This method has an important parameter, the tournament size, k. 
This parameter determines the selective pressure of the method. Larger values of k 
correspond to larger selective pressures, favouring individuals with the best values of 
fitness. As will be seen later, we have done experiments with different values of this 
parameter, to determine how robust our GP is to variations in the setting of this pa-
rameter. 

In order to create a new population from the current population we use three op-
erators, namely reproduction, crossover and mutation. Reproduction and crossover 
are conventional GP operators – we use standard tree crossover [9]. 

The mutation operator works as follows. First, it randomly chooses a tree node. 
Then the current symbol in this node is replaced by a randomly chosen symbol of the 
same kind which is different from the current symbol. More precisely, a terminal 
symbol is replaced by another terminal symbol, an arithmetic operator is replaced by 
another arithmetic operator, and a relational comparison operator is replaced by an-
other relational comparison operator. 

3.3   Fitness Function 

The fitness function used in this work is information gain ratio [14], which is a well-
known attribute-quality measure in the data mining and machine learning literature. It 
should be noted that the use of this measure constitutes a data-driven strategy. As 
mentioned above, an important advantage of this kind of strategy is that it is rela-
tively fast, since it avoids the need for running a data mining algorithm when evaluat-
ing an attribute (individual). In particular, the information gain ratio for a given at-
tribute can be computed in a single scan of the training set.  

 The Information Gain Ratio of an attribute A, denoted by IGR(A), is computed by 
dividing the Information Gain of A, denoted by IG(A), by the amount of Information 
of the attribute A, denoted I(A), i.e.:  

IGR(A) = IG(A) / I(A)  . (1) 



The Information Gain of an attribute A, denoted IG(A), represents the difference 
between the amount of Information of the goal (class) attribute G, denoted I(G), and 
that amount given the knowledge of the values of an attribute A, denoted I(G|A). 
IG(A) is given by: 

IG(A) =  I(G) - I(G|A), (2) 

                                                                                       n                                    
where                                I(G) = - Σ p(Gj) . log2 p(Gj), 

                                                   j=1 

(3) 

                                                                       m                        n
 

and                         I(G|A) = Σ p(Ai) ( - Σ p(Gj|Ai) . log2 p(Gj|Ai) ) ,
 

                                                               i=1                      j=1 

(4) 

where p(Gj) is the estimated probability (computed in the training set) of observing 
the j-th class (i.e., the j-th value of the goal attribute G), n is the number of classes, 
p(Ai) is the estimated probability of observing the i-th value of the attribute A, m is 
the number of values of the attribute A, and p(Gj|Ai) is the empirical probability of 
observing the j-th class conditional on having observed the i-th value of the attribute 
A. 
Finally, I(A) is given by: 
                                                                                   m 

I(A) = - Σ p(Ai) . log2 p(Ai)  . 
                                                i=1 

(5) 

Recall that the attribute constructed by the GP can be either continuous or boolean 
(see the last paragraph of section 3.1). When the constructed attribute is boolean, the 
above formulas are used in a straightforward manner to compute the IGR of the at-
tribute. When the constructed attribute is continuous the GP computes the IGR asso-
ciated with each possible cut point (attribute value) defining a candidate booleaniza-
tion of the attribute, and it chooses the largest value of IGR, among all those IGR 
values, as the value to be assigned to IGR(A). For more details about this procedure 
and the information gain ratio measure in general, see [14]. 

4   Computational Results 

In  this  section  we  report  the  results  of  computational  experiments   performed 
to  evaluate  our  proposed  GP  for  attribute  construction.  The   experiments  were 
performed    with    four   public-domain   data    sets    from    the   UCI   (University 
of California at Irvine) data set repository, available at: 
http://www.ics.uci.edu/~mlearn/MLRepository.html.  

Table 3 shows the main characteristics of the data sets used in our experiments. In 
the third column, the number before the slash (“/ ”) is the number of continuous at-
tributes, whereas the number after the slash is the total number of attributes in the 
data set. As can be seen in the table, for these experiments we have chosen data sets 
where all or almost all attributes were continuous. Future work will involve data sets 
with mixed kinds of attributes (both continuous and categorical ones). 



Table 3. Data sets used in the experiments 

Data set No. of 
records 

No. of Cont. Attrib. 
/ Total No. of Attrib. 

No. of 
classes 

Abalone 4177 7 / 8 28 
Balance-scale 625 4 / 4 3 
Waveform 5000 21 / 21 3 
Wine 178 13 / 13 3 

 
In all our experiments the probabilities of reproduction, crossover and mutation 

were 10%, 80% and 10%, respectively. The initial population was created by using 
the well-known ramped half-and-half method [9]. The population size was 600, and 
the GP evolved for 100 generations. We made no attempt to optimize the parameters 
mentioned in this paragraph. However, we did experiments with different values of 
two other parameters, the tournament size and the maximum tree size, as will be 
discussed below. 

The evaluation of the quality of the attributes constructed by our GP was per-
formed by using C4.5 [Quinlan, 1993], a very well-known classification algorithm 
that builds a decision tree. Hence, in the experiments we compare the classification 
error rate of C4.5 using only the original attributes with the error rate of C4.5 using 
not only the original attributes but also the new attribute constructed by the GP.  

The error rate was computed by a well-known 10-fold cross-validation procedure, 
which essentially works as follows. First, the data set is divided into 10 mutually 
exclusive and exhaustive partitions. Then the algorithm is run 10 times. In the i-th 
run, i=1,...,10, the i-th partition is used as the test set and the remaining 9 partitions 
are grouped and used as the training set. Finally, the reported result is the average 
error rate (in the test set) over the 10 runs.  

In addition to the goal of evaluating the quality of the attributes constructed by the 
GP, our experiments also had the goal of determining how robust the GP is to varia-
tions in the setting of two important parameters, namely the tournament size k and 
the maximum tree size (number of nodes). Hence, we did experiments with three 
different values for the tournament size k (2, 4, 8) and three different values for the 
maximum tree size (31, 63, 127). The experiments involved all the 9 possible combi-
nations (3 x 3) of values of these two parameters.  

For each of those 9 combinations of parameter values we have run a 10-fold cross-
validation procedure, as explained above. Note that each run of an entire cross-
validation procedure involved running GP 10 times and running C4.5 20 times (10 
times using only the original attributes and 10 times using both the original attributes 
and the new attribute constructed by the GP). 

The results are reported in Tables 4, 5, 6, and 7, for the Abalone, Balance-Scale, 
Waveform and Wine data sets, respectively. In these tables, each cell contains the 
error rate obtained by C4.5 using the attribute constructed by GP, with the combina-
tion of parameter values corresponding to that cell. In the second line of the title of 
each table, between brackets, we report the error rate obtained by C4.5 using only the 
original attributes. In these tables, the value of a cell is shown in bold if the error rate 
obtained using the new attribute constructed by the GP is smaller than the error rate 



obtained using only the original attributes. Therefore, cells in bold represent cases 
where the attribute constructed by the GP was useful to reduce the error rate associ-
ated with the original attributes, being evidence of the good quality of the constructed 
attribute. The numbers after the “±” symbol denote standard deviations.  

In the Abalone data set (Table 4) the use of the new attribute constructed by the 
GP has led to a slight increase in error rate in 6 out of the 9 cases (combinations of 
parameter values), and has led to a slight reduction in the error rate in only 3 cases. 
However, in general the differences in error rates are not significant, since the corre-
sponding error rate intervals (considering the standard deviations) overlap. (The very 
high error rates obtained by C4.5, with and without the attribute constructed by the 
GP, show that this data set represents a very difficult classification problem. This 
seems to be at least in part due to the relatively large number of classes, 28.) 

In the Balance-Scale data set (Table 5) the use of the new attribute constructed by 
the GP has clearly led to a very significant reduction in the error rate in all the 9 
combinations of parameter values. 

In the Waveform data set (Table 6) the use of the new attribute constructed by the 
GP has led to a reduction in the error rate in 8 of the 9 combinations of parameter 
values. These reductions in error rate are significant – the corresponding error rate 
intervals (considering the standard deviations) do not overlap. 

In the Wine data set (Table 7) the use of the new attribute constructed by the GP 
has led to a reduction in the error rate in all the 9 combinations of parameter values. 
However, these reductions in error rate are not significant.  

With respect to the ability of the attributes constructed by the GP in reducing the 
error rate associated with the original attributes, one can summarize the above results 
as follows. In one data set (Abalone) the attribute constructed by GP has led to a 
slight increase in error rate, but this increase was not significant. In another data set 
(Wine) the attribute constructed by GP has lead to some reduction in error rate, but 
again this reduction was not significant. In the other two data sets (Balance-Scale and 
Waveform) the attribute constructed by GP has led to a reduction in error rate which 
was significant, since the corresponding error rate intervals, considering the standard 
deviations, do not overlap. The reduction in error rate was particularly strong in the 
Balance-Scale data set. Overall, we consider these results quite promising.  

Recall that another goal of our experiments was to determine how robust the GP is 
to variations in the setting of two important parameters, namely the tournament size k 
and the maximum tree size (number of nodes). 

First of all, as expected, there is no combination of parameters values that turned 
out to be the “best” one for all data sets. This is a common result in data mining and 
machine learning, where the best parameter setting is strongly dependent on the data 
being mined. In any case, the GP turned out to be quite robust to variations in the 
parameters k and maximum tree size. There are, of course, a few exceptions. In par-
ticular, in the Waveform data set (Table 6) the combination of k = 8 and maximum 
number of nodes = 127 led to an error rate significantly larger than the other combi-
nations of parameter values. But this result is clearly an exception. In general, in all 
the four data sets the differences in error rates associated with different combinations 
of parameter values was not significant, which is evidence of a reasonable robustness 
of GP to variations in these two parameters. 



Table 4. Error rate (%) of C4.5 using both original attributes and attribute constructed by the 
GP in Abalone data set (Error rate (%) of  C4.5 using only the original attributes: 79.2 ± 0.37) 

  Maximum tree size (number of nodes) 
  31 63 127 

2 79.31 ± 0.36 79.18 ±±±± 0.35 79.21 ± 0.41 
4 79.21 ± 0.33 79.21 ± 0.33 79.16 ±±±± 0.36 

Tournament 
size  

8 79.21 ± 0.33 79.21 ± 0.33 79.16 ±±±± 0.36 

Table 5. Error rate (%) of C4.5 using both original attributes and attribute constructed by the 
GP GP in Balance-Scale data set (Error rate (%) of C4.5 using only the original attributes: 22.42 
± 1.34) 

  Maximum tree size (number of nodes) 
  31 63 127 

2 11.47 ±±±± 2.13 7.78 ±±±± 0.66 8.58 ±±±± 0.58 
4 9.06 ±±±± 0.42 8.26 ±±±± 0.65 8.26 ±±±± 0.44 

Tournament 
size  

8 8.58 ±±±± 0.67 8.74 ±±±± 0.68 8.10 ±±±± 0.63 

Table 6. Error rate (%) of C4.5 using both original attributes and attribute constructed by the 
GP in Waveform data set (Error rate (%) of C4.5 using only the original attributes: 25.06 ± 
0.66) 

  Maximum tree size (number of nodes) 
  31 63 127 

2 23.04 ±±±± 0.40 22.48 ±±±± 0.45 22.68 ±±±± 0.57 
4 22.44 ±±±± 0.59 22.86 ±±±± 0.50 22.56 ±±±± 0.57 

Tournament 
size  

8 22.22 ±±±± 0.49 22.60 ±±±± 0.42 28.86 ± 2.74 

Table 7. Error rate (%) of C4.5 using both original attributes and attribute constructed by the 
GP in Wine data set (Error rate (%) of C4.5 using only the original attributes:  6.48 ± 2.05) 

  Maximum tree size (number of nodes) 
  31 63 127 

2 5.31 ±±±± 1.38 4.72 ±±±± 1.47 4.72 ±±±± 1.47 
4 3.54 ±±±± 1.30 5.31 ±±±± 1.63 3.54 ±±±± 1.30 

Tournament 
size  

8 3.54 ±±±± 1.30 4.72 ±±±± 1.47 5.30 ±±±± 1.62 

5   Conclusions and Future Research 

We have proposed a new GP for attribute construction. It constructs new attributes 
out of the original continuous (real-valued) attributes of the data being mined. We 
have also evaluated the ability of the attributes constructed by the GP in reducing the 
error rate associated with the original attributes. This was done by comparing the 
error rate obtained by C4.5 using only the original attributes with the error rate ob-
tained by C4.5 using both the original attributes and the new attribute constructed by 
the GP. 



Experiments were performed with four public-domain data sets. In two of those 
data sets there was no significant difference in the error rate of C4.5 with and without 
the attribute constructed by the GP. However, in the other two data sets the differ-
ence was significant, and in both of these cases the error rate of C4.5 with the con-
structed attribute was smaller than the error rate of C4.5 without the constructed 
attribute. Hence, these can be considered promising results.  

In addition, GP turned out to be quite robust to variations in the settings of two 
important parameters, namely the tournament size and the maximum tree size (num-
ber of nodes). Experiments with 9 different combinations for the values of these two 
parameters showed that, in general (with a few exceptions), the differences in error 
rates associated with different combinations of these parameter values was not sig-
nificant.  
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